Abstract

We experimentally demonstrate an extremely simple technique to achieve pulse advancements in optical fibers by using both spontaneous amplified and stimulated Brillouin scattering. It is shown that the group velocity of a light signal is all-optically controlled by its average power while it propagates through an optical fiber. The signal generates an intense back-propagating Stokes emission that causes a loss on the signal through depletion. This narrowband loss gives rise to a fast light propagation at the exact signal frequency. The Stokes emission self-adapts in real time to the Brillouin properties of the fiber and to a wide extent to the signal bandwidth.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘Fast’ light,” Ch. 6 in Progress in Optics43, E. Wolf ed., (Elsevier, Amsterdam, 2002), 497–530.
    [Crossref]
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas, ” Nature 397, 594–598, (1999).
    [Crossref]
  3. P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
    [Crossref] [PubMed]
  4. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow-light propagation in a room temperature solid,” Science 301, 200–202 (2003).
    [Crossref] [PubMed]
  5. K. Y. Song, M. Gonzalez Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
    [Crossref] [PubMed]
  6. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
    [Crossref] [PubMed]
  7. J. E. Sharping, Y. Okawachi, and A.L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
    [Crossref] [PubMed]
  8. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
    [Crossref] [PubMed]
  9. M. Gonzalez Herráez, K. Y. Song, and L. Thévenaz, Gonzalez Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
    [Crossref]
  10. K. Y. Song, M. Gonzalez Herráez, and L. Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765 (2005).
    [Crossref] [PubMed]
  11. M. Gonzalez Herráez, K. Y. Song, and L. Thévenaz, “Arbitrary-bandwidth Brillouin slow light in optical fibers,“ Opt. Express 14, 1395–1400 (2006).
    [Crossref]
  12. Z. Zhu, Andrew M. C. Dawes, Daniel. J. Gauthier, L. Zhang, and Alan. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
    [Crossref]
  13. K. Y. Song and K. Hotate, “25 GHz bandwidth Brillouin slow light in optical fibers,” Opt. Lett. 32, 217–219 (2007).
    [Crossref] [PubMed]
  14. S. Chin, M. Gonzalez Herráez, and L. Thévenaz, “Zero-gain slow & fast light propagation in an optical fiber,” Opt. Express 14, 10684–106924 (2006).
    [Crossref] [PubMed]
  15. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering” Appl. Opt. 11, 2489–2494 (1972).
    [Crossref] [PubMed]
  16. L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplifier,” Optical Fiber Communication Conference (OFC)2008, paper: OML7.
  17. A. Yeniay, J-M. Delavaux, and J. Toulouse “Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers” IEEE J. Lightwave Technol. 20, 1425–1432 (2002).
    [Crossref]
  18. D. Derickson, Fiber Optic Test and Measurement, (Upper Saddle River, N.J., Prentice Hall, 1998) Chap. 5, pp. 185–188.

2007 (2)

2006 (2)

2005 (7)

P. Palinginis, F. Sedgwick, S. Crankshaw, M. Moewe, and C. Chang-Hasnain, “Room temperature slow light in a quantum-well waveguide via coherent population oscillation,” Opt. Express 13, 9909–9915 (2005).
[Crossref] [PubMed]

K. Y. Song, M. Gonzalez Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82–88 (2005).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

J. E. Sharping, Y. Okawachi, and A.L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[Crossref] [PubMed]

D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13, 6234–6249 (2005).
[Crossref] [PubMed]

M. Gonzalez Herráez, K. Y. Song, and L. Thévenaz, Gonzalez Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[Crossref]

K. Y. Song, M. Gonzalez Herráez, and L. Thévenaz, “Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers,” Opt. Express 13, 9758–9765 (2005).
[Crossref] [PubMed]

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow-light propagation in a room temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

2002 (1)

A. Yeniay, J-M. Delavaux, and J. Toulouse “Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers” IEEE J. Lightwave Technol. 20, 1425–1432 (2002).
[Crossref]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas, ” Nature 397, 594–598, (1999).
[Crossref]

1972 (1)

Behroozi, C. H.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas, ” Nature 397, 594–598, (1999).
[Crossref]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow-light propagation in a room temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Boyd, R. W.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow-light propagation in a room temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘Fast’ light,” Ch. 6 in Progress in Optics43, E. Wolf ed., (Elsevier, Amsterdam, 2002), 497–530.
[Crossref]

Chang-Hasnain, C.

Chin, S.

Crankshaw, S.

Dahan, D.

Dawes, Andrew M. C.

Delavaux, J-M.

A. Yeniay, J-M. Delavaux, and J. Toulouse “Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers” IEEE J. Lightwave Technol. 20, 1425–1432 (2002).
[Crossref]

Derickson, D.

D. Derickson, Fiber Optic Test and Measurement, (Upper Saddle River, N.J., Prentice Hall, 1998) Chap. 5, pp. 185–188.

Dutton, Z.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas, ” Nature 397, 594–598, (1999).
[Crossref]

Eisenstein, G.

Eyal, A.

L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplifier,” Optical Fiber Communication Conference (OFC)2008, paper: OML7.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Gaeta, A.L.

Gauthier, D. J.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘Fast’ light,” Ch. 6 in Progress in Optics43, E. Wolf ed., (Elsevier, Amsterdam, 2002), 497–530.
[Crossref]

Gauthier, Daniel. J.

Gonzalez Herráez, M.

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas, ” Nature 397, 594–598, (1999).
[Crossref]

Hau, L. V.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas, ” Nature 397, 594–598, (1999).
[Crossref]

Herráez, M. Gonzalez

Hotate, K.

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow-light propagation in a room temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Moewe, M.

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

J. E. Sharping, Y. Okawachi, and A.L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[Crossref] [PubMed]

Palinginis, P.

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Sedgwick, F.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

J. E. Sharping, Y. Okawachi, and A.L. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13, 6092–6098 (2005).
[Crossref] [PubMed]

Smith, R. G.

Song, K. Y.

Thévenaz, L.

Toulouse, J.

A. Yeniay, J-M. Delavaux, and J. Toulouse “Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers” IEEE J. Lightwave Technol. 20, 1425–1432 (2002).
[Crossref]

Tur, M.

L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplifier,” Optical Fiber Communication Conference (OFC)2008, paper: OML7.

Willner, Alan. E.

Yeniay, A.

A. Yeniay, J-M. Delavaux, and J. Toulouse “Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers” IEEE J. Lightwave Technol. 20, 1425–1432 (2002).
[Crossref]

Zadok, A.

L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplifier,” Optical Fiber Communication Conference (OFC)2008, paper: OML7.

Zhang, L.

Zhu, Z.

Z. Zhu, Andrew M. C. Dawes, Daniel. J. Gauthier, L. Zhang, and Alan. E. Willner, “Broadband SBS slow light in an optical fiber,” J. Lightwave Technol. 25, 201–206 (2007).
[Crossref]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Gonzalez Herráez, K. Y. Song, and L. Thévenaz, Gonzalez Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” Appl. Phys. Lett. 87, 081113 (2005).
[Crossref]

IEEE J. Lightwave Technol. (1)

A. Yeniay, J-M. Delavaux, and J. Toulouse “Spontaneous and Stimulated Brillouin Scattering Gain Spectra in Optical Fibers” IEEE J. Lightwave Technol. 20, 1425–1432 (2002).
[Crossref]

J. Lightwave Technol. (1)

Nature (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 m/s in an ultracold atomic gas, ” Nature 397, 594–598, (1999).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005).
[Crossref] [PubMed]

Science (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow-light propagation in a room temperature solid,” Science 301, 200–202 (2003).
[Crossref] [PubMed]

Other (3)

R. W. Boyd and D. J. Gauthier, “‘Slow’ and ‘Fast’ light,” Ch. 6 in Progress in Optics43, E. Wolf ed., (Elsevier, Amsterdam, 2002), 497–530.
[Crossref]

D. Derickson, Fiber Optic Test and Measurement, (Upper Saddle River, N.J., Prentice Hall, 1998) Chap. 5, pp. 185–188.

L. Thévenaz, A. Zadok, A. Eyal, and M. Tur, “All-optical polarization control through Brillouin amplifier,” Optical Fiber Communication Conference (OFC)2008, paper: OML7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Principle of the configuration to generate self-advanced fast light. The signal is powerful enough to generate a strong amplified spontaneous Stokes wave, which in turn depletes the signal wave. The depletion is assimilated to a narrowband loss spectrum.

Fig. 2.
Fig. 2.

Experimental configuration to realize the self-pumped pulse advancement based on both amplified spontaneous and stimulated Brillouin scattering. EOM; electro-optic modulator, EDFA; Erbium-doped fiber amplifier, VOA; variable optical attenuator, DSF; dispersion shifted fiber.

Fig. 3.
Fig. 3.

(a). measured optical powers of the Stokes waves and transmitted signals (b) linewidths of the generated Brillouin Stokes waves recorded in the ESA, by use of the delayed homo-heterodyne system.

Fig. 4.
Fig. 4.

Temporal traces of the signal pulse after propagating through the dispersion shifted fiber for different input signal powers, showing clear advancements.

Fig. 5.
Fig. 5.

Temporal advancements of the signal pulses as a function of the signal average power.

Fig. 6.
Fig. 6.

(a). Temporal traces of the data streams for a signal power below the critical power (solid line) and at maximum signal power realized in our setup (dashed line). (b) Signal advancement as a function of the average signal power, showing the logarithmic dependence over the Brillouin critical power at 10 dBm.

Fig. 7.
Fig. 7.

(a). Measured spectra of the Stokes emission by the delayed self-homodyne technique, for different pulse widths at a constant normalized repetition rate. (b) Measured Stokes linewidth as a function of the measured signal bandwidth.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P out P in = e A
A ( P in ) = ln ( P out P in ) = ln ( P sat P in )

Metrics