Abstract

A theoretical model was developed for time-resolved thermal mirror spectroscopy under top-hat cw laser excitation that induced a nanoscale surface displacement of a low absorption sample. An additional phase shift to the electrical field of a TEM00 probe beam reflected from the surface displacement was derived, and Fresnel diffraction theory was used to calculate the propagation of the probe beam. With the theory, optical and thermal properties of three glasses were measured, and found to be consistent with literature values. With a top-hat excitation, an experimental apparatus was developed for either a single thermal mirror or a single thermal lens measurement. Furthermore, the apparatus was used for concurrent measurements of thermal mirror and thermal lens. More physical properties could be measured using the concurrent measurements.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, "Photothermal displacement spectroscopy - an optical probe for solids and surfaces," Appl. Phys. A 32, 141-154 (1983).
    [CrossRef]
  2. D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman and Hall, London, 1996).
  3. R. D. Snook and R. D. Lowe, "Thermal lens spectrometry. A review," Analyst 120, 2051-2068 (1995)
    [CrossRef]
  4. S. E. Bialkowski, "Photothermal Spectroscopy Methods for Chemical Analysis" (Wiley, New York, 1996).
  5. M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys.  75, 3732-3737 (1994).
    [CrossRef]
  6. Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, and S. T. Gu, "Diffraction patterns of a surface thermal lens," Progr. Natural Sci. 6, S202-S205 (1996).
  7. B. C. Li, "3-Dimensional theory of pulsed photothermal deformation," J. Appl. Phys. 68, 482-487 (1990).
    [CrossRef]
  8. N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, "Time-resolved thermal mirror for the measurements of thermo-optical-mechanical properties of low absorbing solids," Appl. Phys. Lett. 91, 191908/1-191908/3 (2007).
  9. L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror," Appl. Phys. Lett. 92, 131903/1 - 131903/3 (2008).
    [CrossRef]
  10. B. C. Li, S. Xiong and Y. Zhang, "Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation," Appl. Phys. B 80, 527-534 (2005).
    [CrossRef]
  11. N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, P. R. B. Pedreira, L. C. Malacarne, A. C. Bento, and M. L. Baesso "Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low absorption materials," Opt. Lett. 33, 1464-1466 (2008).
    [CrossRef] [PubMed]
  12. H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids (Clarendon Press, Oxford, 1959).
  13. W. Nowacki, Thermoelasticity (Pergamon, Oxford, 1982).
  14. F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Time-resolved thermal mirror method: A theoretical study," J. Appl. Phys.(Accepted2008).
    [CrossRef]
  15. E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
    [CrossRef]
  16. S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, "Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry," Phys. Rev. B 60, 15173-15178 (1999).
    [CrossRef]

2008 (3)

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror," Appl. Phys. Lett. 92, 131903/1 - 131903/3 (2008).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, P. R. B. Pedreira, L. C. Malacarne, A. C. Bento, and M. L. Baesso "Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low absorption materials," Opt. Lett. 33, 1464-1466 (2008).
[CrossRef] [PubMed]

F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Time-resolved thermal mirror method: A theoretical study," J. Appl. Phys.(Accepted2008).
[CrossRef]

2007 (1)

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, "Time-resolved thermal mirror for the measurements of thermo-optical-mechanical properties of low absorbing solids," Appl. Phys. Lett. 91, 191908/1-191908/3 (2007).

2005 (1)

B. C. Li, S. Xiong and Y. Zhang, "Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation," Appl. Phys. B 80, 527-534 (2005).
[CrossRef]

2002 (1)

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

1999 (1)

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, "Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry," Phys. Rev. B 60, 15173-15178 (1999).
[CrossRef]

1996 (1)

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, and S. T. Gu, "Diffraction patterns of a surface thermal lens," Progr. Natural Sci. 6, S202-S205 (1996).

1995 (1)

R. D. Snook and R. D. Lowe, "Thermal lens spectrometry. A review," Analyst 120, 2051-2068 (1995)
[CrossRef]

1994 (1)

M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys.  75, 3732-3737 (1994).
[CrossRef]

1990 (1)

B. C. Li, "3-Dimensional theory of pulsed photothermal deformation," J. Appl. Phys. 68, 482-487 (1990).
[CrossRef]

1983 (1)

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, "Photothermal displacement spectroscopy - an optical probe for solids and surfaces," Appl. Phys. A 32, 141-154 (1983).
[CrossRef]

Amer, N. M.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, "Photothermal displacement spectroscopy - an optical probe for solids and surfaces," Appl. Phys. A 32, 141-154 (1983).
[CrossRef]

Astrath, F. B. G.

Astrath, N. G. C.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror," Appl. Phys. Lett. 92, 131903/1 - 131903/3 (2008).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, P. R. B. Pedreira, L. C. Malacarne, A. C. Bento, and M. L. Baesso "Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low absorption materials," Opt. Lett. 33, 1464-1466 (2008).
[CrossRef] [PubMed]

F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Time-resolved thermal mirror method: A theoretical study," J. Appl. Phys.(Accepted2008).
[CrossRef]

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, "Time-resolved thermal mirror for the measurements of thermo-optical-mechanical properties of low absorbing solids," Appl. Phys. Lett. 91, 191908/1-191908/3 (2007).

Baesso, M. L.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror," Appl. Phys. Lett. 92, 131903/1 - 131903/3 (2008).
[CrossRef]

F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Time-resolved thermal mirror method: A theoretical study," J. Appl. Phys.(Accepted2008).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, P. R. B. Pedreira, L. C. Malacarne, A. C. Bento, and M. L. Baesso "Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low absorption materials," Opt. Lett. 33, 1464-1466 (2008).
[CrossRef] [PubMed]

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, "Time-resolved thermal mirror for the measurements of thermo-optical-mechanical properties of low absorbing solids," Appl. Phys. Lett. 91, 191908/1-191908/3 (2007).

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, "Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry," Phys. Rev. B 60, 15173-15178 (1999).
[CrossRef]

M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys.  75, 3732-3737 (1994).
[CrossRef]

Belancon, M. P.

F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Time-resolved thermal mirror method: A theoretical study," J. Appl. Phys.(Accepted2008).
[CrossRef]

Bento, A. C.

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, P. R. B. Pedreira, L. C. Malacarne, A. C. Bento, and M. L. Baesso "Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low absorption materials," Opt. Lett. 33, 1464-1466 (2008).
[CrossRef] [PubMed]

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror," Appl. Phys. Lett. 92, 131903/1 - 131903/3 (2008).
[CrossRef]

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, "Time-resolved thermal mirror for the measurements of thermo-optical-mechanical properties of low absorbing solids," Appl. Phys. Lett. 91, 191908/1-191908/3 (2007).

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, "Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry," Phys. Rev. B 60, 15173-15178 (1999).
[CrossRef]

Boccara, A. C.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, "Photothermal displacement spectroscopy - an optical probe for solids and surfaces," Appl. Phys. A 32, 141-154 (1983).
[CrossRef]

Catunda, T.

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, "Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry," Phys. Rev. B 60, 15173-15178 (1999).
[CrossRef]

de Souza, D. F.

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

Favro, L. D.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, and S. T. Gu, "Diffraction patterns of a surface thermal lens," Progr. Natural Sci. 6, S202-S205 (1996).

Fournier, D.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, "Photothermal displacement spectroscopy - an optical probe for solids and surfaces," Appl. Phys. A 32, 141-154 (1983).
[CrossRef]

Gu, S. T.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, and S. T. Gu, "Diffraction patterns of a surface thermal lens," Progr. Natural Sci. 6, S202-S205 (1996).

Hernandes, A. C.

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, "Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry," Phys. Rev. B 60, 15173-15178 (1999).
[CrossRef]

Kohn, S.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, "Photothermal displacement spectroscopy - an optical probe for solids and surfaces," Appl. Phys. A 32, 141-154 (1983).
[CrossRef]

Kuo, P. K.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, and S. T. Gu, "Diffraction patterns of a surface thermal lens," Progr. Natural Sci. 6, S202-S205 (1996).

Lebullenger, R.

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, "Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry," Phys. Rev. B 60, 15173-15178 (1999).
[CrossRef]

Li, B. C.

B. C. Li, S. Xiong and Y. Zhang, "Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation," Appl. Phys. B 80, 527-534 (2005).
[CrossRef]

B. C. Li, "3-Dimensional theory of pulsed photothermal deformation," J. Appl. Phys. 68, 482-487 (1990).
[CrossRef]

Lima, S. M.

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, "Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry," Phys. Rev. B 60, 15173-15178 (1999).
[CrossRef]

Lowe, R. D.

R. D. Snook and R. D. Lowe, "Thermal lens spectrometry. A review," Analyst 120, 2051-2068 (1995)
[CrossRef]

Lu, Y. S.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, and S. T. Gu, "Diffraction patterns of a surface thermal lens," Progr. Natural Sci. 6, S202-S205 (1996).

Malacarne, L. C.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror," Appl. Phys. Lett. 92, 131903/1 - 131903/3 (2008).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, P. R. B. Pedreira, L. C. Malacarne, A. C. Bento, and M. L. Baesso "Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low absorption materials," Opt. Lett. 33, 1464-1466 (2008).
[CrossRef] [PubMed]

F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Time-resolved thermal mirror method: A theoretical study," J. Appl. Phys.(Accepted2008).
[CrossRef]

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, "Time-resolved thermal mirror for the measurements of thermo-optical-mechanical properties of low absorbing solids," Appl. Phys. Lett. 91, 191908/1-191908/3 (2007).

Medina, A. N.

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

Mendes, R. S.

F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Time-resolved thermal mirror method: A theoretical study," J. Appl. Phys.(Accepted2008).
[CrossRef]

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror," Appl. Phys. Lett. 92, 131903/1 - 131903/3 (2008).
[CrossRef]

Miranda, L. C. M.

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, "Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry," Phys. Rev. B 60, 15173-15178 (1999).
[CrossRef]

Nunes, L. A. O.

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

Oliveira, S. L.

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

Olmstead, M. A.

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, "Photothermal displacement spectroscopy - an optical probe for solids and surfaces," Appl. Phys. A 32, 141-154 (1983).
[CrossRef]

Pedreira, P. R. B.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror," Appl. Phys. Lett. 92, 131903/1 - 131903/3 (2008).
[CrossRef]

F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Time-resolved thermal mirror method: A theoretical study," J. Appl. Phys.(Accepted2008).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, P. R. B. Pedreira, L. C. Malacarne, A. C. Bento, and M. L. Baesso "Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low absorption materials," Opt. Lett. 33, 1464-1466 (2008).
[CrossRef] [PubMed]

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, "Time-resolved thermal mirror for the measurements of thermo-optical-mechanical properties of low absorbing solids," Appl. Phys. Lett. 91, 191908/1-191908/3 (2007).

Pelicon, E.

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

Rohling, J. H.

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

Sampaio, J. A.

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

Sato, F.

F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Time-resolved thermal mirror method: A theoretical study," J. Appl. Phys.(Accepted2008).
[CrossRef]

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror," Appl. Phys. Lett. 92, 131903/1 - 131903/3 (2008).
[CrossRef]

Shen, J.

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror," Appl. Phys. Lett. 92, 131903/1 - 131903/3 (2008).
[CrossRef]

N. G. C. Astrath, F. B. G. Astrath, J. Shen, J. Zhou, P. R. B. Pedreira, L. C. Malacarne, A. C. Bento, and M. L. Baesso "Top-hat cw-laser-induced time-resolved mode-mismatched thermal lens spectroscopy for quantitative analysis of low absorption materials," Opt. Lett. 33, 1464-1466 (2008).
[CrossRef] [PubMed]

F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Time-resolved thermal mirror method: A theoretical study," J. Appl. Phys.(Accepted2008).
[CrossRef]

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, "Time-resolved thermal mirror for the measurements of thermo-optical-mechanical properties of low absorbing solids," Appl. Phys. Lett. 91, 191908/1-191908/3 (2007).

M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys.  75, 3732-3737 (1994).
[CrossRef]

Snook, R. D.

R. D. Snook and R. D. Lowe, "Thermal lens spectrometry. A review," Analyst 120, 2051-2068 (1995)
[CrossRef]

M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys.  75, 3732-3737 (1994).
[CrossRef]

Thomas, R. L.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, and S. T. Gu, "Diffraction patterns of a surface thermal lens," Progr. Natural Sci. 6, S202-S205 (1996).

Wu, Z. L.

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, and S. T. Gu, "Diffraction patterns of a surface thermal lens," Progr. Natural Sci. 6, S202-S205 (1996).

Xiong, S.

B. C. Li, S. Xiong and Y. Zhang, "Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation," Appl. Phys. B 80, 527-534 (2005).
[CrossRef]

Zhang, Y.

B. C. Li, S. Xiong and Y. Zhang, "Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation," Appl. Phys. B 80, 527-534 (2005).
[CrossRef]

Zhou, J.

Analyst (1)

R. D. Snook and R. D. Lowe, "Thermal lens spectrometry. A review," Analyst 120, 2051-2068 (1995)
[CrossRef]

Appl. Phys. A (1)

M. A. Olmstead, N. M. Amer, S. Kohn, D. Fournier, and A. C. Boccara, "Photothermal displacement spectroscopy - an optical probe for solids and surfaces," Appl. Phys. A 32, 141-154 (1983).
[CrossRef]

Appl. Phys. B (1)

B. C. Li, S. Xiong and Y. Zhang, "Fresnel diffraction model for mode-mismatched thermal lens with top-hat beam excitation," Appl. Phys. B 80, 527-534 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

N. G. C. Astrath, L. C. Malacarne, P. R. B. Pedreira, A. C. Bento, M. L. Baesso, and J. Shen, "Time-resolved thermal mirror for the measurements of thermo-optical-mechanical properties of low absorbing solids," Appl. Phys. Lett. 91, 191908/1-191908/3 (2007).

L. C. Malacarne, F. Sato, P. R. B. Pedreira, A. C. Bento, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Nanoscale surface displacement detection in high absorbing solids by time-resolved thermal mirror," Appl. Phys. Lett. 92, 131903/1 - 131903/3 (2008).
[CrossRef]

J. Appl. Phys. (3)

M. L. Baesso, J. Shen, and R. D. Snook, "Mode-mismatched thermal lens determination of temperature coefficient of optical path length in soda lime glass at different wavelengths," J. Appl. Phys.  75, 3732-3737 (1994).
[CrossRef]

F. Sato, L. C. Malacarne, P. R. B. Pedreira, M. P. Belancon, R. S. Mendes, M. L. Baesso, N. G. C. Astrath, and J. Shen, "Time-resolved thermal mirror method: A theoretical study," J. Appl. Phys.(Accepted2008).
[CrossRef]

B. C. Li, "3-Dimensional theory of pulsed photothermal deformation," J. Appl. Phys. 68, 482-487 (1990).
[CrossRef]

J. Non-Cryst. Solids (1)

E. Pelicon, J. H. Rohling, A. N. Medina, A. C. Bento, M. L. Baesso, D. F. de Souza, S. L. Oliveira, J. A. Sampaio, S. M. Lima, L. A. O. Nunes, T. Catunda, "Temperature dependence of fluorescence quantum efficiency of optical glasses determined by thermal lens spectrometry," J. Non-Cryst. Solids,  304, 244-250 (2002).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

S. M. Lima, T. Catunda, R. Lebullenger, A. C. Hernandes, M. L. Baesso, A. C. Bento, and L. C. M. Miranda, "Temperature dependence of thermo-optical properties of fluoride glasses determined by thermal lens spectrometry," Phys. Rev. B 60, 15173-15178 (1999).
[CrossRef]

Progr. Natural Sci. (1)

Y. S. Lu, P. K. Kuo, L. D. Favro, R. L. Thomas, Z. L. Wu, and S. T. Gu, "Diffraction patterns of a surface thermal lens," Progr. Natural Sci. 6, S202-S205 (1996).

Other (4)

D. P. Almond and P. M. Patel, Photothermal Science and Techniques (Chapman and Hall, London, 1996).

S. E. Bialkowski, "Photothermal Spectroscopy Methods for Chemical Analysis" (Wiley, New York, 1996).

H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids (Clarendon Press, Oxford, 1959).

W. Nowacki, Thermoelasticity (Pergamon, Oxford, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1.

(a). A scheme of the geometric arrangement of the beams in a mode-mismatched dual-beam TM experiment. ω0e and ω1P are the radii of the excitation and probe beams in the sample, respectively. Ω0P is the probe beam waist at the distance Z1 from the sample, and Z2 is the distance between the sample and the TM detector plane. (b) A schematic diagram of a time-resolved experimental apparatus for concurrent measurements of the TM and TL with top-hat cw laser excitation. Mi, Li, and Pi stand for mirrors, lenses and photodiodes, respectively. We used ω1P =920μm, Z1 =275mm, ZC =18mm, V=15.2, ω0e =255μm, m=13, and Z2 ≈5 m.

Fig. 2.
Fig. 2.

(a). Normalized TM signals I(t)/I(0) for the glass samples. (b) The fitted θTM as a function of excitation power for TM experiments. Open dots are experimental data and solid lines are best curve fitting.

Tables (1)

Tables Icon

Table 1. The results of the TM experimental measurements.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Q ( r ) = P e A e ϕ ρcπω 0 e 2 U ( ω 0 e r ) ,
T r z t = 4 T 0 0 [ 1 e 2 ω 0e 2 4 t c α 2 ω 0 e ] J 0 ( ) J 1 ( ω 0 e α ) ,
( 1 2 ν ) 2 u + ( u ) = 2 ( 1 + ν ) α T T r z t ,
u 2 r 0 t = ( 1 + ν ) α T T 0 0 α 2 f α t J 0 ( ) ,
f α t = ( 4 α 5 ω 0 e ) [ 1 exp ( 2 ω 0 s 2 4 t c ) ] J 1 ( αω oe ) .
Φ TM ( g , t ) = θ TM 0 α 2 f α t J 0 ( mg ω oe α ) ,
θ TM = 2 P e A e α T ( 1 + v ) φ λ p k
U r Z 1 = B exp [ i π λ p r 2 R 1 p + Φ TM r 2 ω 1 P 2 ] .

Metrics