Abstract

We discuss and experimentally demonstrate a scheme to achieve photorefractive solitons of arbitrary linear polarization using the quadratic electro-optic effect and describe the observation of the self-trapping of a set of linear polarized beams in different positions of a paraelectric photorefractive crystal of potassium-lithium-tantalate-niobate (KLTN) biased by the inhomogeneous field produced by two miniaturized top electrodes. The polarization of the single solitons of the set is determined by the local electrostatic configuration and the underlying tunable anisotropy, which is detected through zero-field electro-activation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.Di Porto, E.J. Sharp, and R.R. Neur-gaonkar, “Observation Of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” Phys.Rev.Lett 71, 533–536 (1993).
    [Crossref] [PubMed]
  2. For a review, see Chapter 11 by E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, G. Salamo, P. Gunter, and J.P. Huignard (Eds.), Photorefractive Materials and Their Applications (Springer-Verlag, Berlin Heidelberg2006).
  3. M. Segev, M.F. Shih, and G.C. Valley, “Photorefractive screening solitons of high and low intensity,” J.Opt.Soc.Am B  13, 706–718 (1996).
    [Crossref]
  4. M. Segev, G. C. Valley, S.R. Singh, M.I. Carvalho, and D.N. Christodoulides,“Vector photorefractive spatial solitons,” Opt. Lett 20, 1764–1766 (1995).
    [Crossref] [PubMed]
  5. S.R. Singh and D.N. Christodoulides, “Effects of optical activity on photorefractive spatial solitons in a biased Bi12TiO2 crystal,” J.Opt.Soc.Am B  13, 719–724 (1996).
    [Crossref]
  6. E. Fazio, V. Babin, M. Bertolotti, and V. Vlad, “Solitonlike propagation in photorefractive crystals with large optical activity and absorption,” Phys. Rev E  66, 016605 (2002).
  7. P. Zhang, J. Zhao, C. Lou, X. Tan, Y. Gao, Q. Liu, D. Yang, J. Xu, and Z. Chen, “Elliptical solitons in noncon-ventionally biased photorefractive crystals,” Opt. Express 15, 536–544 (2007).
    [Crossref] [PubMed]
  8. P. Zhang, J.L. Zhao, F.J. Xiao, C.B. Lou, J.J. Xu, and Z.G. Chen, “Elliptical discrete solitons supported by enhanced photorefractive anisotropy,” Opt. Express 16, 3865–3870 (2008)
    [Crossref] [PubMed]
  9. E. DelRe, M. Tamburrini, and A.J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt.Lett 25, 963–965 (2000).
    [Crossref]
  10. E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A.J. Agranat, “Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate,” Appl. Phys. Lett 73, 16–18 (1998).
    [Crossref]
  11. M. Chauvet, A.Q. Gou, G.Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys 99, 113107 (2006).
    [Crossref]
  12. M.F. Shih and F.W. Sheu, “Photorefractive polymeric optical spatial solitons”, Opt.Lett 24, 1853–1855 (1999)
    [Crossref]
  13. M. Asaro, M. Sheldon, Z.G. Chen, O. Ostroverkhova, and W.E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett 30, 519–521 (2005).
    [Crossref] [PubMed]
  14. A. Bitman, N. Sapiens, L. Secundo, A.J. Agranat, G. Bartal, and M. Segev, “Electroholographic tunable volume grating in the (g44) configuration,” Opt. Lett 31, 2849–2851 (2006).
    [Crossref] [PubMed]
  15. A. Pierangelo, E. DelRe, A. Ciattoni, G. Biagi, E. Palange, and A. Agranat, “Separating polarization components through the electro-optic read-out of photorefractive solitons,” Opt. Express 15, 14283 (2007)
    [Crossref] [PubMed]
  16. See the paraxial terms of eq.(31) in A. Ciattoni, P. Di Porto, B. Crosignani, and A. Yariv, ”Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am B  17, 809–819 (2000).For noncentrosymmetric crystals, the issue is further complicated by phase-matching conditions, as discussed in ref.[4].
    [Crossref]
  17. A. Agranat, R. Hofmeister, and A. Yariv, “Characterization of a new photorefractive material: KLTN,” Opt.Lett 17, 713–715 (1992).
    [Crossref] [PubMed]
  18. E. DelRe, A. Ciattoni, and A.J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett 26, 908–910 (2001).
    [Crossref]
  19. A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A.J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl.Phys.Lett 85, 2679–2681 (2004).
    [Crossref]
  20. E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl.Phys.Lett 85, 5499–5501 (2004).
    [Crossref]
  21. D. N. Christodoulides and M.I. Carvalho, “Compression, Self-Bending, and Collapse of Gaussian Beams in Pho-torefractive Crystals,” Opt.Lett 19, 1714–1716 (1994).
    [Crossref] [PubMed]

2008 (1)

2007 (2)

2006 (3)

M. Chauvet, A.Q. Gou, G.Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys 99, 113107 (2006).
[Crossref]

A. Bitman, N. Sapiens, L. Secundo, A.J. Agranat, G. Bartal, and M. Segev, “Electroholographic tunable volume grating in the (g44) configuration,” Opt. Lett 31, 2849–2851 (2006).
[Crossref] [PubMed]

For a review, see Chapter 11 by E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, G. Salamo, P. Gunter, and J.P. Huignard (Eds.), Photorefractive Materials and Their Applications (Springer-Verlag, Berlin Heidelberg2006).

2005 (1)

M. Asaro, M. Sheldon, Z.G. Chen, O. Ostroverkhova, and W.E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett 30, 519–521 (2005).
[Crossref] [PubMed]

2004 (2)

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A.J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl.Phys.Lett 85, 2679–2681 (2004).
[Crossref]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl.Phys.Lett 85, 5499–5501 (2004).
[Crossref]

2002 (1)

E. Fazio, V. Babin, M. Bertolotti, and V. Vlad, “Solitonlike propagation in photorefractive crystals with large optical activity and absorption,” Phys. Rev E  66, 016605 (2002).

2001 (1)

E. DelRe, A. Ciattoni, and A.J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett 26, 908–910 (2001).
[Crossref]

2000 (2)

E. DelRe, M. Tamburrini, and A.J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt.Lett 25, 963–965 (2000).
[Crossref]

See the paraxial terms of eq.(31) in A. Ciattoni, P. Di Porto, B. Crosignani, and A. Yariv, ”Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am B  17, 809–819 (2000).For noncentrosymmetric crystals, the issue is further complicated by phase-matching conditions, as discussed in ref.[4].
[Crossref]

1999 (1)

M.F. Shih and F.W. Sheu, “Photorefractive polymeric optical spatial solitons”, Opt.Lett 24, 1853–1855 (1999)
[Crossref]

1998 (1)

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A.J. Agranat, “Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate,” Appl. Phys. Lett 73, 16–18 (1998).
[Crossref]

1996 (2)

M. Segev, M.F. Shih, and G.C. Valley, “Photorefractive screening solitons of high and low intensity,” J.Opt.Soc.Am B  13, 706–718 (1996).
[Crossref]

S.R. Singh and D.N. Christodoulides, “Effects of optical activity on photorefractive spatial solitons in a biased Bi12TiO2 crystal,” J.Opt.Soc.Am B  13, 719–724 (1996).
[Crossref]

1995 (1)

M. Segev, G. C. Valley, S.R. Singh, M.I. Carvalho, and D.N. Christodoulides,“Vector photorefractive spatial solitons,” Opt. Lett 20, 1764–1766 (1995).
[Crossref] [PubMed]

1994 (1)

D. N. Christodoulides and M.I. Carvalho, “Compression, Self-Bending, and Collapse of Gaussian Beams in Pho-torefractive Crystals,” Opt.Lett 19, 1714–1716 (1994).
[Crossref] [PubMed]

1993 (1)

G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.Di Porto, E.J. Sharp, and R.R. Neur-gaonkar, “Observation Of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” Phys.Rev.Lett 71, 533–536 (1993).
[Crossref] [PubMed]

1992 (1)

A. Agranat, R. Hofmeister, and A. Yariv, “Characterization of a new photorefractive material: KLTN,” Opt.Lett 17, 713–715 (1992).
[Crossref] [PubMed]

Agranat, A.

Agranat, A.J.

A. Bitman, N. Sapiens, L. Secundo, A.J. Agranat, G. Bartal, and M. Segev, “Electroholographic tunable volume grating in the (g44) configuration,” Opt. Lett 31, 2849–2851 (2006).
[Crossref] [PubMed]

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A.J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl.Phys.Lett 85, 2679–2681 (2004).
[Crossref]

E. DelRe, A. Ciattoni, and A.J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett 26, 908–910 (2001).
[Crossref]

E. DelRe, M. Tamburrini, and A.J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt.Lett 25, 963–965 (2000).
[Crossref]

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A.J. Agranat, “Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate,” Appl. Phys. Lett 73, 16–18 (1998).
[Crossref]

Asaro, M.

M. Asaro, M. Sheldon, Z.G. Chen, O. Ostroverkhova, and W.E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett 30, 519–521 (2005).
[Crossref] [PubMed]

Babin, V.

E. Fazio, V. Babin, M. Bertolotti, and V. Vlad, “Solitonlike propagation in photorefractive crystals with large optical activity and absorption,” Phys. Rev E  66, 016605 (2002).

Bartal, G.

A. Bitman, N. Sapiens, L. Secundo, A.J. Agranat, G. Bartal, and M. Segev, “Electroholographic tunable volume grating in the (g44) configuration,” Opt. Lett 31, 2849–2851 (2006).
[Crossref] [PubMed]

Bertolotti, M.

E. Fazio, V. Babin, M. Bertolotti, and V. Vlad, “Solitonlike propagation in photorefractive crystals with large optical activity and absorption,” Phys. Rev E  66, 016605 (2002).

Biagi, G.

Bitman, A.

A. Bitman, N. Sapiens, L. Secundo, A.J. Agranat, G. Bartal, and M. Segev, “Electroholographic tunable volume grating in the (g44) configuration,” Opt. Lett 31, 2849–2851 (2006).
[Crossref] [PubMed]

Carvalho, M.I.

M. Segev, G. C. Valley, S.R. Singh, M.I. Carvalho, and D.N. Christodoulides,“Vector photorefractive spatial solitons,” Opt. Lett 20, 1764–1766 (1995).
[Crossref] [PubMed]

D. N. Christodoulides and M.I. Carvalho, “Compression, Self-Bending, and Collapse of Gaussian Beams in Pho-torefractive Crystals,” Opt.Lett 19, 1714–1716 (1994).
[Crossref] [PubMed]

Chauvet, M.

M. Chauvet, A.Q. Gou, G.Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys 99, 113107 (2006).
[Crossref]

Chen, Z.

Chen, Z.G.

P. Zhang, J.L. Zhao, F.J. Xiao, C.B. Lou, J.J. Xu, and Z.G. Chen, “Elliptical discrete solitons supported by enhanced photorefractive anisotropy,” Opt. Express 16, 3865–3870 (2008)
[Crossref] [PubMed]

M. Asaro, M. Sheldon, Z.G. Chen, O. Ostroverkhova, and W.E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett 30, 519–521 (2005).
[Crossref] [PubMed]

Christodoulides, D.

For a review, see Chapter 11 by E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, G. Salamo, P. Gunter, and J.P. Huignard (Eds.), Photorefractive Materials and Their Applications (Springer-Verlag, Berlin Heidelberg2006).

Christodoulides, D. N.

D. N. Christodoulides and M.I. Carvalho, “Compression, Self-Bending, and Collapse of Gaussian Beams in Pho-torefractive Crystals,” Opt.Lett 19, 1714–1716 (1994).
[Crossref] [PubMed]

Christodoulides, D.N.

S.R. Singh and D.N. Christodoulides, “Effects of optical activity on photorefractive spatial solitons in a biased Bi12TiO2 crystal,” J.Opt.Soc.Am B  13, 719–724 (1996).
[Crossref]

M. Segev, G. C. Valley, S.R. Singh, M.I. Carvalho, and D.N. Christodoulides,“Vector photorefractive spatial solitons,” Opt. Lett 20, 1764–1766 (1995).
[Crossref] [PubMed]

Ciattoni, A.

A. Pierangelo, E. DelRe, A. Ciattoni, G. Biagi, E. Palange, and A. Agranat, “Separating polarization components through the electro-optic read-out of photorefractive solitons,” Opt. Express 15, 14283 (2007)
[Crossref] [PubMed]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl.Phys.Lett 85, 5499–5501 (2004).
[Crossref]

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A.J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl.Phys.Lett 85, 2679–2681 (2004).
[Crossref]

E. DelRe, A. Ciattoni, and A.J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett 26, 908–910 (2001).
[Crossref]

See the paraxial terms of eq.(31) in A. Ciattoni, P. Di Porto, B. Crosignani, and A. Yariv, ”Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am B  17, 809–819 (2000).For noncentrosymmetric crystals, the issue is further complicated by phase-matching conditions, as discussed in ref.[4].
[Crossref]

Crosignani, B.

For a review, see Chapter 11 by E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, G. Salamo, P. Gunter, and J.P. Huignard (Eds.), Photorefractive Materials and Their Applications (Springer-Verlag, Berlin Heidelberg2006).

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A.J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl.Phys.Lett 85, 2679–2681 (2004).
[Crossref]

See the paraxial terms of eq.(31) in A. Ciattoni, P. Di Porto, B. Crosignani, and A. Yariv, ”Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am B  17, 809–819 (2000).For noncentrosymmetric crystals, the issue is further complicated by phase-matching conditions, as discussed in ref.[4].
[Crossref]

G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.Di Porto, E.J. Sharp, and R.R. Neur-gaonkar, “Observation Of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” Phys.Rev.Lett 71, 533–536 (1993).
[Crossref] [PubMed]

D’Ercole, A.

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A.J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl.Phys.Lett 85, 2679–2681 (2004).
[Crossref]

De Masi, G.

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl.Phys.Lett 85, 5499–5501 (2004).
[Crossref]

DelRe, E.

A. Pierangelo, E. DelRe, A. Ciattoni, G. Biagi, E. Palange, and A. Agranat, “Separating polarization components through the electro-optic read-out of photorefractive solitons,” Opt. Express 15, 14283 (2007)
[Crossref] [PubMed]

For a review, see Chapter 11 by E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, G. Salamo, P. Gunter, and J.P. Huignard (Eds.), Photorefractive Materials and Their Applications (Springer-Verlag, Berlin Heidelberg2006).

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A.J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl.Phys.Lett 85, 2679–2681 (2004).
[Crossref]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl.Phys.Lett 85, 5499–5501 (2004).
[Crossref]

E. DelRe, A. Ciattoni, and A.J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett 26, 908–910 (2001).
[Crossref]

E. DelRe, M. Tamburrini, and A.J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt.Lett 25, 963–965 (2000).
[Crossref]

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A.J. Agranat, “Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate,” Appl. Phys. Lett 73, 16–18 (1998).
[Crossref]

Di Porto, P.

See the paraxial terms of eq.(31) in A. Ciattoni, P. Di Porto, B. Crosignani, and A. Yariv, ”Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am B  17, 809–819 (2000).For noncentrosymmetric crystals, the issue is further complicated by phase-matching conditions, as discussed in ref.[4].
[Crossref]

Duree, G.C.

G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.Di Porto, E.J. Sharp, and R.R. Neur-gaonkar, “Observation Of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” Phys.Rev.Lett 71, 533–536 (1993).
[Crossref] [PubMed]

Fazio, E.

E. Fazio, V. Babin, M. Bertolotti, and V. Vlad, “Solitonlike propagation in photorefractive crystals with large optical activity and absorption,” Phys. Rev E  66, 016605 (2002).

Fu, G.Y.

M. Chauvet, A.Q. Gou, G.Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys 99, 113107 (2006).
[Crossref]

Gao, Y.

Gou, A.Q.

M. Chauvet, A.Q. Gou, G.Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys 99, 113107 (2006).
[Crossref]

Gunter, P.

For a review, see Chapter 11 by E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, G. Salamo, P. Gunter, and J.P. Huignard (Eds.), Photorefractive Materials and Their Applications (Springer-Verlag, Berlin Heidelberg2006).

Hofmeister, R.

A. Agranat, R. Hofmeister, and A. Yariv, “Characterization of a new photorefractive material: KLTN,” Opt.Lett 17, 713–715 (1992).
[Crossref] [PubMed]

Huignard, J.P.

For a review, see Chapter 11 by E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, G. Salamo, P. Gunter, and J.P. Huignard (Eds.), Photorefractive Materials and Their Applications (Springer-Verlag, Berlin Heidelberg2006).

Liu, Q.

Lou, C.

Lou, C.B.

Moerner, W.E.

M. Asaro, M. Sheldon, Z.G. Chen, O. Ostroverkhova, and W.E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett 30, 519–521 (2005).
[Crossref] [PubMed]

Neur-gaonkar, R.R.

G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.Di Porto, E.J. Sharp, and R.R. Neur-gaonkar, “Observation Of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” Phys.Rev.Lett 71, 533–536 (1993).
[Crossref] [PubMed]

Ostroverkhova, O.

M. Asaro, M. Sheldon, Z.G. Chen, O. Ostroverkhova, and W.E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett 30, 519–521 (2005).
[Crossref] [PubMed]

Palange, E.

A. Pierangelo, E. DelRe, A. Ciattoni, G. Biagi, E. Palange, and A. Agranat, “Separating polarization components through the electro-optic read-out of photorefractive solitons,” Opt. Express 15, 14283 (2007)
[Crossref] [PubMed]

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A.J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl.Phys.Lett 85, 2679–2681 (2004).
[Crossref]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl.Phys.Lett 85, 5499–5501 (2004).
[Crossref]

Pierangelo, A.

Porto, P.Di

G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.Di Porto, E.J. Sharp, and R.R. Neur-gaonkar, “Observation Of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” Phys.Rev.Lett 71, 533–536 (1993).
[Crossref] [PubMed]

Refaeli, E.

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A.J. Agranat, “Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate,” Appl. Phys. Lett 73, 16–18 (1998).
[Crossref]

Salamo, G.

For a review, see Chapter 11 by E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, G. Salamo, P. Gunter, and J.P. Huignard (Eds.), Photorefractive Materials and Their Applications (Springer-Verlag, Berlin Heidelberg2006).

M. Chauvet, A.Q. Gou, G.Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys 99, 113107 (2006).
[Crossref]

Salamo, G.J.

G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.Di Porto, E.J. Sharp, and R.R. Neur-gaonkar, “Observation Of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” Phys.Rev.Lett 71, 533–536 (1993).
[Crossref] [PubMed]

Sapiens, N.

A. Bitman, N. Sapiens, L. Secundo, A.J. Agranat, G. Bartal, and M. Segev, “Electroholographic tunable volume grating in the (g44) configuration,” Opt. Lett 31, 2849–2851 (2006).
[Crossref] [PubMed]

Secundo, L.

A. Bitman, N. Sapiens, L. Secundo, A.J. Agranat, G. Bartal, and M. Segev, “Electroholographic tunable volume grating in the (g44) configuration,” Opt. Lett 31, 2849–2851 (2006).
[Crossref] [PubMed]

Segev, M.

A. Bitman, N. Sapiens, L. Secundo, A.J. Agranat, G. Bartal, and M. Segev, “Electroholographic tunable volume grating in the (g44) configuration,” Opt. Lett 31, 2849–2851 (2006).
[Crossref] [PubMed]

For a review, see Chapter 11 by E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, G. Salamo, P. Gunter, and J.P. Huignard (Eds.), Photorefractive Materials and Their Applications (Springer-Verlag, Berlin Heidelberg2006).

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A.J. Agranat, “Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate,” Appl. Phys. Lett 73, 16–18 (1998).
[Crossref]

M. Segev, M.F. Shih, and G.C. Valley, “Photorefractive screening solitons of high and low intensity,” J.Opt.Soc.Am B  13, 706–718 (1996).
[Crossref]

M. Segev, G. C. Valley, S.R. Singh, M.I. Carvalho, and D.N. Christodoulides,“Vector photorefractive spatial solitons,” Opt. Lett 20, 1764–1766 (1995).
[Crossref] [PubMed]

G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.Di Porto, E.J. Sharp, and R.R. Neur-gaonkar, “Observation Of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” Phys.Rev.Lett 71, 533–536 (1993).
[Crossref] [PubMed]

Sharp, E.J.

G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.Di Porto, E.J. Sharp, and R.R. Neur-gaonkar, “Observation Of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” Phys.Rev.Lett 71, 533–536 (1993).
[Crossref] [PubMed]

Sheldon, M.

M. Asaro, M. Sheldon, Z.G. Chen, O. Ostroverkhova, and W.E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett 30, 519–521 (2005).
[Crossref] [PubMed]

Sheu, F.W.

M.F. Shih and F.W. Sheu, “Photorefractive polymeric optical spatial solitons”, Opt.Lett 24, 1853–1855 (1999)
[Crossref]

Shih, M.F.

M.F. Shih and F.W. Sheu, “Photorefractive polymeric optical spatial solitons”, Opt.Lett 24, 1853–1855 (1999)
[Crossref]

M. Segev, M.F. Shih, and G.C. Valley, “Photorefractive screening solitons of high and low intensity,” J.Opt.Soc.Am B  13, 706–718 (1996).
[Crossref]

Shultz, J.L.

G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.Di Porto, E.J. Sharp, and R.R. Neur-gaonkar, “Observation Of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” Phys.Rev.Lett 71, 533–536 (1993).
[Crossref] [PubMed]

Singh, S.R.

S.R. Singh and D.N. Christodoulides, “Effects of optical activity on photorefractive spatial solitons in a biased Bi12TiO2 crystal,” J.Opt.Soc.Am B  13, 719–724 (1996).
[Crossref]

M. Segev, G. C. Valley, S.R. Singh, M.I. Carvalho, and D.N. Christodoulides,“Vector photorefractive spatial solitons,” Opt. Lett 20, 1764–1766 (1995).
[Crossref] [PubMed]

Tamburrini, M.

E. DelRe, M. Tamburrini, and A.J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt.Lett 25, 963–965 (2000).
[Crossref]

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A.J. Agranat, “Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate,” Appl. Phys. Lett 73, 16–18 (1998).
[Crossref]

Tan, X.

Valley, G. C.

M. Segev, G. C. Valley, S.R. Singh, M.I. Carvalho, and D.N. Christodoulides,“Vector photorefractive spatial solitons,” Opt. Lett 20, 1764–1766 (1995).
[Crossref] [PubMed]

Valley, G.C.

M. Segev, M.F. Shih, and G.C. Valley, “Photorefractive screening solitons of high and low intensity,” J.Opt.Soc.Am B  13, 706–718 (1996).
[Crossref]

Vlad, V.

E. Fazio, V. Babin, M. Bertolotti, and V. Vlad, “Solitonlike propagation in photorefractive crystals with large optical activity and absorption,” Phys. Rev E  66, 016605 (2002).

Xiao, F.J.

Xu, J.

Xu, J.J.

Yang, D.

Yariv, A.

See the paraxial terms of eq.(31) in A. Ciattoni, P. Di Porto, B. Crosignani, and A. Yariv, ”Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am B  17, 809–819 (2000).For noncentrosymmetric crystals, the issue is further complicated by phase-matching conditions, as discussed in ref.[4].
[Crossref]

G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.Di Porto, E.J. Sharp, and R.R. Neur-gaonkar, “Observation Of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” Phys.Rev.Lett 71, 533–536 (1993).
[Crossref] [PubMed]

A. Agranat, R. Hofmeister, and A. Yariv, “Characterization of a new photorefractive material: KLTN,” Opt.Lett 17, 713–715 (1992).
[Crossref] [PubMed]

Zhang, P.

Zhao, J.

Zhao, J.L.

Appl. Phys. Lett (1)

E. DelRe, M. Tamburrini, M. Segev, E. Refaeli, and A.J. Agranat, “Two-dimensional photorefractive spatial solitons in centrosymmetric paraelectric potassium-lithium-tantalate-niobate,” Appl. Phys. Lett 73, 16–18 (1998).
[Crossref]

Appl.Phys.Lett (2)

A. D’Ercole, E. Palange, E. DelRe, A. Ciattoni, B. Crosignani, and A.J. Agranat, “Miniaturization and embedding of soliton-based electro-optically addressable photonic arrays,” Appl.Phys.Lett 85, 2679–2681 (2004).
[Crossref]

E. DelRe, G. De Masi, A. Ciattoni, and E. Palange, “Pairing space-charge field conditions with self-guiding for the attainment of circular symmetry in photorefractive solitons,” Appl.Phys.Lett 85, 5499–5501 (2004).
[Crossref]

J. Appl. Phys (1)

M. Chauvet, A.Q. Gou, G.Y. Fu, and G. Salamo, “Electrically switched photoinduced waveguide in unpoled strontium barium niobate,” J. Appl. Phys 99, 113107 (2006).
[Crossref]

J. Opt. Soc. Am (1)

See the paraxial terms of eq.(31) in A. Ciattoni, P. Di Porto, B. Crosignani, and A. Yariv, ”Vectorial nonparaxial propagation equation in the presence of a tensorial refractive-index perturbation,” J. Opt. Soc. Am B  17, 809–819 (2000).For noncentrosymmetric crystals, the issue is further complicated by phase-matching conditions, as discussed in ref.[4].
[Crossref]

J.Opt.Soc.Am (2)

M. Segev, M.F. Shih, and G.C. Valley, “Photorefractive screening solitons of high and low intensity,” J.Opt.Soc.Am B  13, 706–718 (1996).
[Crossref]

S.R. Singh and D.N. Christodoulides, “Effects of optical activity on photorefractive spatial solitons in a biased Bi12TiO2 crystal,” J.Opt.Soc.Am B  13, 719–724 (1996).
[Crossref]

Opt. Express (3)

Opt. Lett (4)

E. DelRe, A. Ciattoni, and A.J. Agranat, “Anisotropic charge displacement supporting isolated photorefractive optical needles,” Opt. Lett 26, 908–910 (2001).
[Crossref]

M. Asaro, M. Sheldon, Z.G. Chen, O. Ostroverkhova, and W.E. Moerner, “Soliton-induced waveguides in an organic photorefractive glass,” Opt. Lett 30, 519–521 (2005).
[Crossref] [PubMed]

A. Bitman, N. Sapiens, L. Secundo, A.J. Agranat, G. Bartal, and M. Segev, “Electroholographic tunable volume grating in the (g44) configuration,” Opt. Lett 31, 2849–2851 (2006).
[Crossref] [PubMed]

M. Segev, G. C. Valley, S.R. Singh, M.I. Carvalho, and D.N. Christodoulides,“Vector photorefractive spatial solitons,” Opt. Lett 20, 1764–1766 (1995).
[Crossref] [PubMed]

Opt.Lett (4)

E. DelRe, M. Tamburrini, and A.J. Agranat, “Soliton electro-optic effects in paraelectrics,” Opt.Lett 25, 963–965 (2000).
[Crossref]

M.F. Shih and F.W. Sheu, “Photorefractive polymeric optical spatial solitons”, Opt.Lett 24, 1853–1855 (1999)
[Crossref]

A. Agranat, R. Hofmeister, and A. Yariv, “Characterization of a new photorefractive material: KLTN,” Opt.Lett 17, 713–715 (1992).
[Crossref] [PubMed]

D. N. Christodoulides and M.I. Carvalho, “Compression, Self-Bending, and Collapse of Gaussian Beams in Pho-torefractive Crystals,” Opt.Lett 19, 1714–1716 (1994).
[Crossref] [PubMed]

Phys. Rev (1)

E. Fazio, V. Babin, M. Bertolotti, and V. Vlad, “Solitonlike propagation in photorefractive crystals with large optical activity and absorption,” Phys. Rev E  66, 016605 (2002).

Phys.Rev.Lett (1)

G.C. Duree, J.L. Shultz, G.J. Salamo, M. Segev, A. Yariv, B. Crosignani, P.Di Porto, E.J. Sharp, and R.R. Neur-gaonkar, “Observation Of Self-Trapping of an Optical Beam due to the Photorefractive Effect,” Phys.Rev.Lett 71, 533–536 (1993).
[Crossref] [PubMed]

Other (1)

For a review, see Chapter 11 by E. DelRe, M. Segev, D. Christodoulides, B. Crosignani, G. Salamo, P. Gunter, and J.P. Huignard (Eds.), Photorefractive Materials and Their Applications (Springer-Verlag, Berlin Heidelberg2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Left: Electrode geometry. Right: relative position (a)-(e) of the input-beam/soliton set and calculated external electric bias field lines in the experimental conditions. (a) Input and (b) output intensity distribution with V = 0.

Fig. 2.
Fig. 2.

Soliton output intensity distribution in the positions of the set, (a)–(e). Large arrows indicate both the approximate direction of E and of the optical polarization, crosses indicate the center of the diffracted output distribution, and the ellipses schematically indicate the local orientation of the index ellipsoid section.

Fig. 3.
Fig. 3.

Underlying soliton anisotropy (lateral lobe structure) detected through zero-field electro-optic readout, for the positions of Fig.(2). The two illuminated regions indicate the guiding index structure that forms at the sides of the soliton waveguide along the direction of the local bias field [18, 20]. In the present case, we see that the direction identified by joining the peaks of the two lateral light distributions is approximately parallel to the local direction of the polarization/electric field (the arrow).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

( z + ( i 2 k ) 2 ) A i = ( ik n 0 ) Δ n ij A j ,
Δ n ij = a ( g 11 E x 2 + g 12 E y 2 2 g 44 E x E y 2 g 44 E x E y g 11 E y 2 + g 12 E x 2 ) .

Metrics