Abstract

The conception and realization of an imaging microspectrometer, limited to an optical volume of 11 × 6 × 5 mm3, is presented. The spectrometer is based on a multi-order concept and offers an overall spectral bandwidth of 400 – 1030 nm with better than 2.5 nm resolution in the visible range. The numerical aperture of NA = 0.2 allows an appropriate energy efficiency. As the most essential element of the microspectrometer, a concave diffraction grating with a diameter of 5 mm and an image distance of f = 8.6 mm was manufactured in a holographic recording process. For the recording process the specifications of the concave grating require two diffraction limited point sources in very close proximity. To provide a point source distance below 1 mm a recording concept based on the introduction of a supplementary hologram was employed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mohr, B. Anderer, and W. Ehrfeld, "Fabrication of a Planar Grating Spectrograph by Deep-etch Lithography with Synchrotron Radiation," Sens. Actuators A 25, 571-575 (1991).
    [CrossRef]
  2. G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, "Miniature spectrometers for biological analysis," Sens. Actuators A 58, 61-66 (1997).
    [CrossRef]
  3. G. Chen, Z. Wen, Z. Wen, Y. Pan, S. Huang, "Design of a hybrid integrated microfiber spectrometer," J. Microlithogr., Microfabr., Microsyst 2, 191-194 (2003).
  4. R. F. Wolffenbuttel, "State-of-the-Art in Integrated Optical Microspectrometers" IEEE Trans. Instrum. Meas. 53, 197-202 (2004).
    [CrossRef]
  5. I. Avrutsky, K. Chaganti, I. Salakhutdinov, and G. Auner, "Concept of a miniature optical spectrometer using integrated optical and micro-optical components" Appl. Opt. 45, 7811-7817 (2006).
    [CrossRef] [PubMed]
  6. E. G. Loewen and E. Popov, Diffraction Gratings and Applications, (Marcel Dekker, Inc.; New York, 1997).
  7. F. Kerstan and N. Correns, Gitterspektrometersystem und Verfahren zur Messwerterfassung; DE 102005024271
  8. Hamamatsu Photonics, Hamamatsu City, Japan, product specifications for CMOS linear image sensor S9226.

2006

2004

R. F. Wolffenbuttel, "State-of-the-Art in Integrated Optical Microspectrometers" IEEE Trans. Instrum. Meas. 53, 197-202 (2004).
[CrossRef]

1997

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, "Miniature spectrometers for biological analysis," Sens. Actuators A 58, 61-66 (1997).
[CrossRef]

1991

J. Mohr, B. Anderer, and W. Ehrfeld, "Fabrication of a Planar Grating Spectrograph by Deep-etch Lithography with Synchrotron Radiation," Sens. Actuators A 25, 571-575 (1991).
[CrossRef]

Albin, M.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, "Miniature spectrometers for biological analysis," Sens. Actuators A 58, 61-66 (1997).
[CrossRef]

Anderer, B.

J. Mohr, B. Anderer, and W. Ehrfeld, "Fabrication of a Planar Grating Spectrograph by Deep-etch Lithography with Synchrotron Radiation," Sens. Actuators A 25, 571-575 (1991).
[CrossRef]

Auner, G.

Avrutsky, I.

Chaganti, K.

Ehrfeld, W.

J. Mohr, B. Anderer, and W. Ehrfeld, "Fabrication of a Planar Grating Spectrograph by Deep-etch Lithography with Synchrotron Radiation," Sens. Actuators A 25, 571-575 (1991).
[CrossRef]

Hing, P. A.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, "Miniature spectrometers for biological analysis," Sens. Actuators A 58, 61-66 (1997).
[CrossRef]

Kovacs, G. T. A.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, "Miniature spectrometers for biological analysis," Sens. Actuators A 58, 61-66 (1997).
[CrossRef]

Maluf, N. I.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, "Miniature spectrometers for biological analysis," Sens. Actuators A 58, 61-66 (1997).
[CrossRef]

Mohr, J.

J. Mohr, B. Anderer, and W. Ehrfeld, "Fabrication of a Planar Grating Spectrograph by Deep-etch Lithography with Synchrotron Radiation," Sens. Actuators A 25, 571-575 (1991).
[CrossRef]

Salakhutdinov, I.

Wolffenbuttel, R. F.

R. F. Wolffenbuttel, "State-of-the-Art in Integrated Optical Microspectrometers" IEEE Trans. Instrum. Meas. 53, 197-202 (2004).
[CrossRef]

Yee, G. M.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, "Miniature spectrometers for biological analysis," Sens. Actuators A 58, 61-66 (1997).
[CrossRef]

Appl. Opt.

IEEE Trans. Instrum. Meas.

R. F. Wolffenbuttel, "State-of-the-Art in Integrated Optical Microspectrometers" IEEE Trans. Instrum. Meas. 53, 197-202 (2004).
[CrossRef]

Sens. Actuators A

J. Mohr, B. Anderer, and W. Ehrfeld, "Fabrication of a Planar Grating Spectrograph by Deep-etch Lithography with Synchrotron Radiation," Sens. Actuators A 25, 571-575 (1991).
[CrossRef]

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, "Miniature spectrometers for biological analysis," Sens. Actuators A 58, 61-66 (1997).
[CrossRef]

Other

G. Chen, Z. Wen, Z. Wen, Y. Pan, S. Huang, "Design of a hybrid integrated microfiber spectrometer," J. Microlithogr., Microfabr., Microsyst 2, 191-194 (2003).

E. G. Loewen and E. Popov, Diffraction Gratings and Applications, (Marcel Dekker, Inc.; New York, 1997).

F. Kerstan and N. Correns, Gitterspektrometersystem und Verfahren zur Messwerterfassung; DE 102005024271

Hamamatsu Photonics, Hamamatsu City, Japan, product specifications for CMOS linear image sensor S9226.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Scheme of the miniature multi-order spectrometer showing the working principle. The light which is coupled into the spectrometer via the entrance slit is dispersed and imaged by the concave grating. In dependence on the specific diffraction order a different wavelength range is focused on the detector.

Fig. 2.
Fig. 2.

Optical layout of the miniature multi-order spectrometer. The spectrometer covers an optical volume of 11 x 6 x 5mm3. Due to imaging multiple higher diffraction orders, the concave diffraction grating is significantly tilted with respect to the optical axis. The spectrometer offers a numerical aperture of NA = 0.2

Fig. 3.
Fig. 3.

Multi-order concept: With increasing diffraction orders the single intervals ∆λm+n are expanded and experience a linear shift to larger diffraction angles.

Fig. 4.
Fig. 4.

Geometric positions of the point sources with respect to the substrate to record the miniature concave grating. The distance between the point sources C and D is 0.88 mm.

Fig. 5.
Fig. 5.

Recording of a supplementary hologram. The supplementary hologram is used to neutralize the aberration induced by the tilted illumination of the collimating optics.

Fig. 6.
Fig. 6.

Recording configuration for the concave grating. The supplementary hologram acts in the 0th diffraction order as a plane mirror and generates a diffraction limited spot at the on- axis position. In the 1st diffraction order the supplementary hologram generates a distorted wave-front which results in a second diffraction limited spot at the required off-axis position.

Fig. 7.
Fig. 7.

Demonstration set-up: A multimode fiber was used to pick up the light from a scattering surface (white paper) which was illuminated by the defined wavelengths of two different laser sources (532 nm and 543 nm).

Fig. 8.
Fig. 8.

Measured intensity as a function of the pixel number. Due to the multi-order concept the oversized length of the detection array results in multiple appearance of the characteristic spectral lines (lines: 543nm of a HeNe-laser and 532nm of a Nd:YAG-laser).

Fig. 9.
Fig. 9.

(a). – (c). Measured intensities as a function of the wavelength for the three spectral intervals. The pixel distance between the 10 nm separated lines is decreasing with increasing wavelength range and simultaneously the accessible spectral width of each interval is increasing.

Fig. 10.
Fig. 10.

Measure of the resolving power of the spectrometer. Two adjacent wavelengths (550 nm and 552.5 nm) were successively detected. The curve of both added signals shows a clear minimum between the peaks.

Tables (1)

Tables Icon

Table 1. Maximum and the minimum detectable wavelength and the respective spectral bandwidth in relation to the corresponding diffraction order

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

λ m + 1 , max = λ m , max Δ λ m
m λ m , max = ( m + 1 ) λ m + 1 , max
Δ λ m = λ m , max ( m + 1 )
λ m + n + 1 , max = λ m + n , max Δ λ m + n
( m + n ) λ m + n , max = ( m + n + 1 ) λ m + n + 1 , max
λ m + n , max = ( m + n + 1 ) Δ λ m + n
λ m + n , max = λ m , max Δ λ m Δ λ m + 1 . . . Δ λ m + n 1
Δ λ m + n = λ m , max Δ λ m Δ λ m + 1 . . . Δ λ m + n 1 m + n + 1

Metrics