Abstract

We demonstrate dipole induced transparency in an integrated photonic crystal device. We show that a single weakly coupled quantum dot can control the transmission of photons through a photonic crystal cavity that is coupled to waveguides on the chip. Control over the quantum dot and cavity resonance via local temperature tuning, as well as efficient out-coupling with an integrated grating structure is demonstrated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vu�?kovi�?. "Generation and Transfer of Single Photons on a Photonic Crystal Chip," Opt. Express 15, 5550-5558 (2007).
    [CrossRef] [PubMed]
  2. S. Noda, M. Fujita, and T. Asano. "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
    [CrossRef]
  3. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic. "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
    [CrossRef] [PubMed]
  4. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, "Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade," arXiv:0804.2740v1 [quant-ph], (2008).
  5. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlled Phase Shifts with a Single Quantum Dot," Science 320, 769 - 772 (2008).
    [CrossRef] [PubMed]
  6. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information, (Cambridge Univ. Press, Cambridge, 2000).
  7. E. Waks and J. Vu�?kovi�?, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006).
    [CrossRef] [PubMed]
  8. A. Auffeves-Garnier, C. Simon, J-M. Gérard, and J-P Poizat, "Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime," Phys. Rev. A 75, 053823 (2007).
    [CrossRef]
  9. K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
    [CrossRef] [PubMed]
  10. A. Hogele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, "Voltage-Controlled Optics of a Quantum Dot," Phys. Rev. Lett. 93, 217401 (2004).
    [CrossRef] [PubMed]
  11. D. Haft, C. Schulhauser, A. Q. Govorov, R. J. Warburton, K. Karrai, J. M. Garcia, W. Schoedfeld, and P. M. Petroff, "Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots," Physica E 13, 165-169 (2002).
    [CrossRef]
  12. A. Faraon, D. Englund, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Local quantum dot tuning on photonic crystal chips," Appl. Phys. Lett. 90, 213110 (2007).
    [CrossRef]
  13. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).
  14. A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
    [CrossRef]

2008

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlled Phase Shifts with a Single Quantum Dot," Science 320, 769 - 772 (2008).
[CrossRef] [PubMed]

2007

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vu�?kovi�?. "Generation and Transfer of Single Photons on a Photonic Crystal Chip," Opt. Express 15, 5550-5558 (2007).
[CrossRef] [PubMed]

S. Noda, M. Fujita, and T. Asano. "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic. "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

A. Auffeves-Garnier, C. Simon, J-M. Gérard, and J-P Poizat, "Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime," Phys. Rev. A 75, 053823 (2007).
[CrossRef]

A. Faraon, D. Englund, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Local quantum dot tuning on photonic crystal chips," Appl. Phys. Lett. 90, 213110 (2007).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

2006

E. Waks and J. Vu�?kovi�?, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006).
[CrossRef] [PubMed]

2005

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

2004

A. Hogele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, "Voltage-Controlled Optics of a Quantum Dot," Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

2003

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).

2002

D. Haft, C. Schulhauser, A. Q. Govorov, R. J. Warburton, K. Karrai, J. M. Garcia, W. Schoedfeld, and P. M. Petroff, "Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots," Physica E 13, 165-169 (2002).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).

Asano, T.

S. Noda, M. Fujita, and T. Asano. "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).

Auffeves-Garnier, A.

A. Auffeves-Garnier, C. Simon, J-M. Gérard, and J-P Poizat, "Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime," Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Birnbaum, K. M.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Boca, A.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Boozer, A. D.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Englund, D.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlled Phase Shifts with a Single Quantum Dot," Science 320, 769 - 772 (2008).
[CrossRef] [PubMed]

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vu�?kovi�?. "Generation and Transfer of Single Photons on a Photonic Crystal Chip," Opt. Express 15, 5550-5558 (2007).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

A. Faraon, D. Englund, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Local quantum dot tuning on photonic crystal chips," Appl. Phys. Lett. 90, 213110 (2007).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic. "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Faraon, A.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlled Phase Shifts with a Single Quantum Dot," Science 320, 769 - 772 (2008).
[CrossRef] [PubMed]

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vu�?kovi�?. "Generation and Transfer of Single Photons on a Photonic Crystal Chip," Opt. Express 15, 5550-5558 (2007).
[CrossRef] [PubMed]

A. Faraon, D. Englund, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Local quantum dot tuning on photonic crystal chips," Appl. Phys. Lett. 90, 213110 (2007).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic. "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Fujita, M.

S. Noda, M. Fujita, and T. Asano. "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Fushman, I.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlled Phase Shifts with a Single Quantum Dot," Science 320, 769 - 772 (2008).
[CrossRef] [PubMed]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

A. Faraon, D. Englund, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Local quantum dot tuning on photonic crystal chips," Appl. Phys. Lett. 90, 213110 (2007).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic. "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Garcia, J. M.

D. Haft, C. Schulhauser, A. Q. Govorov, R. J. Warburton, K. Karrai, J. M. Garcia, W. Schoedfeld, and P. M. Petroff, "Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots," Physica E 13, 165-169 (2002).
[CrossRef]

Gérard, J-M.

A. Auffeves-Garnier, C. Simon, J-M. Gérard, and J-P Poizat, "Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime," Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Gerardot, B. D.

A. Hogele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, "Voltage-Controlled Optics of a Quantum Dot," Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

Govorov, A. Q.

D. Haft, C. Schulhauser, A. Q. Govorov, R. J. Warburton, K. Karrai, J. M. Garcia, W. Schoedfeld, and P. M. Petroff, "Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots," Physica E 13, 165-169 (2002).
[CrossRef]

Haft, D.

D. Haft, C. Schulhauser, A. Q. Govorov, R. J. Warburton, K. Karrai, J. M. Garcia, W. Schoedfeld, and P. M. Petroff, "Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots," Physica E 13, 165-169 (2002).
[CrossRef]

Hogele, A.

A. Hogele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, "Voltage-Controlled Optics of a Quantum Dot," Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

Karrai, K.

A. Hogele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, "Voltage-Controlled Optics of a Quantum Dot," Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

D. Haft, C. Schulhauser, A. Q. Govorov, R. J. Warburton, K. Karrai, J. M. Garcia, W. Schoedfeld, and P. M. Petroff, "Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots," Physica E 13, 165-169 (2002).
[CrossRef]

Kimble, H. J.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Kroner, M.

A. Hogele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, "Voltage-Controlled Optics of a Quantum Dot," Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

Miller, R.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Noda, S.

S. Noda, M. Fujita, and T. Asano. "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).

Northup, T. E.

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Petroff, P.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlled Phase Shifts with a Single Quantum Dot," Science 320, 769 - 772 (2008).
[CrossRef] [PubMed]

A. Faraon, D. Englund, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Local quantum dot tuning on photonic crystal chips," Appl. Phys. Lett. 90, 213110 (2007).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic. "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Petroff, P. M.

D. Haft, C. Schulhauser, A. Q. Govorov, R. J. Warburton, K. Karrai, J. M. Garcia, W. Schoedfeld, and P. M. Petroff, "Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots," Physica E 13, 165-169 (2002).
[CrossRef]

Petroff, P.M.

A. Hogele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, "Voltage-Controlled Optics of a Quantum Dot," Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

Poizat, J-P

A. Auffeves-Garnier, C. Simon, J-M. Gérard, and J-P Poizat, "Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime," Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Schoedfeld, W.

D. Haft, C. Schulhauser, A. Q. Govorov, R. J. Warburton, K. Karrai, J. M. Garcia, W. Schoedfeld, and P. M. Petroff, "Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots," Physica E 13, 165-169 (2002).
[CrossRef]

Schulhauser, C.

D. Haft, C. Schulhauser, A. Q. Govorov, R. J. Warburton, K. Karrai, J. M. Garcia, W. Schoedfeld, and P. M. Petroff, "Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots," Physica E 13, 165-169 (2002).
[CrossRef]

Seidl, S.

A. Hogele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, "Voltage-Controlled Optics of a Quantum Dot," Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

Simon, C.

A. Auffeves-Garnier, C. Simon, J-M. Gérard, and J-P Poizat, "Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime," Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Song, B.-S.

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlled Phase Shifts with a Single Quantum Dot," Science 320, 769 - 772 (2008).
[CrossRef] [PubMed]

A. Faraon, D. Englund, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Local quantum dot tuning on photonic crystal chips," Appl. Phys. Lett. 90, 213110 (2007).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic. "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Vu??kovi??, J.

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vu�?kovi�?. "Generation and Transfer of Single Photons on a Photonic Crystal Chip," Opt. Express 15, 5550-5558 (2007).
[CrossRef] [PubMed]

E. Waks and J. Vu�?kovi�?, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006).
[CrossRef] [PubMed]

Vuckovic, J.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlled Phase Shifts with a Single Quantum Dot," Science 320, 769 - 772 (2008).
[CrossRef] [PubMed]

A. Faraon, D. Englund, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Local quantum dot tuning on photonic crystal chips," Appl. Phys. Lett. 90, 213110 (2007).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic. "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

Waks, E.

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

E. Waks and J. Vu�?kovi�?, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006).
[CrossRef] [PubMed]

Warburton, R. J.

A. Hogele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, "Voltage-Controlled Optics of a Quantum Dot," Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

D. Haft, C. Schulhauser, A. Q. Govorov, R. J. Warburton, K. Karrai, J. M. Garcia, W. Schoedfeld, and P. M. Petroff, "Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots," Physica E 13, 165-169 (2002).
[CrossRef]

Yamamoto, Y.

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vu�?kovi�?. "Generation and Transfer of Single Photons on a Photonic Crystal Chip," Opt. Express 15, 5550-5558 (2007).
[CrossRef] [PubMed]

Zhang, B.

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vu�?kovi�?. "Generation and Transfer of Single Photons on a Photonic Crystal Chip," Opt. Express 15, 5550-5558 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

A. Faraon, D. Englund, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, "Local quantum dot tuning on photonic crystal chips," Appl. Phys. Lett. 90, 213110 (2007).
[CrossRef]

A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vuckovic, "Efficient photonic crystal cavity-waveguide couplers," Appl. Phys. Lett. 90, 073102 (2007).
[CrossRef]

Nat. Photonics

S. Noda, M. Fujita, and T. Asano. "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics 1, 449-458 (2007).
[CrossRef]

Nature

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic. "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007).
[CrossRef] [PubMed]

K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, "Photon blockade in an optical cavity with one trapped atom," Nature 436, 87-90 (2005).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, "High-Q photonic nanocavity in a two-dimensional photonic crystal," Nature 425, 944-947 (2003).

Opt. Express

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vu�?kovi�?. "Generation and Transfer of Single Photons on a Photonic Crystal Chip," Opt. Express 15, 5550-5558 (2007).
[CrossRef] [PubMed]

Phys. Rev. A

A. Auffeves-Garnier, C. Simon, J-M. Gérard, and J-P Poizat, "Giant optical nonlinearity induced by a single two-level system interacting with a cavity in the Purcell regime," Phys. Rev. A 75, 053823 (2007).
[CrossRef]

Phys. Rev. Lett.

E. Waks and J. Vu�?kovi�?, "Dipole induced transparency in drop-filter cavity-waveguide systems," Phys. Rev. Lett. 96, 153601 (2006).
[CrossRef] [PubMed]

A. Hogele, S. Seidl, M. Kroner, K. Karrai, R. J. Warburton, B. D. Gerardot, and P. M. Petroff, "Voltage-Controlled Optics of a Quantum Dot," Phys. Rev. Lett. 93, 217401 (2004).
[CrossRef] [PubMed]

Physica E

D. Haft, C. Schulhauser, A. Q. Govorov, R. J. Warburton, K. Karrai, J. M. Garcia, W. Schoedfeld, and P. M. Petroff, "Magneto-optical properties of ring-shaped self-assembled InGaAs quantum dots," Physica E 13, 165-169 (2002).
[CrossRef]

Science

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vuckovic, "Controlled Phase Shifts with a Single Quantum Dot," Science 320, 769 - 772 (2008).
[CrossRef] [PubMed]

Other

M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information, (Cambridge Univ. Press, Cambridge, 2000).

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, "Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade," arXiv:0804.2740v1 [quant-ph], (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Photonic crystal device used to probe dipole induced transparency. The device consists of a PC cavity coupled to a PC waveguide terminated with a grating outcoupler. For local temperature control, the cavity is placed next to a metal pad that can be heated using an external laser beam. To increase the thermal insulation of the structure, the PC waveguide is interrupted and a narrow ridge waveguide link is inserted. (b) Magnified view of the grating outcoupler. (c) Magnified view of the ridge waveguide link

Fig. 2.
Fig. 2.

Schematic showing the operation of the device. A heating laser is used to control the device temperature thus changing the resonance frequency of the cavity and the quantum dots coupled to it [12]. A probe laser is injected into the cavity from the top. The cavity field couples to the waveguide mode and then it is scattered from the grating outcoupler into the collection lens. A pinhole is used to collect only the output scattered by the grating. Using this device, the transmission function of the cavity can be analyzed for different frequencies of the resonator, quantum dot and probe laser.

Fig. 3.
Fig. 3.

Simulation of the L3 cavity field coupled into the waveguide whose output is vertically scattered by the grating outcoupler. (a) Magnetic field distribution in the plane of the photonic crystal, i.e., the x-y plane (the dominant, Bz component is shown) (b) Energy density radiated from the structure, shown in the vertical cross-section through a plane passing through the middle of the waveguide and the cavity (x-z plane). Most of the vertically radiated energy is scattered from the grating outcoupler (c) Three dimensional view of one of the electromagnetic field density isosurfaces. This shows the profile of the evanescent cavity and waveguide field and indicates that most of energy radiated vertically comes from the grating outcoupler.

Fig. 4.
Fig. 4.

Schematic of the cavity mode coupling into various photonic channels. The cavity couples with coupling constant η a κ to the forward and backward propagating modes ain and aout of the probe beam. The other coupling channel of interest is the outward propagating waveguide mode wout with coupling rate to cavity equal to η wg κ . The cavity loss into all other coupling channels is κ (1-η wg a ). Therefore, the total cavity field decay rate is κ . The uncoupled quantum dot decay rate is γ.

Fig. 5.
Fig. 5.

(a) Two dimensional photoluminescence plot taken as the quantum dot is tuned into resonance with the cavity by changing the power of the heating laser (plotted on the vertical axis). (b-d) Photoluminescence plots at three different crossections marked by the horizontal lines in panel a. As expected for the weak coupling regime, the QD and the cavity lines cross. (e) Transmission measurement done by changing the power of the heating laser while the probe beam is kept fixed at the frequency marked by the vertical line in panel b. The plot shows the Lorentzian profile of the cavity resonance and the dipole induced transparency transmission dip induced by the quantum dot. The dashed line is the direct theoretical fit with Eq. 2. The solid line fit takes into account the fluctuations in the system. (f) Comparison between the photoluminescence spectra collected from the top of the cavity and the grating outcoupler. The two spectra were taken using a small aperture to collect only the photoluminescence from the area of interest. The ratio of the grating outcoupled cavity photoluminescence to cavity outcoupled photoluminescence is 0.64.

Fig. 6.
Fig. 6.

(a) Prototype structure consisting the of photonic crystal resonators evanescently side coupled to a waveguide. Each resonator is next to a heating pad so the its temperature and thus its resonance frequency can be controlled independently. (b)Magnified view of the waveguide coupled resonator and its heating pad. The trenches surrounding the resonator provide local thermal insulation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( ω ) = w out a in 2 = 2 η wg κ η a κ i ( ω c ω ) + κ + g 2 i ( ω QD ω ) + γ 2 ,
T ( P ) = 2 η wg κ η a κ c P + κ + g 2 QD P + γ 2 ,

Metrics