Abstract

Pulse breaking recovery is numerically demonstrated in dispersion-managed fiber lasers designed for generating high peak power ultrashort optical pulses. It is shown that due to the cavity boundary condition, local pulse breaking can be absorbed by the pulse propagation in erbium-doped fiber with normal dispersion. Consequently, high peak power transform-limited pulses beyond the gain-bandwidth limitation could be generated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]
  2. F. . Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  3. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression," Appl. Phys. Lett. 90, 051102 (2007).
    [CrossRef]
  4. M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
    [CrossRef] [PubMed]
  5. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, "Optical wave breaking of pulses in nonlinear optical fibers," Opt. Lett. 10, 457-459 (1985).
    [CrossRef] [PubMed]
  6. D. Anderson, M. Desaix, M. Lisak, and M. L. Quiroga-Teixeiro, "Wave breaking in nonlinear-optical fibers," J. Opt. Soc. Am. B 9, 1358-1361 (1992).
    [CrossRef]
  7. L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, "Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers," Opt. Lett. 8, 289-291 (1983).
    [CrossRef] [PubMed]
  8. J. C. Bronski and J. N. Kutz, "Numerical simulation of the semi-classical limit of the focusing nonlinear Schrödinger equation," Phys. Lett. 254, 325-336 (1999).
    [CrossRef]
  9. D. Krylov, L. Leng, K. Bergman, J. C. Bronski, and J. N. Kutz, "Observation of the breakup of a prechirped N-soliton in an optical fiber," Opt. Lett. 24, 1191-1193 (1999).
    [CrossRef]
  10. D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
    [CrossRef]
  11. L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Opt. Express,  15, 2145-2150 (2007).
    [CrossRef] [PubMed]

2007 (2)

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression," Appl. Phys. Lett. 90, 051102 (2007).
[CrossRef]

L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Opt. Express,  15, 2145-2150 (2007).
[CrossRef] [PubMed]

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

2004 (1)

F. . Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

2000 (1)

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

1999 (2)

J. C. Bronski and J. N. Kutz, "Numerical simulation of the semi-classical limit of the focusing nonlinear Schrödinger equation," Phys. Lett. 254, 325-336 (1999).
[CrossRef]

D. Krylov, L. Leng, K. Bergman, J. C. Bronski, and J. N. Kutz, "Observation of the breakup of a prechirped N-soliton in an optical fiber," Opt. Lett. 24, 1191-1193 (1999).
[CrossRef]

1993 (1)

1992 (1)

1985 (1)

1983 (1)

Anderson, D.

Bergman, K.

Bronski, J. C.

D. Krylov, L. Leng, K. Bergman, J. C. Bronski, and J. N. Kutz, "Observation of the breakup of a prechirped N-soliton in an optical fiber," Opt. Lett. 24, 1191-1193 (1999).
[CrossRef]

J. C. Bronski and J. N. Kutz, "Numerical simulation of the semi-classical limit of the focusing nonlinear Schrödinger equation," Phys. Lett. 254, 325-336 (1999).
[CrossRef]

Buckley, J. R.

F. . Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Cheng, T. H.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression," Appl. Phys. Lett. 90, 051102 (2007).
[CrossRef]

Clark, W. G.

F. . Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Desaix, M.

Dudley, J. M.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Fu, X. Q.

Gordon, J. P.

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Haus, H. A.

Ilday, F. .

F. . Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Ippen, E. P.

Johnson, A. M.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Krylov, D.

Kutz, J. N.

J. C. Bronski and J. N. Kutz, "Numerical simulation of the semi-classical limit of the focusing nonlinear Schrödinger equation," Phys. Lett. 254, 325-336 (1999).
[CrossRef]

D. Krylov, L. Leng, K. Bergman, J. C. Bronski, and J. N. Kutz, "Observation of the breakup of a prechirped N-soliton in an optical fiber," Opt. Lett. 24, 1191-1193 (1999).
[CrossRef]

Leng, L.

Lisak, M.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Lu, C.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression," Appl. Phys. Lett. 90, 051102 (2007).
[CrossRef]

Mollenauer, L. F.

Nelson, L. E.

Quiroga-Teixeiro, M. L.

Stolen, R. H.

Tamura, K.

Tang, D. Y.

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression," Appl. Phys. Lett. 90, 051102 (2007).
[CrossRef]

L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Opt. Express,  15, 2145-2150 (2007).
[CrossRef] [PubMed]

D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Thomsen, B. C.

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Tomlinson, W. J.

Wen, S. C.

Wise, F. W.

F. . Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Wu, J.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Zhao, L. M.

L. M. Zhao, D. Y. Tang, J. Wu, X. Q. Fu, and S. C. Wen, "Noise-like pulse in a gain-guided soliton fiber laser," Opt. Express,  15, 2145-2150 (2007).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression," Appl. Phys. Lett. 90, 051102 (2007).
[CrossRef]

D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Ultrashort pulse generation in lasers by nonlinear pulse amplification and compression," Appl. Phys. Lett. 90, 051102 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (4)

Phys. Lett. (1)

J. C. Bronski and J. N. Kutz, "Numerical simulation of the semi-classical limit of the focusing nonlinear Schrödinger equation," Phys. Lett. 254, 325-336 (1999).
[CrossRef]

Phys. Rev. A (1)

D. Y. Tang, L. M. Zhao, B. Zhao, A. Q. Liu, "Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers," Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

F. . Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

M. E. Fermann, V. I. Kruglov, B. C. Thomsen, J. M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010-6013 (2000).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: MOV (731 KB)     
» Media 2: MOV (442 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic of the fiber laser. PC: polarization controller; SMF: single-mode fiber; EDF: erbium-doped fiber.

Fig. 2.
Fig. 2.

Mathematically simplified laser cavity.

Fig. 3.
Fig. 3.

Simulation results of gain-guided solitons under different pump strength at Φ PC =1.7π. (a) autocorrelation trace, (b) optical spectrum.

Fig. 4.
Fig. 4.

Numerically calculated pulse evolution in cavity. (a) Φ PC =1.7π, G=1300 (732KB) [Media 1]; (b) Φ PC =1.85π, G=1400 (442KB). [Media 2]

Tables (1)

Tables Icon

Table 1. Parameters used in the simulations

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

{ u z = iβu + δ u t ik ́ ́ 2 2 u t 2 + ik ́ ́ ́ 6 3 u t 3 + i γ ( u 2 + 2 3 v 2 ) u + i γ 3 v 2 u * + g 2 u + g 2 Ω g 2 2 u t 2 v z = iβv δ v t ik ́ ́ 2 2 v t 2 + ik ́ ́ ́ 6 3 v t 3 + i γ ( v 2 + 2 3 u 2 ) v + i γ 3 u 2 v * + g 2 v + g 2 Ω g 2 2 v t 2
g = G exp [ ( u 2 + v 2 ) dt P sat ]
T = sin 2 θ sin 2 φ + cos 2 θ cos 2 φ + 1 2 sin 2 θ sin 2 φ cos [ Φ l + Φ nl ]
T = sin 2 θ sin 2 φ + cos 2 θ cos 2 φ + 1 2 sin 2 θ sin 2 φ cos [ Φ PC + Φ Fiber ]

Metrics