Abstract

We propose a new in-plane switching (IPS) nematic liquid crystal (LC) mode which uses a twist effect with a hybrid LC alignment and interdigitated electrodes as an approach for a high brightness. This is optimized to a normally white mode to minimize loss of transmittance at the electrode compared to the conventional IPS mode. The proposed mode shows an excellent dark state because the bulk LCs are aligned in parallel to the optic axis of the polarizer under low electric fields. Consequently, this proposed mode exhibits a much higher contrast ratio (980:1) than that of the conventional IPS mode (550:1).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995).
    [CrossRef]
  2. S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," Appl. Phys. Lett. 73, 2881-2883 (1998).
    [CrossRef]
  3. T. Miyashita, Y. Yamaguchi, and T. Uchida, "Wide-Viewing-Angle Display Mode Using Bend-Alignment Liquid Crystal Cell," J. Appl. Phys. 34, L177-L179 (1995).
    [CrossRef]
  4. K. H. Kim, K. Lee, S. B. Park, J. K. Song, S. N. Kim, and J. H. Souk, "Domain divided vertical alignment mode with optimized fringe field effect," The 18th International Display Research Conference Asia Display �??98 (Society for Information Display, Seoul, Korea, 1998), 383-386.
  5. J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, "In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief," Appl. Phys. Lett. 91, 073504 (2007).
    [CrossRef]
  6. J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, "Surface nematic bistability at nanoimprinted topography," Appl. Phys. Lett. 92, 073504 (2008).
    [CrossRef]
  7. J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, "Viewing angle control mode using nematic bistability," Opt. Express 16, 2663-2668 (2008).
    [CrossRef]
  8. J. H. Kim, M. Yoneya, and H. Yokoyama, "Tristable nematic liquid-crystal device using micropatterned surface alignment," Nature (London) 420, 159 (2002).
    [CrossRef]
  9. R. Barberi and G. Durand, "Electrochirally controlled bistable surface switching in nematic liquid crystal," Appl. Phys. Lett. 58, 2907-2909 (1991).
    [CrossRef]
  10. I. Dozov, M. Nobili, and G. Durand, "Fast bistable nematic display using monostable surface switching," Appl. Phys. Lett. 70, 1179-1181 (1997).
    [CrossRef]
  11. D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, "Control of reflectivity and bistability in display using cholesteric liquid crystals," J. Appl. Phys. 76, 1331-1333 (1994).
    [CrossRef]
  12. H.-Y. Chen, R. Shao, E. Korblova, W. Lee, D. Walba, and N. A. Clark, "A bistable liquid-crystal display mode based on electrically driven smectic A layer reorientation," Appl. Phys. Lett. 91, 163506 (2007).
  13. S. Kitson and A. Geisow, "Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states," Appl. Phys. Lett. 80, 3635-3637 (2002).
    [CrossRef]
  14. J.-X. Guo, Z.-G. Meng, M. Wong, and H.-S. Kwok, "Three-terminal bistable twisted nematic liquid crystal displays," Appl. Phys. Lett. 77, 3635-3637 (2000).
    [CrossRef]
  15. D. W. Berreman and W. R. Heffner, "New bistable cholesteric liquid-crystal display," Appl. Phys. Lett. 37, 109-111 (1980).
    [CrossRef]
  16. J. S. Gwag, K.-H. Park, J. L. Lee, J. C. Kim, and T.-H. Yoon, "Two-Domain Hybrid-Aligned Nematic Cell Fabricated by Ion Beam Treatment of Vertical Alignment Layer," Jpn. J. Appl. Phys. 44, 1875-1878 (2005).
    [CrossRef]
  17. J. B. Park, S. H. Park, E. J. Park, I. C. Park, H. Y. Kim, and J. Y. Lee, "Influence of Cell Design with Homogeneous LC Alignment on L0 Gray," The 14th International Display Workshop �??06 (Society for Information Display, Otsu, Japan, 2006), 177-180.
  18. A. Badano, "Viewing Angle Comparison of IPS and VA Medical AMLCDs," Digest of Technical Papers of 2005 Society for Information Display International Symposium (Society for information Display, Boston, Massachusetts, 2005), 192-195.
  19. S. Oka, M. Kimura, and T. Akahane, "Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching," Appl. Phys. Lett. 80, 1847-1849 (2002).
    [CrossRef]
  20. J. H. Kim, M. Yoneya, J. Yamamoto and H. Yokoyama, "Surface alignment bistability of nematic liquid crystal by orientationally frustrated surface patterns," Appl. Phys. Lett. 78, 3055-3057 (2001).
    [CrossRef]
  21. Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S.-T. Wu, "Optimal rubbing angle for reflective in-plane switching liquid crystal displays,"Appl. Phys. Lett. 81, 4907-4909 (2002).
    [CrossRef]

2008

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, "Surface nematic bistability at nanoimprinted topography," Appl. Phys. Lett. 92, 073504 (2008).
[CrossRef]

J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, "Viewing angle control mode using nematic bistability," Opt. Express 16, 2663-2668 (2008).
[CrossRef]

2007

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, "In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief," Appl. Phys. Lett. 91, 073504 (2007).
[CrossRef]

H.-Y. Chen, R. Shao, E. Korblova, W. Lee, D. Walba, and N. A. Clark, "A bistable liquid-crystal display mode based on electrically driven smectic A layer reorientation," Appl. Phys. Lett. 91, 163506 (2007).

2005

J. S. Gwag, K.-H. Park, J. L. Lee, J. C. Kim, and T.-H. Yoon, "Two-Domain Hybrid-Aligned Nematic Cell Fabricated by Ion Beam Treatment of Vertical Alignment Layer," Jpn. J. Appl. Phys. 44, 1875-1878 (2005).
[CrossRef]

2002

S. Oka, M. Kimura, and T. Akahane, "Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching," Appl. Phys. Lett. 80, 1847-1849 (2002).
[CrossRef]

S. Kitson and A. Geisow, "Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states," Appl. Phys. Lett. 80, 3635-3637 (2002).
[CrossRef]

J. H. Kim, M. Yoneya, and H. Yokoyama, "Tristable nematic liquid-crystal device using micropatterned surface alignment," Nature (London) 420, 159 (2002).
[CrossRef]

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S.-T. Wu, "Optimal rubbing angle for reflective in-plane switching liquid crystal displays,"Appl. Phys. Lett. 81, 4907-4909 (2002).
[CrossRef]

2001

J. H. Kim, M. Yoneya, J. Yamamoto and H. Yokoyama, "Surface alignment bistability of nematic liquid crystal by orientationally frustrated surface patterns," Appl. Phys. Lett. 78, 3055-3057 (2001).
[CrossRef]

2000

J.-X. Guo, Z.-G. Meng, M. Wong, and H.-S. Kwok, "Three-terminal bistable twisted nematic liquid crystal displays," Appl. Phys. Lett. 77, 3635-3637 (2000).
[CrossRef]

1998

S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," Appl. Phys. Lett. 73, 2881-2883 (1998).
[CrossRef]

1997

I. Dozov, M. Nobili, and G. Durand, "Fast bistable nematic display using monostable surface switching," Appl. Phys. Lett. 70, 1179-1181 (1997).
[CrossRef]

1995

T. Miyashita, Y. Yamaguchi, and T. Uchida, "Wide-Viewing-Angle Display Mode Using Bend-Alignment Liquid Crystal Cell," J. Appl. Phys. 34, L177-L179 (1995).
[CrossRef]

M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995).
[CrossRef]

1994

D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, "Control of reflectivity and bistability in display using cholesteric liquid crystals," J. Appl. Phys. 76, 1331-1333 (1994).
[CrossRef]

1991

R. Barberi and G. Durand, "Electrochirally controlled bistable surface switching in nematic liquid crystal," Appl. Phys. Lett. 58, 2907-2909 (1991).
[CrossRef]

1980

D. W. Berreman and W. R. Heffner, "New bistable cholesteric liquid-crystal display," Appl. Phys. Lett. 37, 109-111 (1980).
[CrossRef]

Akahane, T.

S. Oka, M. Kimura, and T. Akahane, "Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching," Appl. Phys. Lett. 80, 1847-1849 (2002).
[CrossRef]

Barberi, R.

R. Barberi and G. Durand, "Electrochirally controlled bistable surface switching in nematic liquid crystal," Appl. Phys. Lett. 58, 2907-2909 (1991).
[CrossRef]

Berreman, D. W.

D. W. Berreman and W. R. Heffner, "New bistable cholesteric liquid-crystal display," Appl. Phys. Lett. 37, 109-111 (1980).
[CrossRef]

Chen, H.-Y.

H.-Y. Chen, R. Shao, E. Korblova, W. Lee, D. Walba, and N. A. Clark, "A bistable liquid-crystal display mode based on electrically driven smectic A layer reorientation," Appl. Phys. Lett. 91, 163506 (2007).

Chien, L. C.

D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, "Control of reflectivity and bistability in display using cholesteric liquid crystals," J. Appl. Phys. 76, 1331-1333 (1994).
[CrossRef]

Clark, N. A.

H.-Y. Chen, R. Shao, E. Korblova, W. Lee, D. Walba, and N. A. Clark, "A bistable liquid-crystal display mode based on electrically driven smectic A layer reorientation," Appl. Phys. Lett. 91, 163506 (2007).

Doane, J. W.

D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, "Control of reflectivity and bistability in display using cholesteric liquid crystals," J. Appl. Phys. 76, 1331-1333 (1994).
[CrossRef]

Dozov, I.

I. Dozov, M. Nobili, and G. Durand, "Fast bistable nematic display using monostable surface switching," Appl. Phys. Lett. 70, 1179-1181 (1997).
[CrossRef]

Durand, G.

I. Dozov, M. Nobili, and G. Durand, "Fast bistable nematic display using monostable surface switching," Appl. Phys. Lett. 70, 1179-1181 (1997).
[CrossRef]

R. Barberi and G. Durand, "Electrochirally controlled bistable surface switching in nematic liquid crystal," Appl. Phys. Lett. 58, 2907-2909 (1991).
[CrossRef]

Fukuda, J.

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, "In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief," Appl. Phys. Lett. 91, 073504 (2007).
[CrossRef]

Geisow, A.

S. Kitson and A. Geisow, "Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states," Appl. Phys. Lett. 80, 3635-3637 (2002).
[CrossRef]

Guo, J.-X.

J.-X. Guo, Z.-G. Meng, M. Wong, and H.-S. Kwok, "Three-terminal bistable twisted nematic liquid crystal displays," Appl. Phys. Lett. 77, 3635-3637 (2000).
[CrossRef]

Gwag, J. S.

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, "Surface nematic bistability at nanoimprinted topography," Appl. Phys. Lett. 92, 073504 (2008).
[CrossRef]

J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, "Viewing angle control mode using nematic bistability," Opt. Express 16, 2663-2668 (2008).
[CrossRef]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, "In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief," Appl. Phys. Lett. 91, 073504 (2007).
[CrossRef]

J. S. Gwag, K.-H. Park, J. L. Lee, J. C. Kim, and T.-H. Yoon, "Two-Domain Hybrid-Aligned Nematic Cell Fabricated by Ion Beam Treatment of Vertical Alignment Layer," Jpn. J. Appl. Phys. 44, 1875-1878 (2005).
[CrossRef]

Heffner, W. R.

D. W. Berreman and W. R. Heffner, "New bistable cholesteric liquid-crystal display," Appl. Phys. Lett. 37, 109-111 (1980).
[CrossRef]

Kim, H. Y.

S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," Appl. Phys. Lett. 73, 2881-2883 (1998).
[CrossRef]

Kim, J. C.

J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, "Viewing angle control mode using nematic bistability," Opt. Express 16, 2663-2668 (2008).
[CrossRef]

J. S. Gwag, K.-H. Park, J. L. Lee, J. C. Kim, and T.-H. Yoon, "Two-Domain Hybrid-Aligned Nematic Cell Fabricated by Ion Beam Treatment of Vertical Alignment Layer," Jpn. J. Appl. Phys. 44, 1875-1878 (2005).
[CrossRef]

Kim, J. H.

J. H. Kim, M. Yoneya, and H. Yokoyama, "Tristable nematic liquid-crystal device using micropatterned surface alignment," Nature (London) 420, 159 (2002).
[CrossRef]

J. H. Kim, M. Yoneya, J. Yamamoto and H. Yokoyama, "Surface alignment bistability of nematic liquid crystal by orientationally frustrated surface patterns," Appl. Phys. Lett. 78, 3055-3057 (2001).
[CrossRef]

Kim, J.-H.

J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, "Viewing angle control mode using nematic bistability," Opt. Express 16, 2663-2668 (2008).
[CrossRef]

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, "Surface nematic bistability at nanoimprinted topography," Appl. Phys. Lett. 92, 073504 (2008).
[CrossRef]

Kim, M.-E.

Kimura, M.

S. Oka, M. Kimura, and T. Akahane, "Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching," Appl. Phys. Lett. 80, 1847-1849 (2002).
[CrossRef]

Kitson, S.

S. Kitson and A. Geisow, "Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states," Appl. Phys. Lett. 80, 3635-3637 (2002).
[CrossRef]

Kondo, K.

M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995).
[CrossRef]

Korblova, E.

H.-Y. Chen, R. Shao, E. Korblova, W. Lee, D. Walba, and N. A. Clark, "A bistable liquid-crystal display mode based on electrically driven smectic A layer reorientation," Appl. Phys. Lett. 91, 163506 (2007).

Kwok, H.-S.

J.-X. Guo, Z.-G. Meng, M. Wong, and H.-S. Kwok, "Three-terminal bistable twisted nematic liquid crystal displays," Appl. Phys. Lett. 77, 3635-3637 (2000).
[CrossRef]

Lee, J. L.

J. S. Gwag, K.-H. Park, J. L. Lee, J. C. Kim, and T.-H. Yoon, "Two-Domain Hybrid-Aligned Nematic Cell Fabricated by Ion Beam Treatment of Vertical Alignment Layer," Jpn. J. Appl. Phys. 44, 1875-1878 (2005).
[CrossRef]

Lee, S. H.

S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," Appl. Phys. Lett. 73, 2881-2883 (1998).
[CrossRef]

Lee, S. L.

S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," Appl. Phys. Lett. 73, 2881-2883 (1998).
[CrossRef]

Lee, W.

H.-Y. Chen, R. Shao, E. Korblova, W. Lee, D. Walba, and N. A. Clark, "A bistable liquid-crystal display mode based on electrically driven smectic A layer reorientation," Appl. Phys. Lett. 91, 163506 (2007).

Lee, Y.-J.

Ma, H.

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S.-T. Wu, "Optimal rubbing angle for reflective in-plane switching liquid crystal displays,"Appl. Phys. Lett. 81, 4907-4909 (2002).
[CrossRef]

Meng, Z.-G.

J.-X. Guo, Z.-G. Meng, M. Wong, and H.-S. Kwok, "Three-terminal bistable twisted nematic liquid crystal displays," Appl. Phys. Lett. 77, 3635-3637 (2000).
[CrossRef]

Miyashita, T.

T. Miyashita, Y. Yamaguchi, and T. Uchida, "Wide-Viewing-Angle Display Mode Using Bend-Alignment Liquid Crystal Cell," J. Appl. Phys. 34, L177-L179 (1995).
[CrossRef]

Nobili, M.

I. Dozov, M. Nobili, and G. Durand, "Fast bistable nematic display using monostable surface switching," Appl. Phys. Lett. 70, 1179-1181 (1997).
[CrossRef]

Oh-e, M.

M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995).
[CrossRef]

Oka, S.

S. Oka, M. Kimura, and T. Akahane, "Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching," Appl. Phys. Lett. 80, 1847-1849 (2002).
[CrossRef]

Park, K.-H.

J. S. Gwag, K.-H. Park, J. L. Lee, J. C. Kim, and T.-H. Yoon, "Two-Domain Hybrid-Aligned Nematic Cell Fabricated by Ion Beam Treatment of Vertical Alignment Layer," Jpn. J. Appl. Phys. 44, 1875-1878 (2005).
[CrossRef]

Shao, R.

H.-Y. Chen, R. Shao, E. Korblova, W. Lee, D. Walba, and N. A. Clark, "A bistable liquid-crystal display mode based on electrically driven smectic A layer reorientation," Appl. Phys. Lett. 91, 163506 (2007).

Sun, Y.

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S.-T. Wu, "Optimal rubbing angle for reflective in-plane switching liquid crystal displays,"Appl. Phys. Lett. 81, 4907-4909 (2002).
[CrossRef]

Uchida, T.

T. Miyashita, Y. Yamaguchi, and T. Uchida, "Wide-Viewing-Angle Display Mode Using Bend-Alignment Liquid Crystal Cell," J. Appl. Phys. 34, L177-L179 (1995).
[CrossRef]

Walba, D.

H.-Y. Chen, R. Shao, E. Korblova, W. Lee, D. Walba, and N. A. Clark, "A bistable liquid-crystal display mode based on electrically driven smectic A layer reorientation," Appl. Phys. Lett. 91, 163506 (2007).

West, J. L.

D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, "Control of reflectivity and bistability in display using cholesteric liquid crystals," J. Appl. Phys. 76, 1331-1333 (1994).
[CrossRef]

Wong, M.

J.-X. Guo, Z.-G. Meng, M. Wong, and H.-S. Kwok, "Three-terminal bistable twisted nematic liquid crystal displays," Appl. Phys. Lett. 77, 3635-3637 (2000).
[CrossRef]

Wu, S.-T.

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S.-T. Wu, "Optimal rubbing angle for reflective in-plane switching liquid crystal displays,"Appl. Phys. Lett. 81, 4907-4909 (2002).
[CrossRef]

Yamaguchi, Y.

T. Miyashita, Y. Yamaguchi, and T. Uchida, "Wide-Viewing-Angle Display Mode Using Bend-Alignment Liquid Crystal Cell," J. Appl. Phys. 34, L177-L179 (1995).
[CrossRef]

Yamamoto, J.

J. H. Kim, M. Yoneya, J. Yamamoto and H. Yokoyama, "Surface alignment bistability of nematic liquid crystal by orientationally frustrated surface patterns," Appl. Phys. Lett. 78, 3055-3057 (2001).
[CrossRef]

Yang, D.-K.

D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, "Control of reflectivity and bistability in display using cholesteric liquid crystals," J. Appl. Phys. 76, 1331-1333 (1994).
[CrossRef]

Yokoyama, H.

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, "Surface nematic bistability at nanoimprinted topography," Appl. Phys. Lett. 92, 073504 (2008).
[CrossRef]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, "In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief," Appl. Phys. Lett. 91, 073504 (2007).
[CrossRef]

J. H. Kim, M. Yoneya, and H. Yokoyama, "Tristable nematic liquid-crystal device using micropatterned surface alignment," Nature (London) 420, 159 (2002).
[CrossRef]

J. H. Kim, M. Yoneya, J. Yamamoto and H. Yokoyama, "Surface alignment bistability of nematic liquid crystal by orientationally frustrated surface patterns," Appl. Phys. Lett. 78, 3055-3057 (2001).
[CrossRef]

Yoneya, M.

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, "Surface nematic bistability at nanoimprinted topography," Appl. Phys. Lett. 92, 073504 (2008).
[CrossRef]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, "In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief," Appl. Phys. Lett. 91, 073504 (2007).
[CrossRef]

J. H. Kim, M. Yoneya, and H. Yokoyama, "Tristable nematic liquid-crystal device using micropatterned surface alignment," Nature (London) 420, 159 (2002).
[CrossRef]

J. H. Kim, M. Yoneya, J. Yamamoto and H. Yokoyama, "Surface alignment bistability of nematic liquid crystal by orientationally frustrated surface patterns," Appl. Phys. Lett. 78, 3055-3057 (2001).
[CrossRef]

Yoon, T.-H.

J. S. Gwag, Y.-J. Lee, M.-E. Kim, J.-H. Kim, J. C. Kim, and T.-H. Yoon, "Viewing angle control mode using nematic bistability," Opt. Express 16, 2663-2668 (2008).
[CrossRef]

J. S. Gwag, K.-H. Park, J. L. Lee, J. C. Kim, and T.-H. Yoon, "Two-Domain Hybrid-Aligned Nematic Cell Fabricated by Ion Beam Treatment of Vertical Alignment Layer," Jpn. J. Appl. Phys. 44, 1875-1878 (2005).
[CrossRef]

Zhang, Z.

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S.-T. Wu, "Optimal rubbing angle for reflective in-plane switching liquid crystal displays,"Appl. Phys. Lett. 81, 4907-4909 (2002).
[CrossRef]

Zhu, X.

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S.-T. Wu, "Optimal rubbing angle for reflective in-plane switching liquid crystal displays,"Appl. Phys. Lett. 81, 4907-4909 (2002).
[CrossRef]

Appl. Phys. Lett.

M. Oh-e and K. Kondo, "Electro-optical characteristics and switching behavior of the in-plane switching mode," Appl. Phys. Lett. 67, 3895-3897 (1995).
[CrossRef]

S. H. Lee, S. L. Lee, and H. Y. Kim, "Electro-optic characteristics and switching principle of a nematic liquid crystal cell controlled by fringe-field switching," Appl. Phys. Lett. 73, 2881-2883 (1998).
[CrossRef]

J. S. Gwag, J. Fukuda, M. Yoneya, and H. Yokoyama, "In-plane bistable nematic liquid crystal devices based on nanoimprinted surface relief," Appl. Phys. Lett. 91, 073504 (2007).
[CrossRef]

J. S. Gwag, J.-H. Kim, M. Yoneya, and H. Yokoyama, "Surface nematic bistability at nanoimprinted topography," Appl. Phys. Lett. 92, 073504 (2008).
[CrossRef]

R. Barberi and G. Durand, "Electrochirally controlled bistable surface switching in nematic liquid crystal," Appl. Phys. Lett. 58, 2907-2909 (1991).
[CrossRef]

I. Dozov, M. Nobili, and G. Durand, "Fast bistable nematic display using monostable surface switching," Appl. Phys. Lett. 70, 1179-1181 (1997).
[CrossRef]

H.-Y. Chen, R. Shao, E. Korblova, W. Lee, D. Walba, and N. A. Clark, "A bistable liquid-crystal display mode based on electrically driven smectic A layer reorientation," Appl. Phys. Lett. 91, 163506 (2007).

S. Kitson and A. Geisow, "Controllable alignment of nematic liquid crystals around microscopic posts: Stabilization of multiple states," Appl. Phys. Lett. 80, 3635-3637 (2002).
[CrossRef]

J.-X. Guo, Z.-G. Meng, M. Wong, and H.-S. Kwok, "Three-terminal bistable twisted nematic liquid crystal displays," Appl. Phys. Lett. 77, 3635-3637 (2000).
[CrossRef]

D. W. Berreman and W. R. Heffner, "New bistable cholesteric liquid-crystal display," Appl. Phys. Lett. 37, 109-111 (1980).
[CrossRef]

S. Oka, M. Kimura, and T. Akahane, "Electro-optical characteristics and switching behavior of a twisted nematic liquid crystal device based upon in-plane switching," Appl. Phys. Lett. 80, 1847-1849 (2002).
[CrossRef]

J. H. Kim, M. Yoneya, J. Yamamoto and H. Yokoyama, "Surface alignment bistability of nematic liquid crystal by orientationally frustrated surface patterns," Appl. Phys. Lett. 78, 3055-3057 (2001).
[CrossRef]

Y. Sun, Z. Zhang, H. Ma, X. Zhu, and S.-T. Wu, "Optimal rubbing angle for reflective in-plane switching liquid crystal displays,"Appl. Phys. Lett. 81, 4907-4909 (2002).
[CrossRef]

J. Appl. Phys.

D.-K. Yang, J. L. West, L. C. Chien, and J. W. Doane, "Control of reflectivity and bistability in display using cholesteric liquid crystals," J. Appl. Phys. 76, 1331-1333 (1994).
[CrossRef]

T. Miyashita, Y. Yamaguchi, and T. Uchida, "Wide-Viewing-Angle Display Mode Using Bend-Alignment Liquid Crystal Cell," J. Appl. Phys. 34, L177-L179 (1995).
[CrossRef]

Jpn. J. Appl. Phys.

J. S. Gwag, K.-H. Park, J. L. Lee, J. C. Kim, and T.-H. Yoon, "Two-Domain Hybrid-Aligned Nematic Cell Fabricated by Ion Beam Treatment of Vertical Alignment Layer," Jpn. J. Appl. Phys. 44, 1875-1878 (2005).
[CrossRef]

Nature (London)

J. H. Kim, M. Yoneya, and H. Yokoyama, "Tristable nematic liquid-crystal device using micropatterned surface alignment," Nature (London) 420, 159 (2002).
[CrossRef]

Opt. Express

Other

K. H. Kim, K. Lee, S. B. Park, J. K. Song, S. N. Kim, and J. H. Souk, "Domain divided vertical alignment mode with optimized fringe field effect," The 18th International Display Research Conference Asia Display �??98 (Society for Information Display, Seoul, Korea, 1998), 383-386.

J. B. Park, S. H. Park, E. J. Park, I. C. Park, H. Y. Kim, and J. Y. Lee, "Influence of Cell Design with Homogeneous LC Alignment on L0 Gray," The 14th International Display Workshop �??06 (Society for Information Display, Otsu, Japan, 2006), 177-180.

A. Badano, "Viewing Angle Comparison of IPS and VA Medical AMLCDs," Digest of Technical Papers of 2005 Society for Information Display International Symposium (Society for information Display, Boston, Massachusetts, 2005), 192-195.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of LC behavior at field off and on states in CH-IPS mode.

Fig. 2.
Fig. 2.

Alignment textures of CH-IPS sample under a polarizing microscope with different sample preparation conditions. (a) LCs were injected perpendicular to rubbing direction at 50°C. (b) after electric field was applied to (a) and instantly removed. (c) LCs were injected in the rubbing direction at 108°C. (d) after electric field was applied to (c) and removed. The arrows indicate the rubbing direction (R) and the direction of LC injection (LC).

Fig. 3.
Fig. 3.

The measured optical transmittance curves as a function of electric field for the CH-IPS, IT, and conventional IPS modes. The photo images show the bright and dark states of the samples.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

J LC = e i πd λ ( n e ' + n o ) [ a b b * a * ]
a = 1 1 + u 2 sin φ sin ( 1 + u 2 φ ) + cos φ cos ( 1 + u 2 φ ) + i u 1 + u 2 cos φ sin ( 1 + u 2 φ ) ,
b = 1 1 + u 2 cos φ sin ( 1 + u 2 φ ) sin φ cos ( 1 + u 2 φ + i u 1 + u 2 sin φ sin ( 1 + u 2 φ ) ,
u = πd λφ ( n e 1 + ( ( n e n o ) 2 1 ) sin 2 θ n o ) .
[ E x E y ] = [ 0 1 ] [ cos α N sin α N sin α N cos α N ] [ a N b N b N * a N * ] [ cos α N sin α N sin α N cos α N ] [ cosα N 1 sin α N 1 sinα N 1 cos α N 1 ]
[ cos α 2 sin α 2 sin α 2 cos α 2 ] [ cos α 1 sin α 1 sin α 1 cos α 1 ] [ a 1 b 1 b 1 * a 1 * ] [ cos α 1 sin α 1 sin α 1 cos α 1 ] [ 1 0 ] ,

Metrics