Abstract

We present the design and analysis of a novel reconfigurable photonic-crystal waveguide (PCW). The predefined waveguide is the result of the refractive-index variation of three rows of holes that can be obtained by the infiltration of liquids within what are otherwise air holes in a two-dimensional triangular-lattice photonic crystal. We compute the power transmission through the reconfigurable PCWs as well as through arbitrary waveguide bends. The advantages of writing reconfigurable PCW of a multimode nature are highlighted. We demonstrate the necessity to infiltrate high-refractive-index substances to obtain efficient power transfer via reconfigurable manner.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton, New Jersey: Princeton University Press, 1995).
  2. O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett 12, 1126–1128 (2000).
    [CrossRef]
  3. P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett 85, 1875–1878 (2000).
    [CrossRef] [PubMed]
  4. H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev B 67, 073106 (14) (2003).
    [CrossRef]
  5. H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett 16, 1528–1530 (2004).
    [CrossRef]
  6. T. Yasuda, Y. Tsuji, and M. Koshiba, “Tunable light propagation in photonic crystal coupler filled with liquid crystal,” IEEE Photon. Technol. Lett 17, 55–57 (2005).
    [CrossRef]
  7. F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L Pavesi, S. L Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett 89, 211117 (1–3) (2006).
    [CrossRef]
  8. D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
    [CrossRef] [PubMed]
  9. M. Loncar, B. G. Lee, L Diehl, M. A. Beklin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, “Design and fabrication of photonic crystal quantum cascade lasers for optofluidics,” Opt. Express 15, 4499–4514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4499.
    [CrossRef] [PubMed]
  10. S. S. Xiao and N. A. Mortensen “Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides,” J. Opt. A: Pure Appl. Opt 9, S463–S467 (2007).
    [CrossRef]
  11. D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett 31, 59–61 (2006).
    [CrossRef] [PubMed]
  12. H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguide for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett 87, 241119 (1–3) (2005).
    [CrossRef]
  13. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
    [CrossRef]
  14. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photonics 1, 106–114 (2007).
    [CrossRef]
  15. A. Taflove, Computational Electrodynamics - The Finite-Difference Time-Domain Method (Norwood, Massachusetts: Artech House, 2000).
  16. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys 114, 185200 (1994).
    [CrossRef]
  17. H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron 43, 78–84 (2007).
    [CrossRef]

2007 (5)

S. S. Xiao and N. A. Mortensen “Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides,” J. Opt. A: Pure Appl. Opt 9, S463–S467 (2007).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photonics 1, 106–114 (2007).
[CrossRef]

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron 43, 78–84 (2007).
[CrossRef]

M. Loncar, B. G. Lee, L Diehl, M. A. Beklin, F. Capasso, M. Giovannini, J. Faist, and E. Gini, “Design and fabrication of photonic crystal quantum cascade lasers for optofluidics,” Opt. Express 15, 4499–4514 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4499.
[CrossRef] [PubMed]

2006 (3)

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett 31, 59–61 (2006).
[CrossRef] [PubMed]

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L Pavesi, S. L Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett 89, 211117 (1–3) (2006).
[CrossRef]

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

2005 (2)

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguide for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett 87, 241119 (1–3) (2005).
[CrossRef]

T. Yasuda, Y. Tsuji, and M. Koshiba, “Tunable light propagation in photonic crystal coupler filled with liquid crystal,” IEEE Photon. Technol. Lett 17, 55–57 (2005).
[CrossRef]

2004 (1)

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett 16, 1528–1530 (2004).
[CrossRef]

2003 (1)

H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev B 67, 073106 (14) (2003).
[CrossRef]

2000 (2)

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett 12, 1126–1128 (2000).
[CrossRef]

P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett 85, 1875–1878 (2000).
[CrossRef] [PubMed]

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys 114, 185200 (1994).
[CrossRef]

Beklin, M. A.

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys 114, 185200 (1994).
[CrossRef]

Bettoti, P.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L Pavesi, S. L Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett 89, 211117 (1–3) (2006).
[CrossRef]

Capasso, F.

Chong, H. M. H.

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett 16, 1528–1530 (2004).
[CrossRef]

Citrin, D. S.

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron 43, 78–84 (2007).
[CrossRef]

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguide for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett 87, 241119 (1–3) (2005).
[CrossRef]

Colocci, M.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L Pavesi, S. L Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett 89, 211117 (1–3) (2006).
[CrossRef]

Dapkus, P. D.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett 12, 1126–1128 (2000).
[CrossRef]

De La Rue, R. M.

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett 16, 1528–1530 (2004).
[CrossRef]

Diehl, L

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photonics 1, 106–114 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photonics 1, 106–114 (2007).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Emery, T.

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett 31, 59–61 (2006).
[CrossRef] [PubMed]

Erickson, D.

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett 31, 59–61 (2006).
[CrossRef] [PubMed]

Faist, J.

Freeman, D.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Giessen, H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Gini, E.

Giovannini, M.

Grillet, C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Halevi, P.

P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett 85, 1875–1878 (2000).
[CrossRef] [PubMed]

Husain, A.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett 12, 1126–1128 (2000).
[CrossRef]

Intonti, F.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L Pavesi, S. L Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett 89, 211117 (1–3) (2006).
[CrossRef]

Joannopoulos, J. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton, New Jersey: Princeton University Press, 1995).

Kim, I.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett 12, 1126–1128 (2000).
[CrossRef]

Koshiba, M.

T. Yasuda, Y. Tsuji, and M. Koshiba, “Tunable light propagation in photonic crystal coupler filled with liquid crystal,” IEEE Photon. Technol. Lett 17, 55–57 (2005).
[CrossRef]

Kurt, H.

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron 43, 78–84 (2007).
[CrossRef]

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguide for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett 87, 241119 (1–3) (2005).
[CrossRef]

Lee, B. G.

Lee, M. W.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Lee, P. T.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett 12, 1126–1128 (2000).
[CrossRef]

Lee, Y. H.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Loncar, M.

Luther-Davies, B.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Madden, S.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Meade, R. D.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton, New Jersey: Princeton University Press, 1995).

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photonics 1, 106–114 (2007).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Mortensen, N. A.

S. S. Xiao and N. A. Mortensen “Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides,” J. Opt. A: Pure Appl. Opt 9, S463–S467 (2007).
[CrossRef]

O’Brien, J. D.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett 12, 1126–1128 (2000).
[CrossRef]

Painter, O.

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett 12, 1126–1128 (2000).
[CrossRef]

Pavesi, L

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L Pavesi, S. L Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett 89, 211117 (1–3) (2006).
[CrossRef]

Psaltis, D.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett 31, 59–61 (2006).
[CrossRef] [PubMed]

Quake, S. R.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

Ramos-Mendieta, F.

P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett 85, 1875–1878 (2000).
[CrossRef] [PubMed]

Rockwood, T.

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett 31, 59–61 (2006).
[CrossRef] [PubMed]

Ruan, Y.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Scherer, A.

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett 31, 59–61 (2006).
[CrossRef] [PubMed]

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett 12, 1126–1128 (2000).
[CrossRef]

Schweizer, S. L

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L Pavesi, S. L Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett 89, 211117 (1–3) (2006).
[CrossRef]

Smith, C. L. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics - The Finite-Difference Time-Domain Method (Norwood, Massachusetts: Artech House, 2000).

Takeda, H.

H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev B 67, 073106 (14) (2003).
[CrossRef]

Tomljenovic-Hanic, S.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Tsuji, Y.

T. Yasuda, Y. Tsuji, and M. Koshiba, “Tunable light propagation in photonic crystal coupler filled with liquid crystal,” IEEE Photon. Technol. Lett 17, 55–57 (2005).
[CrossRef]

Turck, V.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L Pavesi, S. L Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett 89, 211117 (1–3) (2006).
[CrossRef]

Vignolini, S.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L Pavesi, S. L Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett 89, 211117 (1–3) (2006).
[CrossRef]

Wehrspohn, R.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L Pavesi, S. L Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett 89, 211117 (1–3) (2006).
[CrossRef]

Wiersma, D.

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L Pavesi, S. L Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett 89, 211117 (1–3) (2006).
[CrossRef]

Winn, J. N.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton, New Jersey: Princeton University Press, 1995).

Wu, D. K. C.

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

Xiao, S. S.

S. S. Xiao and N. A. Mortensen “Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides,” J. Opt. A: Pure Appl. Opt 9, S463–S467 (2007).
[CrossRef]

Yang, C.

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

Yasuda, T.

T. Yasuda, Y. Tsuji, and M. Koshiba, “Tunable light propagation in photonic crystal coupler filled with liquid crystal,” IEEE Photon. Technol. Lett 17, 55–57 (2005).
[CrossRef]

Yoshino, K.

H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev B 67, 073106 (14) (2003).
[CrossRef]

Appl. Phys. Lett (3)

F. Intonti, S. Vignolini, V. Turck, M. Colocci, P. Bettoti, L Pavesi, S. L Schweizer, R. Wehrspohn, and D. Wiersma, “Rewritable photonic circuits,” Appl. Phys. Lett 89, 211117 (1–3) (2006).
[CrossRef]

H. Kurt and D. S. Citrin, “Coupled-resonator optical waveguide for biochemical sensing of nanoliter volumes of analyte in the terahertz region,” Appl. Phys. Lett 87, 241119 (1–3) (2005).
[CrossRef]

C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y. H. Lee, “Microfluidic photonic crystal double heterostructures,” Appl. Phys. Lett 91, 121103 (1–3) (2007).
[CrossRef]

IEEE J. Quantum Electron (1)

H. Kurt and D. S. Citrin, “Photonic-crystal heterostructure waveguides,” IEEE J. Quantum Electron 43, 78–84 (2007).
[CrossRef]

IEEE Photon. Technol. Lett (3)

H. M. H. Chong and R. M. De La Rue, “Tuning of photonic crystal waveguide microcavity by thermooptic effect,” IEEE Photon. Technol. Lett 16, 1528–1530 (2004).
[CrossRef]

T. Yasuda, Y. Tsuji, and M. Koshiba, “Tunable light propagation in photonic crystal coupler filled with liquid crystal,” IEEE Photon. Technol. Lett 17, 55–57 (2005).
[CrossRef]

O. Painter, A. Husain, A. Scherer, P. T. Lee, I. Kim, J. D. O’Brien, and P. D. Dapkus, “Lithographic tuning of a two-dimensional photonic crystal laser array,” IEEE Photon. Technol. Lett 12, 1126–1128 (2000).
[CrossRef]

J. Comput. Phys (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys 114, 185200 (1994).
[CrossRef]

J. Opt. A: Pure Appl. Opt (1)

S. S. Xiao and N. A. Mortensen “Proposal of highly sensitive optofluidic sensors based on dispersive photonic crystal waveguides,” J. Opt. A: Pure Appl. Opt 9, S463–S467 (2007).
[CrossRef]

Nature (1)

D. Psaltis, S. R. Quake, and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics,” Nature 442, 381–386 (2006).
[CrossRef] [PubMed]

Nature Photonics (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photonics 1, 106–114 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett (1)

D. Erickson, T. Rockwood, T. Emery, A. Scherer, and D. Psaltis, “Nanofluidic tuning of photonic crystal circuits,” Opt. Lett 31, 59–61 (2006).
[CrossRef] [PubMed]

Phys. Rev B (1)

H. Takeda and K. Yoshino, “Tunable light propagation in Y-shaped waveguides in two-dimensional photonic crystals utilizing liquid crystals as linear defects,” Phys. Rev B 67, 073106 (14) (2003).
[CrossRef]

Phys. Rev. Lett (1)

P. Halevi and F. Ramos-Mendieta, “Tunable photonic crystals with semiconducting constituents,” Phys. Rev. Lett 85, 1875–1878 (2000).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals, Molding the Flow of Light (Princeton, New Jersey: Princeton University Press, 1995).

A. Taflove, Computational Electrodynamics - The Finite-Difference Time-Domain Method (Norwood, Massachusetts: Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) The schematic of the photonic-crystal waveguide obtained by the infiltration of three rows of holes along ΓK direction. The dielectric background and holes in the waveguide region are assumed to be n = 3.46 and n = 1.5, respectively. The radii of holes are r = 0.3a. (b) The schematic of the photonic crystal waveguide bend (arbitrary written path) obtained by the infiltration of three rows of holes.

Fig. 2.
Fig. 2.

(a) The dispersion diagram of the waveguide used in the study. The plane-wave expansion method with the supercell approach is used in order to calculate the dispersion plot. (b) The dispersion diagram of the waveguide in case the infiltrated holes have higher-refractive indices n = 2.0 .

Fig. 3.
Fig. 3.

(a) Steady-state magnetic-field distribution along the waveguide for a frequency a/λ = 0.26a corresponding to a propagating mode within the bandgap. The colorbar indicates the amplitude variation between the minimum and maximum values. (b) Steady-state magnetic field distribution along the waveguide bend for a frequency a/λ = 0.26a . The dashed-vertical lines show the locations of sources.

Fig. 4.
Fig. 4.

(a) Photonic-crystal waveguide with some of the holes unfilled intentionally. In total 10 holes left unfilled with liquids. (b) The schematic representation of photonic crystal waveguide bend with 90° angle.

Fig. 5.
Fig. 5.

Steady-state field map of the structure as the schematic is indicated in Fig. 4(a). (b) Steady-state magnetic- field distribution along the waveguide [schematic is shown in Fig. 1(a)] for a frequency a/λ = 0.26a corresponding to a propagating mode within the bandgap. The infiltrated holes in this case have higher-refractive indices n = 2.0. The dashed-vertical lines show the locations of sources.

Fig. 6.
Fig. 6.

The steady-state magnetic field variation of the waveguide bend with bend angle of 90°. The filled holes have refractive index of 1.5 in (a) and 2.0 in (b). The dashed-vertical lines show the locations of sources.

Metrics