Abstract

In order to reduce the cost for delivering future broadband services, network operators are inclined to simplify the network architectures by integrating the metro and access networks into a single system. Hence, extended reach passive optical networks (ER-PONs) have been proposed. ER-PON usually has four new features: high data rate in both upstream and downstream signals (>1 Gb/s); reach extension to >100 km; a high split ratio (>100); and using wavelength division multiplexing (WDM). In this work, we propose and demonstrate a highly spectral efficient ER-PON using 4 Gb/s OFDM-QAM for both upstream and downstream signals, while achieving a high split-ratio of 256. The ER-PON employs optical components optimized for GPON (bandwidth of ∼1GHz) and reaches 100 km without dispersion compensation. Numerical analysis using 16, 64 and 256-QAM OFDM are also performed to study the back-to-back receiver sensitivities and power penalties at different electrical driving ratios.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. P. Shea, A. D. Ellis, D. B. Payne, R. P. Davey, and J. E. Mitchell "10 Gbit/s PON with 100 km reach and x1024 split," Proc. of ECOC, Rimini, Italy, 2003, Paper We.P.147.
  2. G. Talli and P. D. Townsend, "Hybrid DWDM-TDM long-reach PON for next-generation optical access," J. Lightwave. Technol. 24, 2827-2834 (2006).
    [CrossRef]
  3. P. D. Townsend, G. Talli, C. W. Chow, E. M. MacHale, C. Antony, R. Davey, T. De Ridder, X. Z. Qiu, P. Ossieur, H. G. Krimmel, D. W. Smith, I. Lealman, A. Poustie, S. Randel, and H. Rohde, "Long Reach Passive Optical Networks," IEEE LEOS Annual Meeting, Invited Paper, Florida, USA, 2007.
  4. Y. M. Lin, "Demonstration and design of high spectral efficiency 4Gb/s OFDM system in passive optical networks," Proc. of OFC, 2007, Paper OThD7.
  5. J. M. Tang and K. Alan, "30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation," J. Lightwave. Technol. 24, 2318-2326 (2006).
    [CrossRef]
  6. N. E. Jolley, H. kee, R. Rickard, J. Tang, and K. Cordina, "Generation and propagation of a 1550nm 10Gbit/s optical orthogonal frequency division multiplexed signal over 1000m of multimode fiber using a directly modulated DFB," Proc. of OFC, 2005, Paper OFP3.
  7. V. J. Urick, J. X. Qiu, and F. Bucholtz, "Wide-band QAM-over-fiber using phase modulation and interferometric demodulation," IEEE Photon. Technol. Lett. 16, 2374-2376 (2004).
    [CrossRef]

2006 (2)

G. Talli and P. D. Townsend, "Hybrid DWDM-TDM long-reach PON for next-generation optical access," J. Lightwave. Technol. 24, 2827-2834 (2006).
[CrossRef]

J. M. Tang and K. Alan, "30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation," J. Lightwave. Technol. 24, 2318-2326 (2006).
[CrossRef]

2004 (1)

V. J. Urick, J. X. Qiu, and F. Bucholtz, "Wide-band QAM-over-fiber using phase modulation and interferometric demodulation," IEEE Photon. Technol. Lett. 16, 2374-2376 (2004).
[CrossRef]

Alan, K.

J. M. Tang and K. Alan, "30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation," J. Lightwave. Technol. 24, 2318-2326 (2006).
[CrossRef]

Bucholtz, F.

V. J. Urick, J. X. Qiu, and F. Bucholtz, "Wide-band QAM-over-fiber using phase modulation and interferometric demodulation," IEEE Photon. Technol. Lett. 16, 2374-2376 (2004).
[CrossRef]

Qiu, J. X.

V. J. Urick, J. X. Qiu, and F. Bucholtz, "Wide-band QAM-over-fiber using phase modulation and interferometric demodulation," IEEE Photon. Technol. Lett. 16, 2374-2376 (2004).
[CrossRef]

Talli, G.

G. Talli and P. D. Townsend, "Hybrid DWDM-TDM long-reach PON for next-generation optical access," J. Lightwave. Technol. 24, 2827-2834 (2006).
[CrossRef]

Tang, J. M.

J. M. Tang and K. Alan, "30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation," J. Lightwave. Technol. 24, 2318-2326 (2006).
[CrossRef]

Townsend, P. D.

G. Talli and P. D. Townsend, "Hybrid DWDM-TDM long-reach PON for next-generation optical access," J. Lightwave. Technol. 24, 2827-2834 (2006).
[CrossRef]

Urick, V. J.

V. J. Urick, J. X. Qiu, and F. Bucholtz, "Wide-band QAM-over-fiber using phase modulation and interferometric demodulation," IEEE Photon. Technol. Lett. 16, 2374-2376 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

V. J. Urick, J. X. Qiu, and F. Bucholtz, "Wide-band QAM-over-fiber using phase modulation and interferometric demodulation," IEEE Photon. Technol. Lett. 16, 2374-2376 (2004).
[CrossRef]

J. Lightwave. Technol. (2)

G. Talli and P. D. Townsend, "Hybrid DWDM-TDM long-reach PON for next-generation optical access," J. Lightwave. Technol. 24, 2827-2834 (2006).
[CrossRef]

J. M. Tang and K. Alan, "30-Gb/s signal transmission over 40-km directly modulated DFB-laser-based single-mode-fiber links without optical amplification and dispersion compensation," J. Lightwave. Technol. 24, 2318-2326 (2006).
[CrossRef]

Other (4)

N. E. Jolley, H. kee, R. Rickard, J. Tang, and K. Cordina, "Generation and propagation of a 1550nm 10Gbit/s optical orthogonal frequency division multiplexed signal over 1000m of multimode fiber using a directly modulated DFB," Proc. of OFC, 2005, Paper OFP3.

P. D. Townsend, G. Talli, C. W. Chow, E. M. MacHale, C. Antony, R. Davey, T. De Ridder, X. Z. Qiu, P. Ossieur, H. G. Krimmel, D. W. Smith, I. Lealman, A. Poustie, S. Randel, and H. Rohde, "Long Reach Passive Optical Networks," IEEE LEOS Annual Meeting, Invited Paper, Florida, USA, 2007.

Y. M. Lin, "Demonstration and design of high spectral efficiency 4Gb/s OFDM system in passive optical networks," Proc. of OFC, 2007, Paper OThD7.

D. P. Shea, A. D. Ellis, D. B. Payne, R. P. Davey, and J. E. Mitchell "10 Gbit/s PON with 100 km reach and x1024 split," Proc. of ECOC, Rimini, Italy, 2003, Paper We.P.147.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic of OFDM-QAM over WDM ER-PON. S/P: serial to parallel, P/S: parallel to serial, IFFT: inverse fast Fourier transform, FFT: fast Fourier transform, DAC: digital analog converter, ADC: analog digital converter, EAM: electroabsorption modulator, SMF: single mode fiber.

Fig. 2.
Fig. 2.

Measured BER of downstream and upstream OFDM-QAM signals at different transmission distances. Inset: measured RF spectrum of the 4Gb/s OFDM-QAM signal, occupying 1GHz bandwidth.

Fig. 3.
Fig. 3.

Measured constellation diagrams of (a) downstream and (b) upstream signals with 100km SMF transmission without dispersion compensation.

Fig. 4.
Fig. 4.

Measured BER at different PON split ratio for upstream and downstream signals.

Fig. 5.
Fig. 5.

Simulated Rx sensitivity of different OFDM-QAM. The aggregated data rates of 16, 64 and 256-QAM OFDM signals are 4 Gb/s, 6 Gb/s and 8 Gb/s respectively for both 16 and 32 subcarriers.

Fig. 6.
Fig. 6.

Simulated power penalty at different Vappl/Vlinear.

Metrics