Abstract

We demonstrate an in-plane photonic transduction method for microcantilevers, which have been widely investigated for sensor applications. In our approach the microcantilever is etched to form a single mode rib waveguide. Light propagates down the microcantilever and crosses a small gap at the free end of the microcantilever, some of which is captured by an asymmetrical multimode waveguide that terminates in a Y-branch. The Y-branch outputs are used to form a differential signal that is monotonically dependent on microcantilever deflection. The measured differential signal matches simulation when microcantilever rotation is properly accounted for. The measured differential signal sensitivity is 1.4×10-4 nm-1 and the minimum detectable deflection is 0.35 nm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Thundat, E. A. Watcher, S. L. Sharp, and R. J. Warmack, “Detection of mercury vapor using resonating cantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
    [Crossref]
  2. R. Raiteri, M. Grattarola, and R. Berger, “Micromechanics senses biomolecules,” Materialstoday 5, 22–29 (2002).
  3. J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
    [Crossref] [PubMed]
  4. G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen using microcantilevers,” Nat. Biotechnol. 19, 856–860 (2001).
    [Crossref] [PubMed]
  5. R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas, “Microcantilever as an ultrasensitive pH microsensor,” Appl. Phys. Lett. 81, 3091–3093 (2002).
    [Crossref]
  6. A. M. Moulin, S. J. O’Shea, and M. E. Welland, “Microcantilever-based biosensors,” Ultramicroscopy 82, 23–31 (2000).
    [Crossref] [PubMed]
  7. T. Thundat and K. M. Hansen, “Microcantilever biosensors,” Methods 37, 57–64 (2005).
    [PubMed]
  8. L. G. Carrascosa, M. Moreno, M. Álvarez, and L. M. Lechuga, “Nanomechanical biosensors: a new sensing tool,” TrAC  25, 196–206 (2006).
  9. J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
    [Crossref]
  10. H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
    [Crossref]
  11. J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83, 3428–3430 (2003).
    [Crossref]
  12. L. Fadel, F. Lochon, I. Dufour, and O. Français, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14, S23–S30 (2004).
    [Crossref]
  13. A. Boisen, J. Thaysen, H. Jensenius, and O. Hansen, “Environmental sensors based on micromachined cantilevers with integrated read-out,” Ultramicroscopy 82, 11–16 (2000).
    [Crossref] [PubMed]
  14. P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7, 1238–1255 (2007).
    [Crossref] [PubMed]
  15. P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, and A. Boisen, “Optimised cantilever biosensor with piezoresistive read-out,” Ultramiscroscopy 97, 371–376 (2003).
    [Crossref]
  16. J. D. Adams, B. Rogers, L. Manning, Z. Hu, T. Thundat, H. Cavazos, and S. C. Minne, “Piezoelectric self-sensing of adsorption-induced microcantilever bending,” Sens. Actuators A  126, 182–186 (2006).
  17. C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith, W. L. Bryan, and J. M. Rochelle, “Multiple-input microcantilever sensors,” Ultramicroscopy 82, 17–21 (2000).
    [Crossref] [PubMed]
  18. J. Amirola, A. Rodríguez, L. Castaňer, J. P. Santos, J. Gutiérrez, and M. C. Horrillo, “Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out,” Sens. Actuators B 111–112, 247–153 (2005).
  19. G. P. Nordin, “In-Plane Photonic Transduction as an Enabler for Microcantilever Arrays,” ASME Workshop—Nanomechanics: Sensors and Actuators, Knoxville (2005).
  20. G. P. Nordin, J. W. Noh, Y. Qian, J. Song, R. Anderson, and S. Kim, “Demonstration of in-plane photonic transduction for microcantilever arrays,” International Workshop on Nanomechanical Sensors, Montreal, Canada, May 28-30, 2007.
  21. G. P. Nordin, J. W. Noh, and S. Kim, “In-plane photonic transduction for microcantilever sensor arrays,” Proc. SPIE 6447, 64470J (2007).
    [Crossref]
  22. Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact waveguide splitter and bend networks,” Opt. Express 16, 4981–4990 (2008).
    [Crossref] [PubMed]
  23. K. E. Burcham, G. N. D. Brabander, and J. T. Boyd, “Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide,” Proc. SPIE 1793, 12–18 (1992).
    [Crossref]
  24. S. Wu and H.J. Frankena, “Integrated optical sensors using micromechanical bridges and cantilevers,” Proc. SPIE 1793, 83–89 (1992).
    [Crossref]
  25. M. Nordstrom, D. A. Zauner, M. Calleja, J. Hubner, and A. Boisen, “Integrated optical readout for miniaturization of cantilever-based sensor system,” Appl. Phys. Lett. 91, 103512 (2007).
    [Crossref]
  26. R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electr. 27, 1971–1974 (1991).
    [Crossref]
  27. J. Thaysen, A. D. Yalçinkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D: Appl. Phys. 35, 2698–2703 (2002).
    [Crossref]
  28. A. Kooser, R. L Gunter, W. D. Delinger, T. L Porter, and M. P. Eastman, “Gas sensing embedded piezoresistive microcantilever sensors,” Sens. Actuators B  99, 474–479 (2004).
    [Crossref]
  29. X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92, 6296–6301 (2002).
    [Crossref]
  30. X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of high-sensitivity cantilever and its monolithic integration with CMOS circuit,” IEEE Sens. J. 7, 489–495 (2007).
    [Crossref]
  31. C. Kocabas and A. Aydinli, “Design and analysis of an integrated optical sensor for scanning force microscopies,” IEEE Sens. J. 5, 411–418 (2005).
    [Crossref]
  32. K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” J. Lightwave Technol. 24, 2132–2138 (2006).
    [Crossref]

2008 (1)

2007 (4)

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of high-sensitivity cantilever and its monolithic integration with CMOS circuit,” IEEE Sens. J. 7, 489–495 (2007).
[Crossref]

G. P. Nordin, J. W. Noh, and S. Kim, “In-plane photonic transduction for microcantilever sensor arrays,” Proc. SPIE 6447, 64470J (2007).
[Crossref]

M. Nordstrom, D. A. Zauner, M. Calleja, J. Hubner, and A. Boisen, “Integrated optical readout for miniaturization of cantilever-based sensor system,” Appl. Phys. Lett. 91, 103512 (2007).
[Crossref]

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7, 1238–1255 (2007).
[Crossref] [PubMed]

2006 (4)

J. D. Adams, B. Rogers, L. Manning, Z. Hu, T. Thundat, H. Cavazos, and S. C. Minne, “Piezoelectric self-sensing of adsorption-induced microcantilever bending,” Sens. Actuators A  126, 182–186 (2006).

L. G. Carrascosa, M. Moreno, M. Álvarez, and L. M. Lechuga, “Nanomechanical biosensors: a new sensing tool,” TrAC  25, 196–206 (2006).

J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
[Crossref]

K. Zinoviev, C. Dominguez, J. A. Plaza, V. J. C. Busto, and L M. Lechuga, “A novel optical waveguide microcantilever sensor for the detection of nanomechanical forces,” J. Lightwave Technol. 24, 2132–2138 (2006).
[Crossref]

2005 (3)

C. Kocabas and A. Aydinli, “Design and analysis of an integrated optical sensor for scanning force microscopies,” IEEE Sens. J. 5, 411–418 (2005).
[Crossref]

J. Amirola, A. Rodríguez, L. Castaňer, J. P. Santos, J. Gutiérrez, and M. C. Horrillo, “Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out,” Sens. Actuators B 111–112, 247–153 (2005).

T. Thundat and K. M. Hansen, “Microcantilever biosensors,” Methods 37, 57–64 (2005).
[PubMed]

2004 (2)

L. Fadel, F. Lochon, I. Dufour, and O. Français, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14, S23–S30 (2004).
[Crossref]

A. Kooser, R. L Gunter, W. D. Delinger, T. L Porter, and M. P. Eastman, “Gas sensing embedded piezoresistive microcantilever sensors,” Sens. Actuators B  99, 474–479 (2004).
[Crossref]

2003 (2)

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83, 3428–3430 (2003).
[Crossref]

P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, and A. Boisen, “Optimised cantilever biosensor with piezoresistive read-out,” Ultramiscroscopy 97, 371–376 (2003).
[Crossref]

2002 (4)

R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas, “Microcantilever as an ultrasensitive pH microsensor,” Appl. Phys. Lett. 81, 3091–3093 (2002).
[Crossref]

R. Raiteri, M. Grattarola, and R. Berger, “Micromechanics senses biomolecules,” Materialstoday 5, 22–29 (2002).

X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92, 6296–6301 (2002).
[Crossref]

J. Thaysen, A. D. Yalçinkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D: Appl. Phys. 35, 2698–2703 (2002).
[Crossref]

2001 (1)

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen using microcantilevers,” Nat. Biotechnol. 19, 856–860 (2001).
[Crossref] [PubMed]

2000 (4)

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

A. M. Moulin, S. J. O’Shea, and M. E. Welland, “Microcantilever-based biosensors,” Ultramicroscopy 82, 23–31 (2000).
[Crossref] [PubMed]

C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith, W. L. Bryan, and J. M. Rochelle, “Multiple-input microcantilever sensors,” Ultramicroscopy 82, 17–21 (2000).
[Crossref] [PubMed]

A. Boisen, J. Thaysen, H. Jensenius, and O. Hansen, “Environmental sensors based on micromachined cantilevers with integrated read-out,” Ultramicroscopy 82, 11–16 (2000).
[Crossref] [PubMed]

1998 (1)

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

1995 (1)

T. Thundat, E. A. Watcher, S. L. Sharp, and R. J. Warmack, “Detection of mercury vapor using resonating cantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
[Crossref]

1992 (2)

K. E. Burcham, G. N. D. Brabander, and J. T. Boyd, “Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide,” Proc. SPIE 1793, 12–18 (1992).
[Crossref]

S. Wu and H.J. Frankena, “Integrated optical sensors using micromechanical bridges and cantilevers,” Proc. SPIE 1793, 83–89 (1992).
[Crossref]

1991 (1)

R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electr. 27, 1971–1974 (1991).
[Crossref]

Adams, J. D.

J. D. Adams, B. Rogers, L. Manning, Z. Hu, T. Thundat, H. Cavazos, and S. C. Minne, “Piezoelectric self-sensing of adsorption-induced microcantilever bending,” Sens. Actuators A  126, 182–186 (2006).

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83, 3428–3430 (2003).
[Crossref]

Álvarez, M.

L. G. Carrascosa, M. Moreno, M. Álvarez, and L. M. Lechuga, “Nanomechanical biosensors: a new sensing tool,” TrAC  25, 196–206 (2006).

Amirola, J.

J. Amirola, A. Rodríguez, L. Castaňer, J. P. Santos, J. Gutiérrez, and M. C. Horrillo, “Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out,” Sens. Actuators B 111–112, 247–153 (2005).

Anderson, R.

G. P. Nordin, J. W. Noh, Y. Qian, J. Song, R. Anderson, and S. Kim, “Demonstration of in-plane photonic transduction for microcantilever arrays,” International Workshop on Nanomechanical Sensors, Montreal, Canada, May 28-30, 2007.

Andreoli, C.

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Aydinli, A.

C. Kocabas and A. Aydinli, “Design and analysis of an integrated optical sensor for scanning force microscopies,” IEEE Sens. J. 5, 411–418 (2005).
[Crossref]

Baller, M. K.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

Bashir, R.

R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas, “Microcantilever as an ultrasensitive pH microsensor,” Appl. Phys. Lett. 81, 3091–3093 (2002).
[Crossref]

Battiston, F.

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Bauer, C.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83, 3428–3430 (2003).
[Crossref]

Berger, R.

R. Raiteri, M. Grattarola, and R. Berger, “Micromechanics senses biomolecules,” Materialstoday 5, 22–29 (2002).

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Bietsch, A.

J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
[Crossref]

Boisen, A.

M. Nordstrom, D. A. Zauner, M. Calleja, J. Hubner, and A. Boisen, “Integrated optical readout for miniaturization of cantilever-based sensor system,” Appl. Phys. Lett. 91, 103512 (2007).
[Crossref]

P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, and A. Boisen, “Optimised cantilever biosensor with piezoresistive read-out,” Ultramiscroscopy 97, 371–376 (2003).
[Crossref]

X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92, 6296–6301 (2002).
[Crossref]

A. Boisen, J. Thaysen, H. Jensenius, and O. Hansen, “Environmental sensors based on micromachined cantilevers with integrated read-out,” Ultramicroscopy 82, 11–16 (2000).
[Crossref] [PubMed]

Boyd, J. T.

K. E. Burcham, G. N. D. Brabander, and J. T. Boyd, “Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide,” Proc. SPIE 1793, 12–18 (1992).
[Crossref]

Brabander, G. N. D.

K. E. Burcham, G. N. D. Brabander, and J. T. Boyd, “Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide,” Proc. SPIE 1793, 12–18 (1992).
[Crossref]

Britton, C. L.

C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith, W. L. Bryan, and J. M. Rochelle, “Multiple-input microcantilever sensors,” Ultramicroscopy 82, 17–21 (2000).
[Crossref] [PubMed]

Brugger, J.

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Bryan, W. L.

C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith, W. L. Bryan, and J. M. Rochelle, “Multiple-input microcantilever sensors,” Ultramicroscopy 82, 17–21 (2000).
[Crossref] [PubMed]

Burcham, K. E.

K. E. Burcham, G. N. D. Brabander, and J. T. Boyd, “Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide,” Proc. SPIE 1793, 12–18 (1992).
[Crossref]

Busto, V. J. C.

Calleja, M.

M. Nordstrom, D. A. Zauner, M. Calleja, J. Hubner, and A. Boisen, “Integrated optical readout for miniaturization of cantilever-based sensor system,” Appl. Phys. Lett. 91, 103512 (2007).
[Crossref]

Carrascosa, L. G.

L. G. Carrascosa, M. Moreno, M. Álvarez, and L. M. Lechuga, “Nanomechanical biosensors: a new sensing tool,” TrAC  25, 196–206 (2006).

Castaner, L.

J. Amirola, A. Rodríguez, L. Castaňer, J. P. Santos, J. Gutiérrez, and M. C. Horrillo, “Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out,” Sens. Actuators B 111–112, 247–153 (2005).

Cavazos, H.

J. D. Adams, B. Rogers, L. Manning, Z. Hu, T. Thundat, H. Cavazos, and S. C. Minne, “Piezoelectric self-sensing of adsorption-induced microcantilever bending,” Sens. Actuators A  126, 182–186 (2006).

Certa, U.

J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
[Crossref]

Cote, R. J.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen using microcantilevers,” Nat. Biotechnol. 19, 856–860 (2001).
[Crossref] [PubMed]

Craighead, H. G.

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7, 1238–1255 (2007).
[Crossref] [PubMed]

Datar, R. H.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen using microcantilevers,” Nat. Biotechnol. 19, 856–860 (2001).
[Crossref] [PubMed]

Delinger, W. D.

A. Kooser, R. L Gunter, W. D. Delinger, T. L Porter, and M. P. Eastman, “Gas sensing embedded piezoresistive microcantilever sensors,” Sens. Actuators B  99, 474–479 (2004).
[Crossref]

Despont, M.

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Dominguez, C.

Dufour, I.

L. Fadel, F. Lochon, I. Dufour, and O. Français, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14, S23–S30 (2004).
[Crossref]

Eastman, M. P.

A. Kooser, R. L Gunter, W. D. Delinger, T. L Porter, and M. P. Eastman, “Gas sensing embedded piezoresistive microcantilever sensors,” Sens. Actuators B  99, 474–479 (2004).
[Crossref]

Elibol, O.

R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas, “Microcantilever as an ultrasensitive pH microsensor,” Appl. Phys. Lett. 81, 3091–3093 (2002).
[Crossref]

Eriksen, S. C.

P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, and A. Boisen, “Optimised cantilever biosensor with piezoresistive read-out,” Ultramiscroscopy 97, 371–376 (2003).
[Crossref]

Fadel, L.

L. Fadel, F. Lochon, I. Dufour, and O. Français, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14, S23–S30 (2004).
[Crossref]

Ferrell, T. L.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83, 3428–3430 (2003).
[Crossref]

Français, O.

L. Fadel, F. Lochon, I. Dufour, and O. Français, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14, S23–S30 (2004).
[Crossref]

Frankena, H.J.

S. Wu and H.J. Frankena, “Integrated optical sensors using micromechanical bridges and cantilevers,” Proc. SPIE 1793, 83–89 (1992).
[Crossref]

Fritz, J.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

Gerber, Ch.

J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
[Crossref]

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Gimzewski, J. K.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Grange, W.

J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
[Crossref]

Grattarola, M.

R. Raiteri, M. Grattarola, and R. Berger, “Micromechanics senses biomolecules,” Materialstoday 5, 22–29 (2002).

Gunter, R. L

A. Kooser, R. L Gunter, W. D. Delinger, T. L Porter, and M. P. Eastman, “Gas sensing embedded piezoresistive microcantilever sensors,” Sens. Actuators B  99, 474–479 (2004).
[Crossref]

Güntherodt, H.-J.

J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
[Crossref]

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Gupta, A.

R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas, “Microcantilever as an ultrasensitive pH microsensor,” Appl. Phys. Lett. 81, 3091–3093 (2002).
[Crossref]

Gutiérrez, J.

J. Amirola, A. Rodríguez, L. Castaňer, J. P. Santos, J. Gutiérrez, and M. C. Horrillo, “Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out,” Sens. Actuators B 111–112, 247–153 (2005).

Hansen, K. M.

T. Thundat and K. M. Hansen, “Microcantilever biosensors,” Methods 37, 57–64 (2005).
[PubMed]

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen using microcantilevers,” Nat. Biotechnol. 19, 856–860 (2001).
[Crossref] [PubMed]

Hansen, O.

P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, and A. Boisen, “Optimised cantilever biosensor with piezoresistive read-out,” Ultramiscroscopy 97, 371–376 (2003).
[Crossref]

X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92, 6296–6301 (2002).
[Crossref]

A. Boisen, J. Thaysen, H. Jensenius, and O. Hansen, “Environmental sensors based on micromachined cantilevers with integrated read-out,” Ultramicroscopy 82, 11–16 (2000).
[Crossref] [PubMed]

Hegner, M.

J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
[Crossref]

Hilt, J. Z.

R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas, “Microcantilever as an ultrasensitive pH microsensor,” Appl. Phys. Lett. 81, 3091–3093 (2002).
[Crossref]

Horrillo, M. C.

J. Amirola, A. Rodríguez, L. Castaňer, J. P. Santos, J. Gutiérrez, and M. C. Horrillo, “Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out,” Sens. Actuators B 111–112, 247–153 (2005).

Hu, Z.

J. D. Adams, B. Rogers, L. Manning, Z. Hu, T. Thundat, H. Cavazos, and S. C. Minne, “Piezoelectric self-sensing of adsorption-induced microcantilever bending,” Sens. Actuators A  126, 182–186 (2006).

C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith, W. L. Bryan, and J. M. Rochelle, “Multiple-input microcantilever sensors,” Ultramicroscopy 82, 17–21 (2000).
[Crossref] [PubMed]

Huber, F.

J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
[Crossref]

Hubner, J.

M. Nordstrom, D. A. Zauner, M. Calleja, J. Hubner, and A. Boisen, “Integrated optical readout for miniaturization of cantilever-based sensor system,” Appl. Phys. Lett. 91, 103512 (2007).
[Crossref]

Jensenius, H.

A. Boisen, J. Thaysen, H. Jensenius, and O. Hansen, “Environmental sensors based on micromachined cantilevers with integrated read-out,” Ultramicroscopy 82, 11–16 (2000).
[Crossref] [PubMed]

Jones, M.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83, 3428–3430 (2003).
[Crossref]

Jones, R. L.

C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith, W. L. Bryan, and J. M. Rochelle, “Multiple-input microcantilever sensors,” Ultramicroscopy 82, 17–21 (2000).
[Crossref] [PubMed]

Kim, S.

Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact waveguide splitter and bend networks,” Opt. Express 16, 4981–4990 (2008).
[Crossref] [PubMed]

G. P. Nordin, J. W. Noh, and S. Kim, “In-plane photonic transduction for microcantilever sensor arrays,” Proc. SPIE 6447, 64470J (2007).
[Crossref]

G. P. Nordin, J. W. Noh, Y. Qian, J. Song, R. Anderson, and S. Kim, “Demonstration of in-plane photonic transduction for microcantilever arrays,” International Workshop on Nanomechanical Sensors, Montreal, Canada, May 28-30, 2007.

Kocabas, C.

C. Kocabas and A. Aydinli, “Design and analysis of an integrated optical sensor for scanning force microscopies,” IEEE Sens. J. 5, 411–418 (2005).
[Crossref]

Kooser, A.

A. Kooser, R. L Gunter, W. D. Delinger, T. L Porter, and M. P. Eastman, “Gas sensing embedded piezoresistive microcantilever sensors,” Sens. Actuators B  99, 474–479 (2004).
[Crossref]

Lang, H. P.

J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
[Crossref]

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Lechuga, L M.

Lechuga, L. M.

L. G. Carrascosa, M. Moreno, M. Álvarez, and L. M. Lechuga, “Nanomechanical biosensors: a new sensing tool,” TrAC  25, 196–206 (2006).

Li, T.

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of high-sensitivity cantilever and its monolithic integration with CMOS circuit,” IEEE Sens. J. 7, 489–495 (2007).
[Crossref]

Lochon, F.

L. Fadel, F. Lochon, I. Dufour, and O. Français, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14, S23–S30 (2004).
[Crossref]

Majumdar, A.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen using microcantilevers,” Nat. Biotechnol. 19, 856–860 (2001).
[Crossref] [PubMed]

Manning, L.

J. D. Adams, B. Rogers, L. Manning, Z. Hu, T. Thundat, H. Cavazos, and S. C. Minne, “Piezoelectric self-sensing of adsorption-induced microcantilever bending,” Sens. Actuators A  126, 182–186 (2006).

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83, 3428–3430 (2003).
[Crossref]

McCorkle, D.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83, 3428–3430 (2003).
[Crossref]

McKendry, R.

J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
[Crossref]

Menon, A.

J. Thaysen, A. D. Yalçinkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D: Appl. Phys. 35, 2698–2703 (2002).
[Crossref]

Meyer, E.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Mezzacasa, T.

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Minne, S. C.

J. D. Adams, B. Rogers, L. Manning, Z. Hu, T. Thundat, H. Cavazos, and S. C. Minne, “Piezoelectric self-sensing of adsorption-induced microcantilever bending,” Sens. Actuators A  126, 182–186 (2006).

Moreno, M.

L. G. Carrascosa, M. Moreno, M. Álvarez, and L. M. Lechuga, “Nanomechanical biosensors: a new sensing tool,” TrAC  25, 196–206 (2006).

Moulin, A. M.

A. M. Moulin, S. J. O’Shea, and M. E. Welland, “Microcantilever-based biosensors,” Ultramicroscopy 82, 23–31 (2000).
[Crossref] [PubMed]

Noh, J. W.

G. P. Nordin, J. W. Noh, and S. Kim, “In-plane photonic transduction for microcantilever sensor arrays,” Proc. SPIE 6447, 64470J (2007).
[Crossref]

G. P. Nordin, J. W. Noh, Y. Qian, J. Song, R. Anderson, and S. Kim, “Demonstration of in-plane photonic transduction for microcantilever arrays,” International Workshop on Nanomechanical Sensors, Montreal, Canada, May 28-30, 2007.

Nordin, G. P.

Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact waveguide splitter and bend networks,” Opt. Express 16, 4981–4990 (2008).
[Crossref] [PubMed]

G. P. Nordin, J. W. Noh, and S. Kim, “In-plane photonic transduction for microcantilever sensor arrays,” Proc. SPIE 6447, 64470J (2007).
[Crossref]

G. P. Nordin, “In-Plane Photonic Transduction as an Enabler for Microcantilever Arrays,” ASME Workshop—Nanomechanics: Sensors and Actuators, Knoxville (2005).

G. P. Nordin, J. W. Noh, Y. Qian, J. Song, R. Anderson, and S. Kim, “Demonstration of in-plane photonic transduction for microcantilever arrays,” International Workshop on Nanomechanical Sensors, Montreal, Canada, May 28-30, 2007.

Nordstrom, M.

M. Nordstrom, D. A. Zauner, M. Calleja, J. Hubner, and A. Boisen, “Integrated optical readout for miniaturization of cantilever-based sensor system,” Appl. Phys. Lett. 91, 103512 (2007).
[Crossref]

O’Shea, S. J.

A. M. Moulin, S. J. O’Shea, and M. E. Welland, “Microcantilever-based biosensors,” Ultramicroscopy 82, 23–31 (2000).
[Crossref] [PubMed]

Oden, P. I.

C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith, W. L. Bryan, and J. M. Rochelle, “Multiple-input microcantilever sensors,” Ultramicroscopy 82, 17–21 (2000).
[Crossref] [PubMed]

Parrott, G.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83, 3428–3430 (2003).
[Crossref]

Peppas, N. A.

R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas, “Microcantilever as an ultrasensitive pH microsensor,” Appl. Phys. Lett. 81, 3091–3093 (2002).
[Crossref]

Peterman, K.

R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electr. 27, 1971–1974 (1991).
[Crossref]

Plaza, J. A.

Porter, T. L

A. Kooser, R. L Gunter, W. D. Delinger, T. L Porter, and M. P. Eastman, “Gas sensing embedded piezoresistive microcantilever sensors,” Sens. Actuators B  99, 474–479 (2004).
[Crossref]

Qian, Y.

Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact waveguide splitter and bend networks,” Opt. Express 16, 4981–4990 (2008).
[Crossref] [PubMed]

G. P. Nordin, J. W. Noh, Y. Qian, J. Song, R. Anderson, and S. Kim, “Demonstration of in-plane photonic transduction for microcantilever arrays,” International Workshop on Nanomechanical Sensors, Montreal, Canada, May 28-30, 2007.

Raiteri, R.

R. Raiteri, M. Grattarola, and R. Berger, “Micromechanics senses biomolecules,” Materialstoday 5, 22–29 (2002).

Ramseyer, J.-P.

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Rasmussen, P. A.

P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, and A. Boisen, “Optimised cantilever biosensor with piezoresistive read-out,” Ultramiscroscopy 97, 371–376 (2003).
[Crossref]

Rochelle, J. M.

C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith, W. L. Bryan, and J. M. Rochelle, “Multiple-input microcantilever sensors,” Ultramicroscopy 82, 17–21 (2000).
[Crossref] [PubMed]

Rodríguez, A.

J. Amirola, A. Rodríguez, L. Castaňer, J. P. Santos, J. Gutiérrez, and M. C. Horrillo, “Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out,” Sens. Actuators B 111–112, 247–153 (2005).

Rogers, B.

J. D. Adams, B. Rogers, L. Manning, Z. Hu, T. Thundat, H. Cavazos, and S. C. Minne, “Piezoelectric self-sensing of adsorption-induced microcantilever bending,” Sens. Actuators A  126, 182–186 (2006).

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83, 3428–3430 (2003).
[Crossref]

Rothuizen, H.

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

Sant, T.

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83, 3428–3430 (2003).
[Crossref]

Santos, J. P.

J. Amirola, A. Rodríguez, L. Castaňer, J. P. Santos, J. Gutiérrez, and M. C. Horrillo, “Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out,” Sens. Actuators B 111–112, 247–153 (2005).

Scandella, L.

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electr. 27, 1971–1974 (1991).
[Crossref]

Sharp, S. L.

T. Thundat, E. A. Watcher, S. L. Sharp, and R. J. Warmack, “Detection of mercury vapor using resonating cantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
[Crossref]

Smith, S. F.

C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith, W. L. Bryan, and J. M. Rochelle, “Multiple-input microcantilever sensors,” Ultramicroscopy 82, 17–21 (2000).
[Crossref] [PubMed]

Song, J.

Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact waveguide splitter and bend networks,” Opt. Express 16, 4981–4990 (2008).
[Crossref] [PubMed]

G. P. Nordin, J. W. Noh, Y. Qian, J. Song, R. Anderson, and S. Kim, “Demonstration of in-plane photonic transduction for microcantilever arrays,” International Workshop on Nanomechanical Sensors, Montreal, Canada, May 28-30, 2007.

Soref, R. A.

R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electr. 27, 1971–1974 (1991).
[Crossref]

Tang, Y.

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of high-sensitivity cantilever and its monolithic integration with CMOS circuit,” IEEE Sens. J. 7, 489–495 (2007).
[Crossref]

Thaysen, J.

P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, and A. Boisen, “Optimised cantilever biosensor with piezoresistive read-out,” Ultramiscroscopy 97, 371–376 (2003).
[Crossref]

J. Thaysen, A. D. Yalçinkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D: Appl. Phys. 35, 2698–2703 (2002).
[Crossref]

X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92, 6296–6301 (2002).
[Crossref]

A. Boisen, J. Thaysen, H. Jensenius, and O. Hansen, “Environmental sensors based on micromachined cantilevers with integrated read-out,” Ultramicroscopy 82, 11–16 (2000).
[Crossref] [PubMed]

Thundat, T.

J. D. Adams, B. Rogers, L. Manning, Z. Hu, T. Thundat, H. Cavazos, and S. C. Minne, “Piezoelectric self-sensing of adsorption-induced microcantilever bending,” Sens. Actuators A  126, 182–186 (2006).

T. Thundat and K. M. Hansen, “Microcantilever biosensors,” Methods 37, 57–64 (2005).
[PubMed]

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen using microcantilevers,” Nat. Biotechnol. 19, 856–860 (2001).
[Crossref] [PubMed]

T. Thundat, E. A. Watcher, S. L. Sharp, and R. J. Warmack, “Detection of mercury vapor using resonating cantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
[Crossref]

Vettiger, P.

J. Thaysen, A. D. Yalçinkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D: Appl. Phys. 35, 2698–2703 (2002).
[Crossref]

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Waggoner, P. S.

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7, 1238–1255 (2007).
[Crossref] [PubMed]

Wang, W.

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of high-sensitivity cantilever and its monolithic integration with CMOS circuit,” IEEE Sens. J. 7, 489–495 (2007).
[Crossref]

Warmack, R. J.

C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith, W. L. Bryan, and J. M. Rochelle, “Multiple-input microcantilever sensors,” Ultramicroscopy 82, 17–21 (2000).
[Crossref] [PubMed]

T. Thundat, E. A. Watcher, S. L. Sharp, and R. J. Warmack, “Detection of mercury vapor using resonating cantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
[Crossref]

Watcher, E. A.

T. Thundat, E. A. Watcher, S. L. Sharp, and R. J. Warmack, “Detection of mercury vapor using resonating cantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
[Crossref]

Welland, M. E.

A. M. Moulin, S. J. O’Shea, and M. E. Welland, “Microcantilever-based biosensors,” Ultramicroscopy 82, 23–31 (2000).
[Crossref] [PubMed]

Wu, G.

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen using microcantilevers,” Nat. Biotechnol. 19, 856–860 (2001).
[Crossref] [PubMed]

Wu, S.

S. Wu and H.J. Frankena, “Integrated optical sensors using micromechanical bridges and cantilevers,” Proc. SPIE 1793, 83–89 (1992).
[Crossref]

Yalçinkaya, A. D.

J. Thaysen, A. D. Yalçinkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D: Appl. Phys. 35, 2698–2703 (2002).
[Crossref]

Yu, X.

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of high-sensitivity cantilever and its monolithic integration with CMOS circuit,” IEEE Sens. J. 7, 489–495 (2007).
[Crossref]

X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92, 6296–6301 (2002).
[Crossref]

Zauner, D. A.

M. Nordstrom, D. A. Zauner, M. Calleja, J. Hubner, and A. Boisen, “Integrated optical readout for miniaturization of cantilever-based sensor system,” Appl. Phys. Lett. 91, 103512 (2007).
[Crossref]

Zhang, H.

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of high-sensitivity cantilever and its monolithic integration with CMOS circuit,” IEEE Sens. J. 7, 489–495 (2007).
[Crossref]

Zhang, J.

J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
[Crossref]

Zinoviev, K.

Appl. Phys. (1)

H. P. Lang, R. Berger, F. Battiston, J.-P. Ramseyer, E. Meyer, C. Andreoli, J. Brugger, P. Vettiger, M. Despont, T. Mezzacasa, L. Scandella, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors,” Appl. Phys. A  66, S61–S64 (1998).
[Crossref]

Appl. Phys. Lett. (4)

J. D. Adams, G. Parrott, C. Bauer, T. Sant, L. Manning, M. Jones, B. Rogers, D. McCorkle, and T. L. Ferrell, “Nanowatt chemical vapor detection with a self-sensing, piezoelectric microcantilever array,” Appl. Phys. Lett. 83, 3428–3430 (2003).
[Crossref]

T. Thundat, E. A. Watcher, S. L. Sharp, and R. J. Warmack, “Detection of mercury vapor using resonating cantilevers,” Appl. Phys. Lett. 66, 1695–1697 (1995).
[Crossref]

R. Bashir, J. Z. Hilt, O. Elibol, A. Gupta, and N. A. Peppas, “Microcantilever as an ultrasensitive pH microsensor,” Appl. Phys. Lett. 81, 3091–3093 (2002).
[Crossref]

M. Nordstrom, D. A. Zauner, M. Calleja, J. Hubner, and A. Boisen, “Integrated optical readout for miniaturization of cantilever-based sensor system,” Appl. Phys. Lett. 91, 103512 (2007).
[Crossref]

IEEE J. Quantum Electr. (1)

R. A. Soref, J. Schmidtchen, and K. Peterman, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electr. 27, 1971–1974 (1991).
[Crossref]

IEEE Sens. J. (2)

X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang, “Design of high-sensitivity cantilever and its monolithic integration with CMOS circuit,” IEEE Sens. J. 7, 489–495 (2007).
[Crossref]

C. Kocabas and A. Aydinli, “Design and analysis of an integrated optical sensor for scanning force microscopies,” IEEE Sens. J. 5, 411–418 (2005).
[Crossref]

J. Appl. Phys. (1)

X. Yu, J. Thaysen, O. Hansen, and A. Boisen, “Optimization of sensitivity and noise in piezoresistive cantilevers,” J. Appl. Phys. 92, 6296–6301 (2002).
[Crossref]

J. Lightwave Technol. (1)

J. Micromech. Microeng. (1)

L. Fadel, F. Lochon, I. Dufour, and O. Français, “Chemical sensing: millimeter size resonant microcantilever performance,” J. Micromech. Microeng. 14, S23–S30 (2004).
[Crossref]

J. Phys. D: Appl. Phys. (1)

J. Thaysen, A. D. Yalçinkaya, P. Vettiger, and A. Menon, “Polymer-based stress sensor with integrated readout,” J. Phys. D: Appl. Phys. 35, 2698–2703 (2002).
[Crossref]

Lab Chip (1)

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip 7, 1238–1255 (2007).
[Crossref] [PubMed]

Materialstoday (1)

R. Raiteri, M. Grattarola, and R. Berger, “Micromechanics senses biomolecules,” Materialstoday 5, 22–29 (2002).

Methods (1)

T. Thundat and K. M. Hansen, “Microcantilever biosensors,” Methods 37, 57–64 (2005).
[PubMed]

Nat. Biotechnol. (1)

G. Wu, R. H. Datar, K. M. Hansen, T. Thundat, R. J. Cote, and A. Majumdar, “Bioassay of prostate-specific antigen using microcantilevers,” Nat. Biotechnol. 19, 856–860 (2001).
[Crossref] [PubMed]

Nature Nanotech. (1)

J. Zhang, H. P. Lang, F. Huber, A. Bietsch, W. Grange, U. Certa, R. McKendry, H.-J. Güntherodt, M. Hegner, and Ch. Gerber, “Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA,” Nature Nanotech. 1, 214–220 (2006).
[Crossref]

Opt. Express (1)

Proc. SPIE (3)

K. E. Burcham, G. N. D. Brabander, and J. T. Boyd, “Micromachined silicon cantilever beam accelerometer incorporating an integrated optical waveguide,” Proc. SPIE 1793, 12–18 (1992).
[Crossref]

S. Wu and H.J. Frankena, “Integrated optical sensors using micromechanical bridges and cantilevers,” Proc. SPIE 1793, 83–89 (1992).
[Crossref]

G. P. Nordin, J. W. Noh, and S. Kim, “In-plane photonic transduction for microcantilever sensor arrays,” Proc. SPIE 6447, 64470J (2007).
[Crossref]

Science (1)

J. Fritz, M. K. Baller, H. P. Lang, H. Rothuizen, P. Vettiger, E. Meyer, H.-J. Güntherodt, Ch. Gerber, and J. K. Gimzewski, “Translating biomolecular recognition into nanomechanics,” Science 288, 316–318 (2000).
[Crossref] [PubMed]

Sens. Actuators (3)

J. D. Adams, B. Rogers, L. Manning, Z. Hu, T. Thundat, H. Cavazos, and S. C. Minne, “Piezoelectric self-sensing of adsorption-induced microcantilever bending,” Sens. Actuators A  126, 182–186 (2006).

J. Amirola, A. Rodríguez, L. Castaňer, J. P. Santos, J. Gutiérrez, and M. C. Horrillo, “Micromachined silicon microcantilevers for gas sensing applications with capacitive read-out,” Sens. Actuators B 111–112, 247–153 (2005).

A. Kooser, R. L Gunter, W. D. Delinger, T. L Porter, and M. P. Eastman, “Gas sensing embedded piezoresistive microcantilever sensors,” Sens. Actuators B  99, 474–479 (2004).
[Crossref]

Ultramicroscopy (3)

C. L. Britton, R. L. Jones, P. I. Oden, Z. Hu, R. J. Warmack, S. F. Smith, W. L. Bryan, and J. M. Rochelle, “Multiple-input microcantilever sensors,” Ultramicroscopy 82, 17–21 (2000).
[Crossref] [PubMed]

A. Boisen, J. Thaysen, H. Jensenius, and O. Hansen, “Environmental sensors based on micromachined cantilevers with integrated read-out,” Ultramicroscopy 82, 11–16 (2000).
[Crossref] [PubMed]

A. M. Moulin, S. J. O’Shea, and M. E. Welland, “Microcantilever-based biosensors,” Ultramicroscopy 82, 23–31 (2000).
[Crossref] [PubMed]

Ultramiscroscopy (1)

P. A. Rasmussen, J. Thaysen, O. Hansen, S. C. Eriksen, and A. Boisen, “Optimised cantilever biosensor with piezoresistive read-out,” Ultramiscroscopy 97, 371–376 (2003).
[Crossref]

Other (3)

L. G. Carrascosa, M. Moreno, M. Álvarez, and L. M. Lechuga, “Nanomechanical biosensors: a new sensing tool,” TrAC  25, 196–206 (2006).

G. P. Nordin, “In-Plane Photonic Transduction as an Enabler for Microcantilever Arrays,” ASME Workshop—Nanomechanics: Sensors and Actuators, Knoxville (2005).

G. P. Nordin, J. W. Noh, Y. Qian, J. Song, R. Anderson, and S. Kim, “Demonstration of in-plane photonic transduction for microcantilever arrays,” International Workshop on Nanomechanical Sensors, Montreal, Canada, May 28-30, 2007.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a). Schematic layout of photonic microcantilever with single mode receiver waveguide. (b). Waveguide cross section. (c). Simulation result for the normalized power in the output waveguide as a function of microcantilever deflection.

Fig. 2.
Fig. 2.

(a). Schematic 3-D layout of a photonic microcantilever with asymmetric multimode receiver waveguide. (b). Simulation results for output power as a function of microcantilever deflection. (c). Differential signal.

Fig. 3.
Fig. 3.

(a). Schematic layout of a test structure with photonic microcantilever having two single mode waveguides. The lower waveguide is for reference purposes only. SEM images of (b) a waveguide microcantilever fabricated on a SOI wafer and (c) close up of the microcantilever, strip-loaded multimode receiving waveguide, and 300 nm gap between them.

Fig. 4.
Fig. 4.

(a). Schematic of the experimental set-up using thermally treated SU-8 to bend the cantilever beam up. (b) SEM image of a cantilever beam bent up by a stressed SU-8 patch. (c) CCD camera image during an experiment to demonstrate the photonic waveguide microcantilever transduction mechanism.

Fig. 5.
Fig. 5.

(a). Measured output power as a function of piezoactuator position. (b) P1 and P2 as a function of deflection of the microcantilever converted from the piezoactuator position.

Fig. 6.
Fig. 6.

(a). Definition of counter-clockwise (ccw) and clockwise (cw) rotation, (b) Offset and contrast as a function of rotation angle of the microcantilever about the z-axis.

Fig. 7.
Fig. 7.

Simulation result of input waveguide microcantilever tilted 3.3 degree ccw direction about z-axis.

Fig. 8.
Fig. 8.

Differential signals tilted 3.3 degree to ccw direction as different ratios of P1/P2

Fig. 9.
Fig. 9.

Comparison with the simulation and measurement results

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η = P 2 P 1 P 2 + P 1 ,
S = Δη η 0 1 Δz
MDD = δη m
δη = 2 ( δP 1 P 2 ) 2 + ( δP 2 P 1 ) 2 ( P 1 + P 2 ) 2

Metrics