Abstract

We demonstrate broadband light generation in diamond pumped by two-color femtosecond laser pulses. We find that phase matching plays a critical role in the output angle and frequency of the generated sidebands. When a third femtosecond probe pulse is applied to the crystal in the boxed Coherent anti-Stokes Raman Scattering geometry, a two-dimensional array of multi-color beams is generated through the Raman, four-wave mixing, and six-wave-mixing processes. We test the mutual coherence between the generated sidebands. Such coherence, maintained over the broad spectrum, opens possibilities for synthesis of subfemtosecond light waveforms.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. V. Sokolov and S. E. Harris, "Ultrashort pulse generation by molecular modulation," J. Opt. B. 5, R1 (2003).
    [CrossRef]
  2. A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, "Generation and control of femtosecond pulses by molecular modulation," J. Mod. Opt. 52, 285 (2005).
    [CrossRef]
  3. M. Zhi and A. V. Sokolov, "Broadband coherent light generation in a Raman-active crystal driven by two-color femtosecond laser pulses," Opt. Lett. 32, 2251-2253 (2007).
    [CrossRef] [PubMed]
  4. M. Zhi and A. V. Sokolov, "Broadband generation in a Raman crystal driven by a pair of time-delayed linearly chirped pulses," New J. Phys. 10, 025032 (2008).
    [CrossRef]
  5. J. Takahashi, "Generatoin of a broadband spectral comb with multiwave mixing by exchange of an impulsively stimulated phonon, " Opt. Express 12, 1185 (2004).
    [CrossRef] [PubMed]
  6. E. Matsubabra, K. Inoue, and E. Hanamura, "Dynamical symmetry breaking induced by ultrashort laser pulses in KTaO3," J. Phys. Soc. Jpn. 75, 024712 (2006).
    [CrossRef]
  7. H. Matsuki, K. Inoue, and E. Hanamura, "Multiple coherent anti-Stokes Raman scattering due to phonon grating in KNbO3 induced by crossed beams of two-color femtosecond pulses," Phys. Rev. B 75, 024102 (2007).
    [CrossRef]
  8. E. Matsubara, T. Sekikawa, and M. Yamashita, "Generation of ultrashort optical pulses using multiple coherent anti-Stokes Raman scattering in a crystal at room temperature," Appl. Phys. Lett. 92, 071104 (2008).
    [CrossRef]
  9. T. T. Basiev, A. A. Sobol, P. G. Zverev, V. V. Osiko, and R. C. Powell, "Comparative spontaneous Raman spectroscopy of crystals for Raman lasers," Appl. Opt. 38, 594-598 (1999).
    [CrossRef]
  10. H. O. Piersonf, Handbook of Carbon Graphite, Diamond and Fullerenes: Properties, Processing, and Applications (Noyes Publications, 1993).
  11. G. Eckhardt, D. P. Bortfeld, and M. Geller, "Stimulated Emission of Stokes AND Anti-Stokes Raman Lines from Diamond, Calcite, and Alpha-sulfur Single Crystals," Appl. Phys. Lett. 3, 137-138 (1963).
    [CrossRef]
  12. A. A. Kaminskii, V. G. Ralchenko, V. I. Konov, and H. J. Eichler, "High-order Stokes and anti-Stokes Raman generation in CVD diamond, " Phys. Status Solidi (B) 242, R4 (2005).
    [CrossRef]
  13. A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, "CVD-diamond - a novel |3-nonlinear active crystalline material for SRS generation in very wide spectral range," Laser Phys. Lett. 3, 171 (2006).
    [CrossRef]
  14. D. Y. Smith, M. Inokuti, and W. Karstens, "A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors," J. Phys. : Condens. Matter 13, 3883 (2001).
    [CrossRef]
  15. D. F. Edwards and E. Ochoa, "Infrared refractive index of diamond," J. Opt. Soc. Am. 71, 607-608 (1981).
    [CrossRef]

2008

M. Zhi and A. V. Sokolov, "Broadband generation in a Raman crystal driven by a pair of time-delayed linearly chirped pulses," New J. Phys. 10, 025032 (2008).
[CrossRef]

E. Matsubara, T. Sekikawa, and M. Yamashita, "Generation of ultrashort optical pulses using multiple coherent anti-Stokes Raman scattering in a crystal at room temperature," Appl. Phys. Lett. 92, 071104 (2008).
[CrossRef]

2007

H. Matsuki, K. Inoue, and E. Hanamura, "Multiple coherent anti-Stokes Raman scattering due to phonon grating in KNbO3 induced by crossed beams of two-color femtosecond pulses," Phys. Rev. B 75, 024102 (2007).
[CrossRef]

M. Zhi and A. V. Sokolov, "Broadband coherent light generation in a Raman-active crystal driven by two-color femtosecond laser pulses," Opt. Lett. 32, 2251-2253 (2007).
[CrossRef] [PubMed]

2006

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, "CVD-diamond - a novel |3-nonlinear active crystalline material for SRS generation in very wide spectral range," Laser Phys. Lett. 3, 171 (2006).
[CrossRef]

E. Matsubabra, K. Inoue, and E. Hanamura, "Dynamical symmetry breaking induced by ultrashort laser pulses in KTaO3," J. Phys. Soc. Jpn. 75, 024712 (2006).
[CrossRef]

2005

A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, "Generation and control of femtosecond pulses by molecular modulation," J. Mod. Opt. 52, 285 (2005).
[CrossRef]

A. A. Kaminskii, V. G. Ralchenko, V. I. Konov, and H. J. Eichler, "High-order Stokes and anti-Stokes Raman generation in CVD diamond, " Phys. Status Solidi (B) 242, R4 (2005).
[CrossRef]

2004

2003

A. V. Sokolov and S. E. Harris, "Ultrashort pulse generation by molecular modulation," J. Opt. B. 5, R1 (2003).
[CrossRef]

2001

D. Y. Smith, M. Inokuti, and W. Karstens, "A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors," J. Phys. : Condens. Matter 13, 3883 (2001).
[CrossRef]

1999

1981

1963

G. Eckhardt, D. P. Bortfeld, and M. Geller, "Stimulated Emission of Stokes AND Anti-Stokes Raman Lines from Diamond, Calcite, and Alpha-sulfur Single Crystals," Appl. Phys. Lett. 3, 137-138 (1963).
[CrossRef]

Basiev, T. T.

Bortfeld, D. P.

G. Eckhardt, D. P. Bortfeld, and M. Geller, "Stimulated Emission of Stokes AND Anti-Stokes Raman Lines from Diamond, Calcite, and Alpha-sulfur Single Crystals," Appl. Phys. Lett. 3, 137-138 (1963).
[CrossRef]

Burzo, A. M.

A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, "Generation and control of femtosecond pulses by molecular modulation," J. Mod. Opt. 52, 285 (2005).
[CrossRef]

Eckhardt, G.

G. Eckhardt, D. P. Bortfeld, and M. Geller, "Stimulated Emission of Stokes AND Anti-Stokes Raman Lines from Diamond, Calcite, and Alpha-sulfur Single Crystals," Appl. Phys. Lett. 3, 137-138 (1963).
[CrossRef]

Edwards, D. F.

Eichler, H. J.

A. A. Kaminskii, V. G. Ralchenko, V. I. Konov, and H. J. Eichler, "High-order Stokes and anti-Stokes Raman generation in CVD diamond, " Phys. Status Solidi (B) 242, R4 (2005).
[CrossRef]

Geller, M.

G. Eckhardt, D. P. Bortfeld, and M. Geller, "Stimulated Emission of Stokes AND Anti-Stokes Raman Lines from Diamond, Calcite, and Alpha-sulfur Single Crystals," Appl. Phys. Lett. 3, 137-138 (1963).
[CrossRef]

Hanamura, E.

H. Matsuki, K. Inoue, and E. Hanamura, "Multiple coherent anti-Stokes Raman scattering due to phonon grating in KNbO3 induced by crossed beams of two-color femtosecond pulses," Phys. Rev. B 75, 024102 (2007).
[CrossRef]

E. Matsubabra, K. Inoue, and E. Hanamura, "Dynamical symmetry breaking induced by ultrashort laser pulses in KTaO3," J. Phys. Soc. Jpn. 75, 024712 (2006).
[CrossRef]

Harris, S. E.

A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, "Generation and control of femtosecond pulses by molecular modulation," J. Mod. Opt. 52, 285 (2005).
[CrossRef]

A. V. Sokolov and S. E. Harris, "Ultrashort pulse generation by molecular modulation," J. Opt. B. 5, R1 (2003).
[CrossRef]

Inokuti, M.

D. Y. Smith, M. Inokuti, and W. Karstens, "A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors," J. Phys. : Condens. Matter 13, 3883 (2001).
[CrossRef]

Inoue, K.

H. Matsuki, K. Inoue, and E. Hanamura, "Multiple coherent anti-Stokes Raman scattering due to phonon grating in KNbO3 induced by crossed beams of two-color femtosecond pulses," Phys. Rev. B 75, 024102 (2007).
[CrossRef]

E. Matsubabra, K. Inoue, and E. Hanamura, "Dynamical symmetry breaking induced by ultrashort laser pulses in KTaO3," J. Phys. Soc. Jpn. 75, 024712 (2006).
[CrossRef]

Kaminskii, A. A.

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, "CVD-diamond - a novel |3-nonlinear active crystalline material for SRS generation in very wide spectral range," Laser Phys. Lett. 3, 171 (2006).
[CrossRef]

A. A. Kaminskii, V. G. Ralchenko, V. I. Konov, and H. J. Eichler, "High-order Stokes and anti-Stokes Raman generation in CVD diamond, " Phys. Status Solidi (B) 242, R4 (2005).
[CrossRef]

Karstens, W.

D. Y. Smith, M. Inokuti, and W. Karstens, "A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors," J. Phys. : Condens. Matter 13, 3883 (2001).
[CrossRef]

Konov, V. I.

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, "CVD-diamond - a novel |3-nonlinear active crystalline material for SRS generation in very wide spectral range," Laser Phys. Lett. 3, 171 (2006).
[CrossRef]

A. A. Kaminskii, V. G. Ralchenko, V. I. Konov, and H. J. Eichler, "High-order Stokes and anti-Stokes Raman generation in CVD diamond, " Phys. Status Solidi (B) 242, R4 (2005).
[CrossRef]

Matsubabra, E.

E. Matsubabra, K. Inoue, and E. Hanamura, "Dynamical symmetry breaking induced by ultrashort laser pulses in KTaO3," J. Phys. Soc. Jpn. 75, 024712 (2006).
[CrossRef]

Matsubara, E.

E. Matsubara, T. Sekikawa, and M. Yamashita, "Generation of ultrashort optical pulses using multiple coherent anti-Stokes Raman scattering in a crystal at room temperature," Appl. Phys. Lett. 92, 071104 (2008).
[CrossRef]

Matsuki, H.

H. Matsuki, K. Inoue, and E. Hanamura, "Multiple coherent anti-Stokes Raman scattering due to phonon grating in KNbO3 induced by crossed beams of two-color femtosecond pulses," Phys. Rev. B 75, 024102 (2007).
[CrossRef]

Ochoa, E.

Osiko, V. V.

Powell, R. C.

Ralchenko, V. G.

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, "CVD-diamond - a novel |3-nonlinear active crystalline material for SRS generation in very wide spectral range," Laser Phys. Lett. 3, 171 (2006).
[CrossRef]

A. A. Kaminskii, V. G. Ralchenko, V. I. Konov, and H. J. Eichler, "High-order Stokes and anti-Stokes Raman generation in CVD diamond, " Phys. Status Solidi (B) 242, R4 (2005).
[CrossRef]

Sekikawa, T.

E. Matsubara, T. Sekikawa, and M. Yamashita, "Generation of ultrashort optical pulses using multiple coherent anti-Stokes Raman scattering in a crystal at room temperature," Appl. Phys. Lett. 92, 071104 (2008).
[CrossRef]

Shverdin, M. Y.

A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, "Generation and control of femtosecond pulses by molecular modulation," J. Mod. Opt. 52, 285 (2005).
[CrossRef]

Smith, D. Y.

D. Y. Smith, M. Inokuti, and W. Karstens, "A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors," J. Phys. : Condens. Matter 13, 3883 (2001).
[CrossRef]

Sobol, A. A.

Sokolov, A. V.

M. Zhi and A. V. Sokolov, "Broadband generation in a Raman crystal driven by a pair of time-delayed linearly chirped pulses," New J. Phys. 10, 025032 (2008).
[CrossRef]

M. Zhi and A. V. Sokolov, "Broadband coherent light generation in a Raman-active crystal driven by two-color femtosecond laser pulses," Opt. Lett. 32, 2251-2253 (2007).
[CrossRef] [PubMed]

A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, "Generation and control of femtosecond pulses by molecular modulation," J. Mod. Opt. 52, 285 (2005).
[CrossRef]

A. V. Sokolov and S. E. Harris, "Ultrashort pulse generation by molecular modulation," J. Opt. B. 5, R1 (2003).
[CrossRef]

Takahashi, J.

Walker, D. R.

A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, "Generation and control of femtosecond pulses by molecular modulation," J. Mod. Opt. 52, 285 (2005).
[CrossRef]

Yamashita, M.

E. Matsubara, T. Sekikawa, and M. Yamashita, "Generation of ultrashort optical pulses using multiple coherent anti-Stokes Raman scattering in a crystal at room temperature," Appl. Phys. Lett. 92, 071104 (2008).
[CrossRef]

Yavuz, D. D.

A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, "Generation and control of femtosecond pulses by molecular modulation," J. Mod. Opt. 52, 285 (2005).
[CrossRef]

Yin, G. Y.

A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, "Generation and control of femtosecond pulses by molecular modulation," J. Mod. Opt. 52, 285 (2005).
[CrossRef]

Zhi, M.

M. Zhi and A. V. Sokolov, "Broadband generation in a Raman crystal driven by a pair of time-delayed linearly chirped pulses," New J. Phys. 10, 025032 (2008).
[CrossRef]

M. Zhi and A. V. Sokolov, "Broadband coherent light generation in a Raman-active crystal driven by two-color femtosecond laser pulses," Opt. Lett. 32, 2251-2253 (2007).
[CrossRef] [PubMed]

Zverev, P. G.

Appl. Opt.

Appl. Phys. Lett.

E. Matsubara, T. Sekikawa, and M. Yamashita, "Generation of ultrashort optical pulses using multiple coherent anti-Stokes Raman scattering in a crystal at room temperature," Appl. Phys. Lett. 92, 071104 (2008).
[CrossRef]

G. Eckhardt, D. P. Bortfeld, and M. Geller, "Stimulated Emission of Stokes AND Anti-Stokes Raman Lines from Diamond, Calcite, and Alpha-sulfur Single Crystals," Appl. Phys. Lett. 3, 137-138 (1963).
[CrossRef]

J. Mod. Opt.

A. V. Sokolov, M. Y. Shverdin, D. R. Walker, D. D. Yavuz, A. M. Burzo, G. Y. Yin, and S. E. Harris, "Generation and control of femtosecond pulses by molecular modulation," J. Mod. Opt. 52, 285 (2005).
[CrossRef]

J. Opt. B.

A. V. Sokolov and S. E. Harris, "Ultrashort pulse generation by molecular modulation," J. Opt. B. 5, R1 (2003).
[CrossRef]

J. Opt. Soc. Am.

J. Phys. : Condens. Matter

D. Y. Smith, M. Inokuti, and W. Karstens, "A generalized Cauchy dispersion formula and the refractivity of elemental semiconductors," J. Phys. : Condens. Matter 13, 3883 (2001).
[CrossRef]

J. Phys. Soc. Jpn.

E. Matsubabra, K. Inoue, and E. Hanamura, "Dynamical symmetry breaking induced by ultrashort laser pulses in KTaO3," J. Phys. Soc. Jpn. 75, 024712 (2006).
[CrossRef]

Laser Phys. Lett.

A. A. Kaminskii, V. G. Ralchenko, and V. I. Konov, "CVD-diamond - a novel |3-nonlinear active crystalline material for SRS generation in very wide spectral range," Laser Phys. Lett. 3, 171 (2006).
[CrossRef]

New J. Phys.

M. Zhi and A. V. Sokolov, "Broadband generation in a Raman crystal driven by a pair of time-delayed linearly chirped pulses," New J. Phys. 10, 025032 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

H. Matsuki, K. Inoue, and E. Hanamura, "Multiple coherent anti-Stokes Raman scattering due to phonon grating in KNbO3 induced by crossed beams of two-color femtosecond pulses," Phys. Rev. B 75, 024102 (2007).
[CrossRef]

Phys. Status Solidi (B)

A. A. Kaminskii, V. G. Ralchenko, V. I. Konov, and H. J. Eichler, "High-order Stokes and anti-Stokes Raman generation in CVD diamond, " Phys. Status Solidi (B) 242, R4 (2005).
[CrossRef]

Other

H. O. Piersonf, Handbook of Carbon Graphite, Diamond and Fullerenes: Properties, Processing, and Applications (Noyes Publications, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Broadband generation in diamond with two input pulses (λ1= 630 nm and λ2= 584 nm, δv= 1250 cm-1) crossed at angles of 3° and 5.8°. Top: Generated beams projected onto a white screen. The two pump beams, S 1 and the first few AS beams are attenuated (after the sample) by a neutral-density filter. The AS 2 spot clearly shows two different colors, with blue corresponding to the Raman generation and green to the FWM signal. Bottom: Normalized spectra of the generated sidebands.

Fig. 2.
Fig. 2.

The sideband frequency as a function of the sideband order (a) and as a function of the sideband output angle (b) with the two input beams (λ1=630 nm and λ2=584 nm, δv= 1250 cm-1) crossing at two different angles, 3° (square) and 5.8° (round). The sidebands generated at 5.8° have a larger (about twice) frequency spacing compared to the 3° case.

Fig. 3.
Fig. 3.

The Sideband frequency and output angle at the different detuning (Δv vary from 820 cm-1 to 2608 cm-1) between the pump (fixed at 594 nm) and Stokes pulses. The output angles do not vary much, nor does the frequencies of the sidebands, although Δv varies a lot.

Fig. 4.
Fig. 4.

Theoretical calculation of the generated AS 1 when the two pumps cross at angle 2.6, 3.6 and 4.6 degree respectively, with the 3.6 degree corresponding to the phase matching angle between two input pulses. The input pulses is 630 nm and 581.23 nm which has a frequency difference of exactly Raman shift 1332 cm-1. The sample thickness used for calculation is 500μm.

Fig. 5.
Fig. 5.

The CARS and CSRS signals observed in diamond using a UV probe pulse. Top, the spectra of the CARS (left, center wavelength is 305 nm) and CSRS (right, center wavelength is 332 nm) as a function of the probe delay. Bottom, the exponential decay of the CARS (left) and CSRS (right) signals intensity average over their center wavelengths. Log scale is used.

Fig. 6.
Fig. 6.

The 2-D array generation in diamond with three input pulses (λ pump = 720 nm, λ Stokes = 800 nm, and λ probe = 600 nm). The wavelengths of the sidebands are labeled in nm. The degenerated FWM signal (2Y-IR, a shorthand of 2ωY - ωIR ) from the probe and Stokes pulses and the one (2Y-R) from the probe and pump pulses are much stronger than the Raman generation spots. They either superimpose or shift slightly. The six-wave-mixing signal (3Y-2R) from the pump and probe pulses is also visible.

Fig. 7.
Fig. 7.

“Green” sideband energy under different conditions. Black solid line: all three input pulses are present. Red dashed line: IR and Red pulses present only. Blue dotted line: Yellow and Red pulses present only. Top: Input beam geometry.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I n ( v ) I n 1 ( v v R ) sin c 2 { [ k ( v ) k ( v v R ) k R ] L 2 } .
n ( λ ) = 2.37 1.0 × 10 5 ( 1.24 λ ) 2 + 8.0 × 10 3 × ( 1.24 λ ) 2 + 1.0 × 10 4 × ( 1.24 λ ) 4 ,

Metrics