Abstract

We present the double resonance optical pumping (DROP) effect of ladder-type electromagnetically induced transparency (EIT) in the 5S1/2- 5P3/2-5D5/2 transition of 87Rb atoms. When many atoms of the ladder-type atomic system are simultaneously resonant with the two laser fields, the population of one ground state can be optically pumped into another ground state through intermediate states and excited states. In this paper, we reveal that most previous results for the ladder-type EIT include the DROP effect. When the probe laser is very weak and the coupling laser is strong, we can observe the double structure transmittance spectrum, a narrow spectrum due to the EIT and a broad spectrum due to the DROP, in the 5S1/2(F=2)- 5P3/2(F’=3)-5D5/2(F”=4) cycling transition.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Boller, A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991).
    [CrossRef] [PubMed]
  2. A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically Induced Transparency: Propagation Dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
    [CrossRef] [PubMed]
  3. H. Schmidt and A. Imamoglu, "Giant Kerr nonlinearities obtained by electromagnetically induced transparency," Opt. Lett. 21, 1936-1938 (1996).
    [CrossRef] [PubMed]
  4. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
    [CrossRef]
  5. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, "Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms," Phys. Rev. Lett. 74, 666-669 (1995).
    [CrossRef] [PubMed]
  6. C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
    [CrossRef] [PubMed]
  7. M. Bajcsy, A. S. Zibrov and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426, 638-641 (2003).
    [CrossRef] [PubMed]
  8. M. D. Lukin, "Colloquium: Trapping and manipulating photon states in atomic ensembles," Rev. Mod. Phys. 75, 457-472 (2003).
    [CrossRef]
  9. A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature 423, 731-734 (2003).
    [CrossRef] [PubMed]
  10. C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, "Polarization Qubit Phase Gate in Driven Atomic Media," Phys. Rev. Lett. 90, 197902 (2003).
    [CrossRef] [PubMed]
  11. D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, "Sensitive magnetometry based on nonlinear magneto-optical rotation," Phys. Rev. A 62, 043403 (2000).
    [CrossRef]
  12. T. W. Kornack, J. C. Allred, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 596-599 (2003).
    [CrossRef] [PubMed]
  13. D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, "Continuous-wave electromagnetically induced transparency: A comparison of V, Lambda, and cascade systems," Phys. Rev. A 52, 2302-2311 (1995).
    [CrossRef] [PubMed]
  14. C. Y. Ye and A. S. Zibrov, "Width of the electromagnetically induced transparency resonance in atomic vapor," Phys. Rev. A 65, 023806 (2002).
    [CrossRef]
  15. R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, "Two-photon effects in continuous-wave electromagnetically-induced transparency," Opt. Commun. 119, 61-68 (1995)
    [CrossRef]
  16. D. McGloin, M. H. Dunn, and D. J. Fulton, "Polarization effects in electromagnetically induced transparency," Phys. Rev. A 62, 053802 (2000).
    [CrossRef]
  17. S. D. Badger, I. G. Hughes, and C. S. Adams, "Hyperfine effects in electromagnetically induced transparency," J. Phys. B: At. Mol. Opt. Phys. 34, L749-L756 (2001).
    [CrossRef]
  18. H. S. Moon, L. Lee, and J. B. Kim, "Coupling Intensity Effects in Ladder-type Electromagnetically Induced Transparency of Rb Atom," J. Opt. Soc. Am. B 22, 2529-2533 (2005).
    [CrossRef]
  19. H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, "Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode," Appl. Phys. Lett. 85, 3965-3967 (2004).
    [CrossRef]
  20. H. S. Moon, L. Lee, and J. B. Kim, "Double resonance optical pumping of Rb atoms," J. Opt. Soc. Am. B 24, 2157-2164 (2007).
    [CrossRef]
  21. W. K. Lee, H. S. Moon, and H. S. Suh, "Measurement of the absolute energy level and hyperfine structure of the 87Rb 4D5/2 state," Opt. Lett. 32, 2810-2812 (2007).
    [CrossRef] [PubMed]

2007 (2)

2005 (1)

2004 (1)

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, "Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode," Appl. Phys. Lett. 85, 3965-3967 (2004).
[CrossRef]

2003 (5)

M. Bajcsy, A. S. Zibrov and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

M. D. Lukin, "Colloquium: Trapping and manipulating photon states in atomic ensembles," Rev. Mod. Phys. 75, 457-472 (2003).
[CrossRef]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, "Polarization Qubit Phase Gate in Driven Atomic Media," Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

T. W. Kornack, J. C. Allred, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

2002 (1)

C. Y. Ye and A. S. Zibrov, "Width of the electromagnetically induced transparency resonance in atomic vapor," Phys. Rev. A 65, 023806 (2002).
[CrossRef]

2001 (2)

C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

S. D. Badger, I. G. Hughes, and C. S. Adams, "Hyperfine effects in electromagnetically induced transparency," J. Phys. B: At. Mol. Opt. Phys. 34, L749-L756 (2001).
[CrossRef]

2000 (2)

D. McGloin, M. H. Dunn, and D. J. Fulton, "Polarization effects in electromagnetically induced transparency," Phys. Rev. A 62, 053802 (2000).
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, "Sensitive magnetometry based on nonlinear magneto-optical rotation," Phys. Rev. A 62, 043403 (2000).
[CrossRef]

1997 (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

1996 (1)

1995 (4)

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, "Two-photon effects in continuous-wave electromagnetically-induced transparency," Opt. Commun. 119, 61-68 (1995)
[CrossRef]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, "Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms," Phys. Rev. Lett. 74, 666-669 (1995).
[CrossRef] [PubMed]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, "Continuous-wave electromagnetically induced transparency: A comparison of V, Lambda, and cascade systems," Phys. Rev. A 52, 2302-2311 (1995).
[CrossRef] [PubMed]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically Induced Transparency: Propagation Dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

1991 (1)

K. J. Boller, A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

Adams, C. S.

S. D. Badger, I. G. Hughes, and C. S. Adams, "Hyperfine effects in electromagnetically induced transparency," J. Phys. B: At. Mol. Opt. Phys. 34, L749-L756 (2001).
[CrossRef]

Allred, J. C.

T. W. Kornack, J. C. Allred, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

Artoni, M.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, "Polarization Qubit Phase Gate in Driven Atomic Media," Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Badger, S. D.

S. D. Badger, I. G. Hughes, and C. S. Adams, "Hyperfine effects in electromagnetically induced transparency," J. Phys. B: At. Mol. Opt. Phys. 34, L749-L756 (2001).
[CrossRef]

Bajcsy, M.

M. Bajcsy, A. S. Zibrov and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Boca, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Boller, K. J.

K. J. Boller, A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

Boozer, A. D.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Bowen, W. P.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Budker, D.

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, "Sensitive magnetometry based on nonlinear magneto-optical rotation," Phys. Rev. A 62, 043403 (2000).
[CrossRef]

Cataliotti, F.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, "Polarization Qubit Phase Gate in Driven Atomic Media," Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Chou, C. W.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Duan, L.-M.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Dunn, M. H.

D. McGloin, M. H. Dunn, and D. J. Fulton, "Polarization effects in electromagnetically induced transparency," Phys. Rev. A 62, 053802 (2000).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, "Continuous-wave electromagnetically induced transparency: A comparison of V, Lambda, and cascade systems," Phys. Rev. A 52, 2302-2311 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, "Two-photon effects in continuous-wave electromagnetically-induced transparency," Opt. Commun. 119, 61-68 (1995)
[CrossRef]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Fulton, D. J.

D. McGloin, M. H. Dunn, and D. J. Fulton, "Polarization effects in electromagnetically induced transparency," Phys. Rev. A 62, 053802 (2000).
[CrossRef]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, "Two-photon effects in continuous-wave electromagnetically-induced transparency," Opt. Commun. 119, 61-68 (1995)
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, "Continuous-wave electromagnetically induced transparency: A comparison of V, Lambda, and cascade systems," Phys. Rev. A 52, 2302-2311 (1995).
[CrossRef] [PubMed]

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, "Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms," Phys. Rev. Lett. 74, 666-669 (1995).
[CrossRef] [PubMed]

Harris, S. E.

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically Induced Transparency: Propagation Dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Hughes, I. G.

S. D. Badger, I. G. Hughes, and C. S. Adams, "Hyperfine effects in electromagnetically induced transparency," J. Phys. B: At. Mol. Opt. Phys. 34, L749-L756 (2001).
[CrossRef]

Imamoglu, A.

H. Schmidt and A. Imamoglu, "Giant Kerr nonlinearities obtained by electromagnetically induced transparency," Opt. Lett. 21, 1936-1938 (1996).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

Jain, M.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically Induced Transparency: Propagation Dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, "Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms," Phys. Rev. Lett. 74, 666-669 (1995).
[CrossRef] [PubMed]

Kasapi, A.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically Induced Transparency: Propagation Dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Kim, J. B.

Kimball, D. F.

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, "Sensitive magnetometry based on nonlinear magneto-optical rotation," Phys. Rev. A 62, 043403 (2000).
[CrossRef]

Kimble, H. J.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Kornack, T. W.

T. W. Kornack, J. C. Allred, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

Kuzmich, A.

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

Lee, L.

Lee, W. K.

W. K. Lee, H. S. Moon, and H. S. Suh, "Measurement of the absolute energy level and hyperfine structure of the 87Rb 4D5/2 state," Opt. Lett. 32, 2810-2812 (2007).
[CrossRef] [PubMed]

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, "Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode," Appl. Phys. Lett. 85, 3965-3967 (2004).
[CrossRef]

Li, Y.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, "Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms," Phys. Rev. Lett. 74, 666-669 (1995).
[CrossRef] [PubMed]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

Lukin, M. D.

M. Bajcsy, A. S. Zibrov and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

M. D. Lukin, "Colloquium: Trapping and manipulating photon states in atomic ensembles," Rev. Mod. Phys. 75, 457-472 (2003).
[CrossRef]

McGloin, D.

D. McGloin, M. H. Dunn, and D. J. Fulton, "Polarization effects in electromagnetically induced transparency," Phys. Rev. A 62, 053802 (2000).
[CrossRef]

Moon, H. S.

Moseley, R. R.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, "Two-photon effects in continuous-wave electromagnetically-induced transparency," Opt. Commun. 119, 61-68 (1995)
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, "Continuous-wave electromagnetically induced transparency: A comparison of V, Lambda, and cascade systems," Phys. Rev. A 52, 2302-2311 (1995).
[CrossRef] [PubMed]

Ottaviani, C.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, "Polarization Qubit Phase Gate in Driven Atomic Media," Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Rochester, S. M.

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, "Sensitive magnetometry based on nonlinear magneto-optical rotation," Phys. Rev. A 62, 043403 (2000).
[CrossRef]

Romalis, M. V.

T. W. Kornack, J. C. Allred, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

Schmidt, H.

Shepherd, S.

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, "Two-photon effects in continuous-wave electromagnetically-induced transparency," Opt. Commun. 119, 61-68 (1995)
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, "Continuous-wave electromagnetically induced transparency: A comparison of V, Lambda, and cascade systems," Phys. Rev. A 52, 2302-2311 (1995).
[CrossRef] [PubMed]

Sinclair, B. D.

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, "Continuous-wave electromagnetically induced transparency: A comparison of V, Lambda, and cascade systems," Phys. Rev. A 52, 2302-2311 (1995).
[CrossRef] [PubMed]

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, "Two-photon effects in continuous-wave electromagnetically-induced transparency," Opt. Commun. 119, 61-68 (1995)
[CrossRef]

Suh, H. S.

Tombezisi, P.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, "Polarization Qubit Phase Gate in Driven Atomic Media," Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Vitali, D.

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, "Polarization Qubit Phase Gate in Driven Atomic Media," Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

Xiao, M.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, "Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms," Phys. Rev. Lett. 74, 666-669 (1995).
[CrossRef] [PubMed]

Yashchuk, V. V.

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, "Sensitive magnetometry based on nonlinear magneto-optical rotation," Phys. Rev. A 62, 043403 (2000).
[CrossRef]

Ye, C. Y.

C. Y. Ye and A. S. Zibrov, "Width of the electromagnetically induced transparency resonance in atomic vapor," Phys. Rev. A 65, 023806 (2002).
[CrossRef]

Yin, G. Y.

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically Induced Transparency: Propagation Dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Zibrov, A. S.

M. Bajcsy, A. S. Zibrov and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

C. Y. Ye and A. S. Zibrov, "Width of the electromagnetically induced transparency resonance in atomic vapor," Phys. Rev. A 65, 023806 (2002).
[CrossRef]

Zolotorev, M.

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, "Sensitive magnetometry based on nonlinear magneto-optical rotation," Phys. Rev. A 62, 043403 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim, "Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode," Appl. Phys. Lett. 85, 3965-3967 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. B: At. Mol. Opt. Phys. (1)

S. D. Badger, I. G. Hughes, and C. S. Adams, "Hyperfine effects in electromagnetically induced transparency," J. Phys. B: At. Mol. Opt. Phys. 34, L749-L756 (2001).
[CrossRef]

Nature (4)

C. Liu, Z. Dutton, C. H. Behroozi and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature 409, 490-493 (2001).
[CrossRef] [PubMed]

M. Bajcsy, A. S. Zibrov and M. D. Lukin, "Stationary pulses of light in an atomic medium," Nature 426, 638-641 (2003).
[CrossRef] [PubMed]

A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan and H. J. Kimble, "Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles," Nature 423, 731-734 (2003).
[CrossRef] [PubMed]

T. W. Kornack, J. C. Allred, and M. V. Romalis, "A subfemtotesla multichannel atomic magnetometer," Nature 422, 596-599 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

R. R. Moseley, S. Shepherd, D. J. Fulton, B. D. Sinclair, and M. H. Dunn, "Two-photon effects in continuous-wave electromagnetically-induced transparency," Opt. Commun. 119, 61-68 (1995)
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (4)

D. McGloin, M. H. Dunn, and D. J. Fulton, "Polarization effects in electromagnetically induced transparency," Phys. Rev. A 62, 053802 (2000).
[CrossRef]

D. J. Fulton, S. Shepherd, R. R. Moseley, B. D. Sinclair, and M. H. Dunn, "Continuous-wave electromagnetically induced transparency: A comparison of V, Lambda, and cascade systems," Phys. Rev. A 52, 2302-2311 (1995).
[CrossRef] [PubMed]

C. Y. Ye and A. S. Zibrov, "Width of the electromagnetically induced transparency resonance in atomic vapor," Phys. Rev. A 65, 023806 (2002).
[CrossRef]

D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, "Sensitive magnetometry based on nonlinear magneto-optical rotation," Phys. Rev. A 62, 043403 (2000).
[CrossRef]

Phys. Rev. Lett. (4)

C. Ottaviani, D. Vitali, M. Artoni, F. Cataliotti, and P. Tombezisi, "Polarization Qubit Phase Gate in Driven Atomic Media," Phys. Rev. Lett. 90, 197902 (2003).
[CrossRef] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, "Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms," Phys. Rev. Lett. 74, 666-669 (1995).
[CrossRef] [PubMed]

K. J. Boller, A. Imamoglu, and S. E. Harris, "Observation of electromagnetically induced transparency," Phys. Rev. Lett. 66, 2593-2596 (1991).
[CrossRef] [PubMed]

A. Kasapi, M. Jain, G. Y. Yin, and S. E. Harris, "Electromagnetically Induced Transparency: Propagation Dynamics," Phys. Rev. Lett. 74, 2447-2450 (1995).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

M. D. Lukin, "Colloquium: Trapping and manipulating photon states in atomic ensembles," Rev. Mod. Phys. 75, 457-472 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a). Schemes of the λ-type atomic system in the 5S1/2-5P3/2 transition of 87Rb atoms; (b) schemes of the ladder-type atomic system in the 5S1/2-5P3/2-5D5/2 transition of 87Rb atoms.

Fig. 2.
Fig. 2.

(a). Experimental setup to observe the ladder-type EIT spectrum (BS: beam splitter, AP: aperture, PD: photo diode, QWP: quarter-wave plate, and HWP: half-wave plate); (b) a typical ladder-type EIT spectrum of the 5S1/2-5P3/2-5D5/2 transition.

Fig. 3.
Fig. 3.

Double structure transmittance spectrum in the 5S1/2(F=2)-5P3/2(F’=3)-5D5/2(F”=4) cycling transition.

Fig. 4.
Fig. 4.

The transmittance spectra according to the probe intensity in the 5S1/2(F=2)- 5P3/2(F’=1,2,3)-5D5/2(F”=2,3,4) transition of 87Rb atoms.

Fig. 5.
Fig. 5.

The transmittance spectra in the 189 MHz detuning of the coupling laser.

Fig. 6.
Fig. 6.

(a). Schemes of the ladder-type five-level atomic system; (b). the calculated transmittance spectrum of the probe laser in the on-resonance (Δ = 0); and (c). the calculated dispersive-like transmittance spectrum in the off-resonance (Δ = 189 MHz).

Metrics