Abstract

Polarization-insensitive wavelength conversion, as well as the conversion of return-to-zero (RZ) ON-OFF keying (RZ-OOK) to RZ binary phase-shift keying (RZ-BPSK), has been simultaneously achieved at 40 Gb/s for the first time by cross-phase modulation (XPM) in a highly birefringent, nonlinear photonic crystal fiber (PCF). A 10−9-BER receiver sensitivity conversion penalty of < 3 dB was achieved for a polarization scrambled, 40 Gb/s 25%-RZ-OOK pump, when the 40 Gb/s RZ probe was launched at 45° with respect to the birefringence axes of the PCF and when the pump-probe detuning was greater than about 6 nm.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical amplitude-phase transmultiplexing of RZ-OOK and RZ-BPSK to RZ-QPSK by polarization-insensitive XPM using a nonlinear birefringent AlGaAs waveguide

B. M. Cannon, T. Mahmood, W. Astar, P. Apiratikul, G. Porkolab, P. Boudra, T. Mohsenin, C. J. K. Richardson, and G. M. Carter
Opt. Express 21(17) 19885-19899 (2013)

Theoretical investigation of polarization-insensitive data format conversion of RZ-OOK to RZ-BPSK in a nonlinear birefringent fiber

C. C. Wei, W. Astar, J. Chen, Y.-J. Chen, and G. M. Carter
Opt. Express 17(6) 4306-4316 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. Mishina, A. Maruta, S. Mitani, T. Miyahara, K. Ishida, K. Shimizu, T. Hatta, K. Motoshima, and K.-I. Kitayama, “NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter,” J. Lightwave Technol. 24, 3751–3758 (2006).
    [Crossref]
  2. W. Astar, A. S. Lenihan, and G. M. Carter, “Performance of DBPSK in a 5 × 10 Gb/s mixed modulation format Raman/EDFA WDM system,” IEEE Photon. Technol. Lett. 17, 2766–2768 (2005).
    [Crossref]
  3. W. Astar and G. M. Carter, “10 Gbit/s RZ-OOK to RZ-BPSK format conversion using SOA and synchronous pulse carver” Electron. Lett. 44, 369–370 (2008).
    [Crossref]
  4. K. Mishina, S. Kitagawa, and A. Maruta, “All-optical modulation format conversion from on-off-keying to multiple-level phase-shift-keying based on nonlinearity in optical fiber,” Opt. Express 15, 8444–8453 (2007),http://www.opticsexpress.org/abstract.cfm?uri=OE-15-13-8444.
    [Crossref] [PubMed]
  5. C. D. Poole, “Measurement of polarization-mode dispersion in single-mode fibers with random mode coupling,” Opt. Lett. 14, 523–525 (1989).
    [Crossref] [PubMed]
  6. K. P. Hansen, J. R. Folkenberg, C. Peurecheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PD2-1.
  7. A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-Gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 1329–1331 (2006).
    [Crossref]
  8. B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 14, 1066–1068 (1992).
    [Crossref]
  9. K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
    [Crossref]
  10. J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
    [Crossref]
  11. K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12, 1916–1920 (1994).
    [Crossref]
  12. T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett. 17, 1052–1054 (2005).
    [Crossref]
  13. T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
    [Crossref]
  14. T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express 13, 5409–5415 (2005),http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5409.
    [Crossref] [PubMed]
  15. A. S. Lenihan and G. M. Carter, “Polarization-insensitive wavelength conversion at 40 Gb/s using birefringent nonlinear fiber,” in Conf. Proc. of Conference on Lasers and Electro-Optics (CLEO), 2007, paper CThAA2.
    [Crossref]
  16. S. Kumar, A. Selvarajan, and G. Anand, “Nonlinear propagation of two optical pulses of two different frequencies in birefringent fibers”, J. Opt. Soc. Am. B 11, 810–817 (1994).
    [Crossref]
  17. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001), pp. 238–277.
  18. C. R. Menyuk, “Nonlinear pulse-propagation in birefringent optical fiber,” IEEE J. Quantum Electron. 23, 174–176 (1987).
    [Crossref]
  19. P. J. Winzer and H. Kim, “Degradations in Balanced DPSK Receivers,” IEEE Photon. Technol. Lett. 15, 1282–1284 (2003).
    [Crossref]
  20. N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PDP26.

2008 (1)

W. Astar and G. M. Carter, “10 Gbit/s RZ-OOK to RZ-BPSK format conversion using SOA and synchronous pulse carver” Electron. Lett. 44, 369–370 (2008).
[Crossref]

2007 (1)

2006 (2)

K. Mishina, A. Maruta, S. Mitani, T. Miyahara, K. Ishida, K. Shimizu, T. Hatta, K. Motoshima, and K.-I. Kitayama, “NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter,” J. Lightwave Technol. 24, 3751–3758 (2006).
[Crossref]

A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-Gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 1329–1331 (2006).
[Crossref]

2005 (4)

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]

W. Astar, A. S. Lenihan, and G. M. Carter, “Performance of DBPSK in a 5 × 10 Gb/s mixed modulation format Raman/EDFA WDM system,” IEEE Photon. Technol. Lett. 17, 2766–2768 (2005).
[Crossref]

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett. 17, 1052–1054 (2005).
[Crossref]

T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express 13, 5409–5415 (2005),http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5409.
[Crossref] [PubMed]

2003 (2)

P. J. Winzer and H. Kim, “Degradations in Balanced DPSK Receivers,” IEEE Photon. Technol. Lett. 15, 1282–1284 (2003).
[Crossref]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

1994 (2)

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12, 1916–1920 (1994).
[Crossref]

S. Kumar, A. Selvarajan, and G. Anand, “Nonlinear propagation of two optical pulses of two different frequencies in birefringent fibers”, J. Opt. Soc. Am. B 11, 810–817 (1994).
[Crossref]

1993 (1)

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
[Crossref]

1992 (1)

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 14, 1066–1068 (1992).
[Crossref]

1989 (1)

1987 (1)

C. R. Menyuk, “Nonlinear pulse-propagation in birefringent optical fiber,” IEEE J. Quantum Electron. 23, 174–176 (1987).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001), pp. 238–277.

Anand, G.

Astar, W.

W. Astar and G. M. Carter, “10 Gbit/s RZ-OOK to RZ-BPSK format conversion using SOA and synchronous pulse carver” Electron. Lett. 44, 369–370 (2008).
[Crossref]

W. Astar, A. S. Lenihan, and G. M. Carter, “Performance of DBPSK in a 5 × 10 Gb/s mixed modulation format Raman/EDFA WDM system,” IEEE Photon. Technol. Lett. 17, 2766–2768 (2005).
[Crossref]

Belardi, W.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Bjarklev, A.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]

K. P. Hansen, J. R. Folkenberg, C. Peurecheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PD2-1.

Carter, G. M.

W. Astar and G. M. Carter, “10 Gbit/s RZ-OOK to RZ-BPSK format conversion using SOA and synchronous pulse carver” Electron. Lett. 44, 369–370 (2008).
[Crossref]

A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-Gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 1329–1331 (2006).
[Crossref]

W. Astar, A. S. Lenihan, and G. M. Carter, “Performance of DBPSK in a 5 × 10 Gb/s mixed modulation format Raman/EDFA WDM system,” IEEE Photon. Technol. Lett. 17, 2766–2768 (2005).
[Crossref]

A. S. Lenihan and G. M. Carter, “Polarization-insensitive wavelength conversion at 40 Gb/s using birefringent nonlinear fiber,” in Conf. Proc. of Conference on Lasers and Electro-Optics (CLEO), 2007, paper CThAA2.
[Crossref]

Chow, K. K.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]

Folkenberg, J. R.

K. P. Hansen, J. R. Folkenberg, C. Peurecheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PD2-1.

Furusawa, K.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Hansen, K. P.

K. P. Hansen, J. R. Folkenberg, C. Peurecheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PD2-1.

Hasegawa, T.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
[Crossref]

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PDP26.

Hatta, T.

Heffner, B. L.

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 14, 1066–1068 (1992).
[Crossref]

Inoue, K.

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12, 1916–1920 (1994).
[Crossref]

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
[Crossref]

Ishida, K.

Katoh, K.

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett. 17, 1052–1054 (2005).
[Crossref]

Kikuchi, K.

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett. 17, 1052–1054 (2005).
[Crossref]

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PDP26.

Kim, H.

P. J. Winzer and H. Kim, “Degradations in Balanced DPSK Receivers,” IEEE Photon. Technol. Lett. 15, 1282–1284 (2003).
[Crossref]

Kitagawa, S.

Kitayama, K.-I.

Kumar, S.

Lee, J. H.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Lenihan, A. S.

A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-Gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 1329–1331 (2006).
[Crossref]

W. Astar, A. S. Lenihan, and G. M. Carter, “Performance of DBPSK in a 5 × 10 Gb/s mixed modulation format Raman/EDFA WDM system,” IEEE Photon. Technol. Lett. 17, 2766–2768 (2005).
[Crossref]

A. S. Lenihan and G. M. Carter, “Polarization-insensitive wavelength conversion at 40 Gb/s using birefringent nonlinear fiber,” in Conf. Proc. of Conference on Lasers and Electro-Optics (CLEO), 2007, paper CThAA2.
[Crossref]

Lin, C.

T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express 13, 5409–5415 (2005),http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5409.
[Crossref] [PubMed]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]

Maruta, A.

Menyuk, C. R.

C. R. Menyuk, “Nonlinear pulse-propagation in birefringent optical fiber,” IEEE J. Quantum Electron. 23, 174–176 (1987).
[Crossref]

Mishina, K.

Mitani, S.

Miyahara, T.

Monro, T. M.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Motoshima, K.

Murphy, T. E.

A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-Gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 1329–1331 (2006).
[Crossref]

Nagashima, T.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PDP26.

Oda, K.

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
[Crossref]

Ohara, S.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PDP26.

Petropoulos, P.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Peurecheret, C.

K. P. Hansen, J. R. Folkenberg, C. Peurecheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PD2-1.

Poole, C. D.

Richardson, D. J.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Salem, R.

A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-Gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 1329–1331 (2006).
[Crossref]

Selvarajan, A.

Shimizu, K.

Shu, C.

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]

T. Yang, C. Shu, and C. Lin, “Depolarization technique for wavelength conversion using four-wave mixing in a dispersion-flattened photonic crystal fiber,” Opt. Express 13, 5409–5415 (2005),http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5409.
[Crossref] [PubMed]

Sugimoto, N.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PDP26.

Suzuki, J.

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett. 17, 1052–1054 (2005).
[Crossref]

Taira, K.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PDP26.

Tanemura, T.

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett. 17, 1052–1054 (2005).
[Crossref]

Winzer, P. J.

P. J. Winzer and H. Kim, “Degradations in Balanced DPSK Receivers,” IEEE Photon. Technol. Lett. 15, 1282–1284 (2003).
[Crossref]

Yang, T.

Yusoff, Z.

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

Electron. Lett. (1)

W. Astar and G. M. Carter, “10 Gbit/s RZ-OOK to RZ-BPSK format conversion using SOA and synchronous pulse carver” Electron. Lett. 44, 369–370 (2008).
[Crossref]

IEEE J. Quantum Electron. (1)

C. R. Menyuk, “Nonlinear pulse-propagation in birefringent optical fiber,” IEEE J. Quantum Electron. 23, 174–176 (1987).
[Crossref]

IEEE Photon. Technol. Lett. (8)

P. J. Winzer and H. Kim, “Degradations in Balanced DPSK Receivers,” IEEE Photon. Technol. Lett. 15, 1282–1284 (2003).
[Crossref]

A. S. Lenihan, R. Salem, T. E. Murphy, and G. M. Carter, “All-optical 80-Gb/s time-division demultiplexing using polarization-insensitive cross-phase modulation in photonic crystal fiber,” IEEE Photon. Technol. Lett. 18, 1329–1331 (2006).
[Crossref]

B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 14, 1066–1068 (1992).
[Crossref]

K. K. Chow, C. Shu, C. Lin, and A. Bjarklev, “Polarization-insensitive widely tunable wavelength converter based on four-wave mixing in a dispersion-flattened nonlinear photonic crystal fiber,” IEEE Photon. Technol. Lett. 17, 624–626 (2005).
[Crossref]

J. H. Lee, W. Belardi, K. Furusawa, P. Petropoulos, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Fourwave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold,” IEEE Photon. Technol. Lett. 15, 440–442 (2003).
[Crossref]

T. Tanemura, J. Suzuki, K. Katoh, and K. Kikuchi, “Polarization-insensitive all-optical wavelength conversion using cross-phase modulation in twisted fiber and optical filtering,” IEEE Photon. Technol. Lett. 17, 1052–1054 (2005).
[Crossref]

T. Hasegawa, K. Inoue, and K. Oda, “Polarization independent frequency conversion by fiber four-wave mixing with a polarization diversity technique,” IEEE Photon. Technol. Lett. 5, 947–949 (1993).
[Crossref]

W. Astar, A. S. Lenihan, and G. M. Carter, “Performance of DBPSK in a 5 × 10 Gb/s mixed modulation format Raman/EDFA WDM system,” IEEE Photon. Technol. Lett. 17, 2766–2768 (2005).
[Crossref]

J. Lightwave Technol. (2)

K. Mishina, A. Maruta, S. Mitani, T. Miyahara, K. Ishida, K. Shimizu, T. Hatta, K. Motoshima, and K.-I. Kitayama, “NRZ-OOK-to-RZ-BPSK modulation-format conversion using SOA-MZI wavelength converter,” J. Lightwave Technol. 24, 3751–3758 (2006).
[Crossref]

K. Inoue, “Polarization independent wavelength conversion using fiber four-wave mixing with two orthogonal pump lights of different frequencies,” J. Lightwave Technol. 12, 1916–1920 (1994).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (2)

Opt. Lett. (1)

Other (4)

K. P. Hansen, J. R. Folkenberg, C. Peurecheret, and A. Bjarklev, “Fully dispersion controlled triangular-core nonlinear photonic crystal fiber,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PD2-1.

A. S. Lenihan and G. M. Carter, “Polarization-insensitive wavelength conversion at 40 Gb/s using birefringent nonlinear fiber,” in Conf. Proc. of Conference on Lasers and Electro-Optics (CLEO), 2007, paper CThAA2.
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001), pp. 238–277.

N. Sugimoto, T. Nagashima, T. Hasegawa, S. Ohara, K. Taira, and K. Kikuchi, “Bismuth-based optical fiber with nonlinear coefficient of 1360 W-1km-1,” in Conf. Proc. of Optical Fiber Communication (OFC), 2003, paper PDP26.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Fixed-analyzer transmission spectrum showing periodic behaviour, and indicating that the PCF is in the short coupling length regime.

Fig. 2.
Fig. 2.

Measured group-index birefringence (×105) of PCF using the Jones Matrix Eigenanalysis Method.

Fig. 3.
Fig. 3.

RZ-OOK-to-RZ-BPSK format conversion experimental set-up (HPA: high-power amplifier; VOA: variable optical attenuator; PRX: receiver power; CR: clock recovery; AMZI: asymmetric Mach-Zehnder interferometer, BPD: balanced photodetector; TIA: transimpedance amplifier; ED: error detector).

Fig. 4.
Fig. 4.

Power fluctuation observed in the probe spectrum as a function of PPD.

Fig. 5.
Fig. 5.

Receiver sensitivity measurement results for 6 nm PPD.

Fig. 6.
Fig. 6.

RZ-BPSK probe eye-diagrms for PPD of 6 nm and OSNR of 18.5 dB/1nm: (a) Pump scrambled (45o probe launch); (b) Pump scrambled (probe on an axis); (c) Same as (b) but with unscrambled pump aligned to probe.

Fig. 7.
Fig. 7.

Spectra obtained at a resolution bandwidth of 0.05 nm, and for a PPD of >10 nm. The traces have been offset relative to each other for clarity.

Fig. 8.
Fig. 8.

AMZI output port eye-diagrams for a PPD of 6 nm, OSNR of 18.5 dB/1nm, and pump and probe aligned to same birefringent axis: (a) Alternate mark inversion signal; (b) Duobinary signal.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

d A 2 x dz = ( 2 A 1 x 2 + 2 3 A 1 y 2 ) A 2 x + 2 3 A 1 x * A 1 y A 2 y exp [ i z c Σ ( ω B ) ] + 2 3 A 1 x A 1 y * A 2 y exp [ i z c Δ ( ωB ) ]
d A 2 y dz = ( 2 A 1 y 2 + 2 3 A 1 x 2 ) A 2 y + 2 3 A 1 y * A 1 x A 2 x exp [ i z c Σ ( ωB ) ] + 2 3 A 1 y A 1 x * A 2 x exp [ i z c Δ ( ωB ) ]
Σ ( ωB ) = ω 1 B 1 + ω 2 B 2
Δ ( ωB ) = ω 1 B 2 ω 2 B 2 .
{ B = 1 ω G ( Ω ) d Ω G ( Ω ) = α G + β G 2 πc Ω .
ω j B j L c = 2 π L L Bj > 2 π ,
ω 1 B 1 ω 2 B 2 . L c = 2 π L L B 1 L L B 2 > 2 π
( ω 1 ω 2 ) α G β G ln ( ω 1 ω 2 ) 2 π c > 2 πc L
α G Δ ( 1 λ ) β G ln ( λ 2 λ 1 ) > 1 L .
Δλ > 1 L · ( α G λ 1 2 β G λ 1 ) 1
A 2 L t = ( P 2 0 t 2 ) 1 2 { x e i φ 2 x exp [ 2 iγL ( P 1 x 0 t + 1 3 P 1 y 0 t ) ] + y e i φ 2 y exp [ 2 iγL ( P 1 y 0 t + 1 3 P 1 x 0 t ) ] }
A 1 L t = x e i φ 1 x P 1 x 0 t + y e i φ 1 y P 1 y 0 t = P 10 ( x e i φ 1 x cos ψ 1 + y e i φ 1 y sin ψ 1 ) .

Metrics