Abstract

We present the design and analysis of a novel reconfigurable photonic-crystal waveguide (PCW). The predefined waveguide is the result of the refractive-index variation of three rows of holes that can be obtained by the infiltration of liquids within what are otherwise air holes in a two-dimensional triangular-lattice photonic crystal. We compute the power transmission through the reconfigurable PCWs as well as through arbitrary waveguide bends. The advantages of writing reconfigurable PCW of a multimode nature are highlighted. We demonstrate the necessity to infiltrate high-refractive-index substances to obtain efficient power transfer via reconfigurable manner.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton, New Jersey: Princeton University Press, 1995).
  2. O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, "Lithographic tuning of a two-dimensional photonic crystal laser array," IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
    [CrossRef]
  3. P. Halevi and F. Ramos-Mendieta, "Tunable photonic crystals with semiconducting constituents," Phys. Rev. Lett. 85, 1875-1878 (2000).
    [CrossRef] [PubMed]
  4. H. Takeda and K. Yoshino, "Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects," Phys. Rev. B 67, 073106 (1-4) (2003).
    [CrossRef]
  5. H. M. H. Chong and R. M. De La Rue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
    [CrossRef]
  6. T. Yasuda, Y. Tsuji, and M. Koshiba, "Tunable light propagation in photonic crystal coupler filled with liquid crystal," IEEE Photon. Technol. Lett. 17, 55-57 (2005).
    [CrossRef]
  7. F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (1-3) (2006).
    [CrossRef]
  8. D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
    [CrossRef] [PubMed]
  9. M. Lon�?ar, B. G. Lee, L. Diehl, M. A. Beklin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, "Design and fabrication of photonic crystal quantum cascade lasers for optofluidics," Opt. Express 15, 4499-4514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4499.
    [CrossRef] [PubMed]
  10. S. S. Xiao and N. A. Mortensen "Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides," J. Opt. A: Pure Appl. Opt. 9, S463-S467 (2007).
    [CrossRef]
  11. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
    [CrossRef] [PubMed]
  12. H. Kurt and D. S. Citrin, "Coupled-resonator optical waveguide for biochemical sensing of nanoliter volumes of analyte in the terahertz region," Appl. Phys. Lett. 87, 241119 (1-3) (2005).
    [CrossRef]
  13. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
    [CrossRef]
  14. C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
    [CrossRef]
  15. A. Taflove, Computational Electrodynamics - The Finite-Difference Time-Domain Method (Norwood, Massachusetts: Artech House, 2000).
  16. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
    [CrossRef]
  17. H. Kurt and D. S. Citrin, "Photonic-crystal heterostructure waveguides," IEEE J. Quantum Electron. 43, 78-84 (2007).
    [CrossRef]

2007 (4)

S. S. Xiao and N. A. Mortensen "Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides," J. Opt. A: Pure Appl. Opt. 9, S463-S467 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

H. Kurt and D. S. Citrin, "Photonic-crystal heterostructure waveguides," IEEE J. Quantum Electron. 43, 78-84 (2007).
[CrossRef]

M. Lon�?ar, B. G. Lee, L. Diehl, M. A. Beklin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, "Design and fabrication of photonic crystal quantum cascade lasers for optofluidics," Opt. Express 15, 4499-4514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4499.
[CrossRef] [PubMed]

2006 (2)

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
[CrossRef] [PubMed]

2005 (1)

T. Yasuda, Y. Tsuji, and M. Koshiba, "Tunable light propagation in photonic crystal coupler filled with liquid crystal," IEEE Photon. Technol. Lett. 17, 55-57 (2005).
[CrossRef]

2004 (1)

H. M. H. Chong and R. M. De La Rue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
[CrossRef]

2000 (2)

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, "Lithographic tuning of a two-dimensional photonic crystal laser array," IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

P. Halevi and F. Ramos-Mendieta, "Tunable photonic crystals with semiconducting constituents," Phys. Rev. Lett. 85, 1875-1878 (2000).
[CrossRef] [PubMed]

1994 (1)

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

Beklin, M. A.

Berenger, J. P.

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

Bettoti, P.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (1-3) (2006).
[CrossRef]

Capasso, F.

Chong, H. M. H.

H. M. H. Chong and R. M. De La Rue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
[CrossRef]

Citrin, D. S.

H. Kurt and D. S. Citrin, "Photonic-crystal heterostructure waveguides," IEEE J. Quantum Electron. 43, 78-84 (2007).
[CrossRef]

H. Kurt and D. S. Citrin, "Coupled-resonator optical waveguide for biochemical sensing of nanoliter volumes of analyte in the terahertz region," Appl. Phys. Lett. 87, 241119 (1-3) (2005).
[CrossRef]

Colocci, M.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (1-3) (2006).
[CrossRef]

Dapkus, P. D.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, "Lithographic tuning of a two-dimensional photonic crystal laser array," IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

De La Rue, R. M.

H. M. H. Chong and R. M. De La Rue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
[CrossRef]

Diehl, L.

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Emery, T.

Erickson, D.

Faist, J.

Freeman, D.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Giessen, H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Gini, E.

Giovannini, M.

Grillet, C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Halevi, P.

P. Halevi and F. Ramos-Mendieta, "Tunable photonic crystals with semiconducting constituents," Phys. Rev. Lett. 85, 1875-1878 (2000).
[CrossRef] [PubMed]

Husain, A.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, "Lithographic tuning of a two-dimensional photonic crystal laser array," IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

Intonti, F.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (1-3) (2006).
[CrossRef]

Kim, I.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, "Lithographic tuning of a two-dimensional photonic crystal laser array," IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

Koshiba, M.

T. Yasuda, Y. Tsuji, and M. Koshiba, "Tunable light propagation in photonic crystal coupler filled with liquid crystal," IEEE Photon. Technol. Lett. 17, 55-57 (2005).
[CrossRef]

Kurt, H.

H. Kurt and D. S. Citrin, "Photonic-crystal heterostructure waveguides," IEEE J. Quantum Electron. 43, 78-84 (2007).
[CrossRef]

H. Kurt and D. S. Citrin, "Coupled-resonator optical waveguide for biochemical sensing of nanoliter volumes of analyte in the terahertz region," Appl. Phys. Lett. 87, 241119 (1-3) (2005).
[CrossRef]

Lee, B. G.

Lee, M. W.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Lee, P. T.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, "Lithographic tuning of a two-dimensional photonic crystal laser array," IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

Lee, Y. H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Lon??ar, M.

Luther-Davies, B.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Madden, S.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Mortensen, N. A.

S. S. Xiao and N. A. Mortensen "Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides," J. Opt. A: Pure Appl. Opt. 9, S463-S467 (2007).
[CrossRef]

O'Brien, J. D.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, "Lithographic tuning of a two-dimensional photonic crystal laser array," IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

Painter, O.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, "Lithographic tuning of a two-dimensional photonic crystal laser array," IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

Pavesi, L.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (1-3) (2006).
[CrossRef]

Psaltis, D.

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
[CrossRef] [PubMed]

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Ramos-Mendieta, F.

P. Halevi and F. Ramos-Mendieta, "Tunable photonic crystals with semiconducting constituents," Phys. Rev. Lett. 85, 1875-1878 (2000).
[CrossRef] [PubMed]

Rockwood, T.

Ruan, Y.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Scherer, A.

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, "Nanofluidic tuning of photonic crystal circuits," Opt. Lett. 31, 59-61 (2006).
[CrossRef] [PubMed]

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, "Lithographic tuning of a two-dimensional photonic crystal laser array," IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

Schweizer, S. L.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (1-3) (2006).
[CrossRef]

Smith, C. L. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Takeda, H.

H. Takeda and K. Yoshino, "Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects," Phys. Rev. B 67, 073106 (1-4) (2003).
[CrossRef]

Tomljenovic-Hanic, S.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Tsuji, Y.

T. Yasuda, Y. Tsuji, and M. Koshiba, "Tunable light propagation in photonic crystal coupler filled with liquid crystal," IEEE Photon. Technol. Lett. 17, 55-57 (2005).
[CrossRef]

Turck, V.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (1-3) (2006).
[CrossRef]

Vignolini, S.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (1-3) (2006).
[CrossRef]

Wehrspohn, R.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (1-3) (2006).
[CrossRef]

Wiersma, D.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (1-3) (2006).
[CrossRef]

Wu, D. K. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

Xiao, S. S.

S. S. Xiao and N. A. Mortensen "Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides," J. Opt. A: Pure Appl. Opt. 9, S463-S467 (2007).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Yasuda, T.

T. Yasuda, Y. Tsuji, and M. Koshiba, "Tunable light propagation in photonic crystal coupler filled with liquid crystal," IEEE Photon. Technol. Lett. 17, 55-57 (2005).
[CrossRef]

Yoshino, K.

H. Takeda and K. Yoshino, "Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects," Phys. Rev. B 67, 073106 (1-4) (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

H. Kurt and D. S. Citrin, "Photonic-crystal heterostructure waveguides," IEEE J. Quantum Electron. 43, 78-84 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O'Brien, and P. D. Dapkus, "Lithographic tuning of a two-dimensional photonic crystal laser array," IEEE Photon. Technol. Lett. 12, 1126-1128 (2000).
[CrossRef]

H. M. H. Chong and R. M. De La Rue, "Tuning of photonic crystal waveguide microcavity by thermooptic effect," IEEE Photon. Technol. Lett. 16, 1528-1530 (2004).
[CrossRef]

T. Yasuda, Y. Tsuji, and M. Koshiba, "Tunable light propagation in photonic crystal coupler filled with liquid crystal," IEEE Photon. Technol. Lett. 17, 55-57 (2005).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys. 114, 185-200 (1994).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

S. S. Xiao and N. A. Mortensen "Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides," J. Opt. A: Pure Appl. Opt. 9, S463-S467 (2007).
[CrossRef]

Nat. Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light," Nat. Photonics 1, 106-114 (2007).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics," Nature 442, 381-386 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

P. Halevi and F. Ramos-Mendieta, "Tunable photonic crystals with semiconducting constituents," Phys. Rev. Lett. 85, 1875-1878 (2000).
[CrossRef] [PubMed]

Other (6)

H. Takeda and K. Yoshino, "Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects," Phys. Rev. B 67, 073106 (1-4) (2003).
[CrossRef]

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L. Pavesi, S. L. Schweizer, R. Wehrspohn, and D. Wiersma, "Rewritable photonic circuits," Appl. Phys. Lett. 89, 211117 (1-3) (2006).
[CrossRef]

H. Kurt and D. S. Citrin, "Coupled-resonator optical waveguide for biochemical sensing of nanoliter volumes of analyte in the terahertz region," Appl. Phys. Lett. 87, 241119 (1-3) (2005).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (1-3) (2007).
[CrossRef]

A. Taflove, Computational Electrodynamics - The Finite-Difference Time-Domain Method (Norwood, Massachusetts: Artech House, 2000).

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton, New Jersey: Princeton University Press, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) The schematic of the photonic-crystal waveguide obtained by the infiltration of three rows of holes along ΓK direction. The dielectric background and holes in the waveguide region are assumed to be n = 3.46 and n = 1.5, respectively. The radii of holes are r = 0.3a. (b) The schematic of the photonic crystal waveguide bend (arbitrary written path) obtained by the infiltration of three rows of holes.

Fig. 2.
Fig. 2.

(a) The dispersion diagram of the waveguide used in the study. The plane-wave expansion method with the supercell approach is used in order to calculate the dispersion plot. (b) The dispersion diagram of the waveguide in case the infiltrated holes have higher-refractive indices n = 2.0 .

Fig. 3.
Fig. 3.

(a) Steady-state magnetic-field distribution along the waveguide for a frequency a/λ = 0.26a corresponding to a propagating mode within the bandgap. The colorbar indicates the amplitude variation between the minimum and maximum values. (b) Steady-state magnetic field distribution along the waveguide bend for a frequency a/λ = 0.26a . The dashed-vertical lines show the locations of sources.

Fig. 4.
Fig. 4.

(a) Photonic-crystal waveguide with some of the holes unfilled intentionally. In total 10 holes left unfilled with liquids. (b) The schematic representation of photonic crystal waveguide bend with 90° angle.

Fig. 5.
Fig. 5.

Steady-state field map of the structure as the schematic is indicated in Fig. 4(a). (b) Steady-state magnetic- field distribution along the waveguide [schematic is shown in Fig. 1(a)] for a frequency a/λ = 0.26a corresponding to a propagating mode within the bandgap. The infiltrated holes in this case have higher-refractive indices n = 2.0. The dashed-vertical lines show the locations of sources.

Fig. 6.
Fig. 6.

The steady-state magnetic field variation of the waveguide bend with bend angle of 90°. The filled holes have refractive index of 1.5 in (a) and 2.0 in (b). The dashed-vertical lines show the locations of sources.

Metrics