Abstract

In photonic crystal fibers with closely spaced zero dispersion wavelengths it is possible to have two pairs of four-wave mixing (FWM) gain peaks. Here, we demonstrate both numerically and experimentally how the outer four-wave mixing gain peaks can be used to produce a strong amplification peak in a picosecond supercontinuum. The method involves feeding back part of the output light of a SC source and time matching it with the pump light. In this way it is possible to produce a gain of over 20 dB near the FWM gain wavelengths.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys 78, 1135–1184 (2006).
    [Crossref]
  2. A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1245–1160 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1145.
    [Crossref]
  3. P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng “Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett 33, 621–623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
    [Crossref] [PubMed]
  4. A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt 11, 54035 (2006).
    [Crossref]
  5. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc 227, 203–215 (2007).
    [Crossref] [PubMed]
  6. J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with C-band OLT L-band ONU, and U-band monitoring,” J. Lightwave Technol 25, 2891–2897 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-10-2891.
    [Crossref]
  7. E. Räikköen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7914.
    [Crossref]
  8. P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Grating phase matching beyond a continuum edge,” Opt. Lett 32, 2629–2631 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2629.
    [Crossref] [PubMed]
  9. D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M.de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett 32, 1644–1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
    [Crossref] [PubMed]
  10. J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett 30, 3132–3134 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3132.
    [Crossref] [PubMed]
  11. J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrès, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, “Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm,” Opt. Commun 281, 433–438 (2008).
    [Crossref]
  12. C. Xiong, A. Witkowska, S. G. Leon-Saval, T. A. Birks, and W. J. Wadsworth, “Enhanced visible continuum generation from a microchip 1064nm laser,” Opt. Express 14, 6188–6193 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6188.
    [Crossref] [PubMed]
  13. W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13, 6541–6549 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6541.
    [Crossref] [PubMed]
  14. P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7535.
    [Crossref] [PubMed]
  15. F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett 30, 1566–1568 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566.
    [Crossref] [PubMed]
  16. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. Russell, and M. W. Mason, “Su-percontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2864.
    [Crossref] [PubMed]
  17. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett 30, 1980–1982 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-15-1980.
    [Crossref] [PubMed]
  18. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5715.
    [Crossref] [PubMed]
  19. C. Cheng, X. Wang, Z. Fang, and B. Shen, “Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber,” Opt. Commun 244, 219–225 (2005).
    [Crossref]
  20. S. Martin-Lopez, L. Abrardi, P. Corredera, M. Gonzalez-Herraez, and A. Mussot, “Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths,” Opt. Express 16, 6745–6755 (2008).http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6745.
    [Crossref] [PubMed]
  21. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W high power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5954.
    [Crossref] [PubMed]
  22. A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett 92, 141103 (2008).
    [Crossref]
  23. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express 15, 11553–11563 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11553.
    [Crossref] [PubMed]
  24. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am B  20, 2329–2337 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-11-2329.
    [Crossref]
  25. M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am B  23, 1692–1699 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-8-1692.
    [Crossref]
  26. J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-3644.
    [Crossref] [PubMed]
  27. M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, “High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser,” IEEE Photon. Technol. Lett 17, 1172–1174 (2005).
    [Crossref]
  28. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Scalar modulation stability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett 28, 2225–2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225.
    [Crossref] [PubMed]
  29. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett 30, 1234–1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234.
    [Crossref] [PubMed]
  30. S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-3-173.
    [Crossref] [PubMed]
  31. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001), 3rd ed.
  32. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1045.
    [Crossref] [PubMed]
  33. G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4614.
    [Crossref] [PubMed]
  34. T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556–9569 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9556.
    [Crossref] [PubMed]
  35. A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. Russell, “Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling,” Opt. Express 12, 6498–6507 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6498.
    [Crossref] [PubMed]
  36. M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of super-continua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6181. + Erratum, Opt. Express 15, 5262–5263 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5262.
    [Crossref] [PubMed]
  37. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Super-continuum generation at 1.06 μm in holey fibers with dispersion flattened profiles,” Opt. Express 14, 4445–4451 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445.
    [Crossref] [PubMed]
  38. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
    [Crossref] [PubMed]
  39. G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am B  24, 1771–1785 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-8-1771.
    [Crossref]
  40. K. Iizuka, “In free space and special media,” Vol.  1 of “Elements of Photonics” (John Wiley & Sons, New York, 2002), pp. 389–392.
  41. P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, “Back seeding of picosecond supercontinuum generation in photonic crystal fibres,” in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE6990, 24 (2008).
  42. M. Nakazawa, K. Suzuki, and H. A. Haus, “The Modulational Instability Laser-Part I: Experiment,” IEEE J. Quant. Electron 25, 2036–2044 (1989).
    [Crossref]
  43. C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett 27, 915–917 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-11-915.
    [Crossref]
  44. J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, “Mode areas and field-energy distribution in honeycomb photonic bandgap fibers,” J. Opt. Soc. Am B  20, 2037–2045 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-10-2037.
    [Crossref]
  45. K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron 25, 2665–2673 (1989).
    [Crossref]
  46. O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol 21, 61–68 (2003). http://dx.doi.org/10.1109/JLT.2003.808628
    [Crossref]
  47. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391.
    [Crossref] [PubMed]
  48. S. B. Cavalcanti, G. P. Agrawal, and M. Yu, “Noise amplification in dispersive nonlinear media,” Phys. Rev A  51, 4086–4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086.
    [Crossref]
  49. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express 12, 2838–2843 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2838.
    [Crossref] [PubMed]
  50. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,𥀝 in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc.  70, FA9-1–FA9-3 (2002).
  51. T. T. Alkeskjold, crystal Fibre A/S, Blokken 84, DK-3460, Birkerød, Denmark (personal communication, 2008).
  52. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev A  51, 2602–2607 (1995).
    [Crossref]
  53. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
    [Crossref] [PubMed]
  54. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett 28, 1123–1125 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1123.
    [Crossref] [PubMed]

2008 (6)

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng “Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett 33, 621–623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
[Crossref] [PubMed]

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrès, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, “Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm,” Opt. Commun 281, 433–438 (2008).
[Crossref]

S. Martin-Lopez, L. Abrardi, P. Corredera, M. Gonzalez-Herraez, and A. Mussot, “Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths,” Opt. Express 16, 6745–6755 (2008).http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6745.
[Crossref] [PubMed]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W high power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5954.
[Crossref] [PubMed]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett 92, 141103 (2008).
[Crossref]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-3644.
[Crossref] [PubMed]

2007 (7)

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am B  24, 1771–1785 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-8-1771.
[Crossref]

A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express 15, 11553–11563 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11553.
[Crossref] [PubMed]

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc 227, 203–215 (2007).
[Crossref] [PubMed]

J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with C-band OLT L-band ONU, and U-band monitoring,” J. Lightwave Technol 25, 2891–2897 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-10-2891.
[Crossref]

P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Grating phase matching beyond a continuum edge,” Opt. Lett 32, 2629–2631 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2629.
[Crossref] [PubMed]

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M.de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett 32, 1644–1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
[Crossref] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
[Crossref] [PubMed]

2006 (9)

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391.
[Crossref] [PubMed]

E. Räikköen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7914.
[Crossref]

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt 11, 54035 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys 78, 1135–1184 (2006).
[Crossref]

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1245–1160 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1145.
[Crossref]

C. Xiong, A. Witkowska, S. G. Leon-Saval, T. A. Birks, and W. J. Wadsworth, “Enhanced visible continuum generation from a microchip 1064nm laser,” Opt. Express 14, 6188–6193 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6188.
[Crossref] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Super-continuum generation at 1.06 μm in holey fibers with dispersion flattened profiles,” Opt. Express 14, 4445–4451 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445.
[Crossref] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5715.
[Crossref] [PubMed]

M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am B  23, 1692–1699 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-8-1692.
[Crossref]

2005 (10)

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett 30, 1980–1982 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-15-1980.
[Crossref] [PubMed]

C. Cheng, X. Wang, Z. Fang, and B. Shen, “Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber,” Opt. Commun 244, 219–225 (2005).
[Crossref]

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, “High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser,” IEEE Photon. Technol. Lett 17, 1172–1174 (2005).
[Crossref]

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett 30, 1234–1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234.
[Crossref] [PubMed]

T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556–9569 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9556.
[Crossref] [PubMed]

W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13, 6541–6549 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6541.
[Crossref] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7535.
[Crossref] [PubMed]

F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett 30, 1566–1568 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566.
[Crossref] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett 30, 3132–3134 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3132.
[Crossref] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of super-continua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6181. + Erratum, Opt. Express 15, 5262–5263 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5262.
[Crossref] [PubMed]

2004 (5)

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express 12, 2838–2843 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2838.
[Crossref] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. Russell, and M. W. Mason, “Su-percontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2864.
[Crossref] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. Russell, “Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling,” Opt. Express 12, 6498–6507 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6498.
[Crossref] [PubMed]

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1045.
[Crossref] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4614.
[Crossref] [PubMed]

2003 (6)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Scalar modulation stability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett 28, 2225–2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225.
[Crossref] [PubMed]

N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am B  20, 2329–2337 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-11-2329.
[Crossref]

J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, “Mode areas and field-energy distribution in honeycomb photonic bandgap fibers,” J. Opt. Soc. Am B  20, 2037–2045 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-10-2037.
[Crossref]

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett 28, 1123–1125 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1123.
[Crossref] [PubMed]

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol 21, 61–68 (2003). http://dx.doi.org/10.1109/JLT.2003.808628
[Crossref]

2002 (3)

C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett 27, 915–917 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-11-915.
[Crossref]

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,𥀝 in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc.  70, FA9-1–FA9-3 (2002).

K. Iizuka, “In free space and special media,” Vol.  1 of “Elements of Photonics” (John Wiley & Sons, New York, 2002), pp. 389–392.

2001 (1)

1995 (2)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev A  51, 2602–2607 (1995).
[Crossref]

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, “Noise amplification in dispersive nonlinear media,” Phys. Rev A  51, 4086–4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086.
[Crossref]

1989 (2)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron 25, 2665–2673 (1989).
[Crossref]

M. Nakazawa, K. Suzuki, and H. A. Haus, “The Modulational Instability Laser-Part I: Experiment,” IEEE J. Quant. Electron 25, 2036–2044 (1989).
[Crossref]

Abrardi, L.

Agrawal, G. P.

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett 30, 1234–1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234.
[Crossref] [PubMed]

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, “Noise amplification in dispersive nonlinear media,” Phys. Rev A  51, 4086–4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086.
[Crossref]

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001), 3rd ed.

Aguirre, A. D.

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1245–1160 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1145.
[Crossref]

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev A  51, 2602–2607 (1995).
[Crossref]

Alkeskjold, T. T.

T. T. Alkeskjold, crystal Fibre A/S, Blokken 84, DK-3460, Birkerød, Denmark (personal communication, 2008).

Andersen, P. E.

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng “Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett 33, 621–623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
[Crossref] [PubMed]

Andersen, T. V.

Andrès, M.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrès, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, “Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm,” Opt. Commun 281, 433–438 (2008).
[Crossref]

Austin, D. R.

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M.de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett 32, 1644–1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
[Crossref] [PubMed]

Bang, O.

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng “Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett 33, 621–623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
[Crossref] [PubMed]

M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am B  23, 1692–1699 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-8-1692.
[Crossref]

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391.
[Crossref] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7535.
[Crossref] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of super-continua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6181. + Erratum, Opt. Express 15, 5262–5263 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5262.
[Crossref] [PubMed]

N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am B  20, 2329–2337 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-11-2329.
[Crossref]

P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, “Back seeding of picosecond supercontinuum generation in photonic crystal fibres,” in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE6990, 24 (2008).

Bassi, A.

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt 11, 54035 (2006).
[Crossref]

Beaugeois, M.

Biancalana, F.

Birks, T. A.

Bjarklev, A.

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391.
[Crossref] [PubMed]

J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, “Mode areas and field-energy distribution in honeycomb photonic bandgap fibers,” J. Opt. Soc. Am B  20, 2037–2045 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-10-2037.
[Crossref]

N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am B  20, 2329–2337 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-11-2329.
[Crossref]

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,𥀝 in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc.  70, FA9-1–FA9-3 (2002).

Bjarklev, A. O.

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng “Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett 33, 621–623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
[Crossref] [PubMed]

Blow, K. J.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron 25, 2665–2673 (1989).
[Crossref]

Bolger, J. A.

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M.de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett 32, 1644–1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
[Crossref] [PubMed]

Bouazaoui, M.

Bouwmans, G.

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett 92, 141103 (2008).
[Crossref]

Broderick, N. G. R.

Broeng, J.

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng “Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett 33, 621–623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
[Crossref] [PubMed]

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,𥀝 in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc.  70, FA9-1–FA9-3 (2002).

Buchter, S. C.

Cascante-Vindas, J.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrès, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, “Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm,” Opt. Commun 281, 433–438 (2008).
[Crossref]

Cavalcanti, S. B.

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, “Noise amplification in dispersive nonlinear media,” Phys. Rev A  51, 4086–4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086.
[Crossref]

Cheng, C.

C. Cheng, X. Wang, Z. Fang, and B. Shen, “Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber,” Opt. Commun 244, 219–225 (2005).
[Crossref]

Chestnut, D. A.

C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett 27, 915–917 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-11-915.
[Crossref]

Coen, S.

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am B  24, 1771–1785 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-8-1771.
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys 78, 1135–1184 (2006).
[Crossref]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Scalar modulation stability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett 28, 2225–2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225.
[Crossref] [PubMed]

Cordeiro, C. M. B.

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett 30, 1980–1982 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-15-1980.
[Crossref] [PubMed]

Corredera, P.

Cruz, J.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrès, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, “Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm,” Opt. Commun 281, 433–438 (2008).
[Crossref]

Cubeddu, R.

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt 11, 54035 (2006).
[Crossref]

Cumberland, B. A.

de Matos, C. J. S.

C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett 27, 915–917 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-11-915.
[Crossref]

Deng, Y.

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett 30, 1234–1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234.
[Crossref] [PubMed]

F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett 30, 1566–1568 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566.
[Crossref] [PubMed]

Diez, A.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrès, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, “Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm,” Opt. Commun 281, 433–438 (2008).
[Crossref]

Ding, L.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, “High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser,” IEEE Photon. Technol. Lett 17, 1172–1174 (2005).
[Crossref]

Dudley, J. M.

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-3644.
[Crossref] [PubMed]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am B  24, 1771–1785 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-8-1771.
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys 78, 1135–1184 (2006).
[Crossref]

Efimov, A.

Eggleton, B. J.

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-3644.
[Crossref] [PubMed]

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M.de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett 32, 1644–1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
[Crossref] [PubMed]

Elder, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc 227, 203–215 (2007).
[Crossref] [PubMed]

Falk, P.

Fang, Z.

C. Cheng, X. Wang, Z. Fang, and B. Shen, “Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber,” Opt. Commun 244, 219–225 (2005).
[Crossref]

Feder, K. S.

P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Grating phase matching beyond a continuum edge,” Opt. Lett 32, 2629–2631 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2629.
[Crossref] [PubMed]

Feng, M.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, “High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser,” IEEE Photon. Technol. Lett 17, 1172–1174 (2005).
[Crossref]

Finot, C.

Frank, J. H.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc 227, 203–215 (2007).
[Crossref] [PubMed]

Frosz, M. H.

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng “Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett 33, 621–623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
[Crossref] [PubMed]

M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am B  23, 1692–1699 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-8-1692.
[Crossref]

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391.
[Crossref] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of super-continua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6181. + Erratum, Opt. Express 15, 5262–5263 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5262.
[Crossref] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7535.
[Crossref] [PubMed]

P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, “Back seeding of picosecond supercontinuum generation in photonic crystal fibres,” in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE6990, 24 (2008).

Fujimoto, J. G.

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1245–1160 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1145.
[Crossref]

Genty, G.

George, A. K.

Giusto, A.

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt 11, 54035 (2006).
[Crossref]

Gonzalez-Herraez, M.

Han, Y.-G.

J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with C-band OLT L-band ONU, and U-band monitoring,” J. Lightwave Technol 25, 2891–2897 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-10-2891.
[Crossref]

Hansen, K. P.

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng “Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett 33, 621–623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
[Crossref] [PubMed]

E. Räikköen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7914.
[Crossref]

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1045.
[Crossref] [PubMed]

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,𥀝 in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc.  70, FA9-1–FA9-3 (2002).

Harvey, J. D.

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Scalar modulation stability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett 28, 2225–2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225.
[Crossref] [PubMed]

Haus, H. A.

M. Nakazawa, K. Suzuki, and H. A. Haus, “The Modulational Instability Laser-Part I: Experiment,” IEEE J. Quant. Electron 25, 2036–2044 (1989).
[Crossref]

Hayes, J. R.

Hilligsøe, K. M.

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1045.
[Crossref] [PubMed]

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett 28, 1123–1125 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1123.
[Crossref] [PubMed]

Holzlöhner, R.

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol 21, 61–68 (2003). http://dx.doi.org/10.1109/JLT.2003.808628
[Crossref]

Horak, P.

Iizuka, K.

K. Iizuka, “In free space and special media,” Vol.  1 of “Elements of Photonics” (John Wiley & Sons, New York, 2002), pp. 389–392.

Jacobsen, C.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,𥀝 in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc.  70, FA9-1–FA9-3 (2002).

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
[Crossref] [PubMed]

Jensen, J. R.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,𥀝 in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc.  70, FA9-1–FA9-3 (2002).

Jeyasekharan, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc 227, 203–215 (2007).
[Crossref] [PubMed]

Joannopoulos, J.

Johnson, S.

Joly, N. Y.

Kaivola, M.

Kaminski, C. F.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc 227, 203–215 (2007).
[Crossref] [PubMed]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev A  51, 2602–2607 (1995).
[Crossref]

Keiding, S.

Keiding, S. R.

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett 28, 1123–1125 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1123.
[Crossref] [PubMed]

Kim, C. H.

J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with C-band OLT L-band ONU, and U-band monitoring,” J. Lightwave Technol 25, 2891–2897 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-10-2891.
[Crossref]

Kimmelma, O.

Knight, J. C.

Knox, W. H.

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett 30, 1234–1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234.
[Crossref] [PubMed]

F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett 30, 1566–1568 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566.
[Crossref] [PubMed]

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
[Crossref] [PubMed]

Kopf, D.

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1245–1160 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1145.
[Crossref]

Kristiansen, R.

Kudlinski, A.

Kuhlmey, B. T.

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M.de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett 32, 1644–1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
[Crossref] [PubMed]

Lægsgaard, J.

J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, “Mode areas and field-energy distribution in honeycomb photonic bandgap fibers,” J. Opt. Soc. Am B  20, 2037–2045 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-10-2037.
[Crossref]

Lantz, E.

Larsen, J. J.

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1045.
[Crossref] [PubMed]

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett 28, 1123–1125 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1123.
[Crossref] [PubMed]

Lederer, M.

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1245–1160 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1145.
[Crossref]

Lee, J. H.

J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with C-band OLT L-band ONU, and U-band monitoring,” J. Lightwave Technol 25, 2891–2897 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-10-2891.
[Crossref]

Lee, K.

J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with C-band OLT L-band ONU, and U-band monitoring,” J. Lightwave Technol 25, 2891–2897 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-10-2891.
[Crossref]

Lee, S. B.

J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with C-band OLT L-band ONU, and U-band monitoring,” J. Lightwave Technol 25, 2891–2897 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-10-2891.
[Crossref]

Lehtonen, M.

Leonhardt, R.

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Scalar modulation stability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett 28, 2225–2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225.
[Crossref] [PubMed]

Leon-Saval, S. G.

Li, J.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, “High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser,” IEEE Photon. Technol. Lett 17, 1172–1174 (2005).
[Crossref]

Li, J. F.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, “High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser,” IEEE Photon. Technol. Lett 17, 1172–1174 (2005).
[Crossref]

Li, Y. G.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, “High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser,” IEEE Photon. Technol. Lett 17, 1172–1174 (2005).
[Crossref]

Limpert, J.

Lin, Q.

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett 30, 1234–1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234.
[Crossref] [PubMed]

Lu, F.

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett 30, 1234–1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234.
[Crossref] [PubMed]

F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett 30, 1566–1568 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566.
[Crossref] [PubMed]

Lu, K. C.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, “High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser,” IEEE Photon. Technol. Lett 17, 1172–1174 (2005).
[Crossref]

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Ludvigsen, H.

Maillotte, H.

Marshall, G. D.

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M.de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett 32, 1644–1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
[Crossref] [PubMed]

Martin-Lopez, S.

Mason, M. W.

Menyuk, C. R.

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol 21, 61–68 (2003). http://dx.doi.org/10.1109/JLT.2003.808628
[Crossref]

Miret, J.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrès, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, “Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm,” Opt. Commun 281, 433–438 (2008).
[Crossref]

Mølmer, K.

Mortensen, N. A.

J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, “Mode areas and field-energy distribution in honeycomb photonic bandgap fibers,” J. Opt. Soc. Am B  20, 2037–2045 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-10-2037.
[Crossref]

Moselund, P. M.

P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, “Back seeding of picosecond supercontinuum generation in photonic crystal fibres,” in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE6990, 24 (2008).

Mussot, A.

Nakazawa, M.

M. Nakazawa, K. Suzuki, and H. A. Haus, “The Modulational Instability Laser-Part I: Experiment,” IEEE J. Quant. Electron 25, 2036–2044 (1989).
[Crossref]

Nicholson, J. W.

P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Grating phase matching beyond a continuum edge,” Opt. Lett 32, 2629–2631 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2629.
[Crossref] [PubMed]

Nielsen, C. K.

Nikolov, N. I.

N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am B  20, 2329–2337 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-11-2329.
[Crossref]

Nishizawa, N.

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1245–1160 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1145.
[Crossref]

Omenetto, F. G.

Ortigosa-Blanch, A.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrès, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, “Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm,” Opt. Commun 281, 433–438 (2008).
[Crossref]

Paulsen, H. N.

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1045.
[Crossref] [PubMed]

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett 28, 1123–1125 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1123.
[Crossref] [PubMed]

Petersson, A.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,𥀝 in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc.  70, FA9-1–FA9-3 (2002).

Pifferi, A.

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt 11, 54035 (2006).
[Crossref]

Pitois, S.

Poletti, F.

Popov, S. V.

Price, J. H. V.

Quiquempois, Y.

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett 92, 141103 (2008).
[Crossref]

Räikköen, E.

Richardson, D. J.

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
[Crossref] [PubMed]

Rulkov, A. B.

Russell, P. S.

Russell, P. S. J.

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett 30, 1980–1982 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-15-1980.
[Crossref] [PubMed]

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Scalar modulation stability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett 28, 2225–2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225.
[Crossref] [PubMed]

Schimpf, D.

Schreiber, T.

Seitz, W.

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1245–1160 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1145.
[Crossref]

Shen, B.

C. Cheng, X. Wang, Z. Fang, and B. Shen, “Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber,” Opt. Commun 244, 219–225 (2005).
[Crossref]

Silvestre, E.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrès, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, “Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm,” Opt. Commun 281, 433–438 (2008).
[Crossref]

Simonsen, H. R.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,𥀝 in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc.  70, FA9-1–FA9-3 (2002).

Sinkin, O. V.

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol 21, 61–68 (2003). http://dx.doi.org/10.1109/JLT.2003.808628
[Crossref]

Skovgaard, P. M. W.

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,𥀝 in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc.  70, FA9-1–FA9-3 (2002).

Skryabin, D. V.

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
[Crossref] [PubMed]

Sørensen, T.

M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am B  23, 1692–1699 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-8-1692.
[Crossref]

N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am B  20, 2329–2337 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-11-2329.
[Crossref]

Spinelli, L.

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt 11, 54035 (2006).
[Crossref]

Sterke, C. M.de

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M.de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett 32, 1644–1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
[Crossref] [PubMed]

Suzuki, K.

M. Nakazawa, K. Suzuki, and H. A. Haus, “The Modulational Instability Laser-Part I: Experiment,” IEEE J. Quant. Electron 25, 2036–2044 (1989).
[Crossref]

Swartling, J.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc 227, 203–215 (2007).
[Crossref] [PubMed]

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt 11, 54035 (2006).
[Crossref]

Sylvestre, T.

Taylor, A. J.

Taylor, J. R.

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W high power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5954.
[Crossref] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5715.
[Crossref] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett 30, 3132–3134 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3132.
[Crossref] [PubMed]

C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett 27, 915–917 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-11-915.
[Crossref]

Thøgersen, J.

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett 28, 1123–1125 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1123.
[Crossref] [PubMed]

Thomsen, C. L.

P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, “Back seeding of picosecond supercontinuum generation in photonic crystal fibres,” in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE6990, 24 (2008).

Thrane, L.

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng “Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett 33, 621–623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
[Crossref] [PubMed]

Torricelli, A.

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt 11, 54035 (2006).
[Crossref]

Travers, J. C.

Tse, M. L. V.

Tünnermann, A.

Venkitaraman, A. R.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc 227, 203–215 (2007).
[Crossref] [PubMed]

Wadsworth, W. J.

C. Xiong, A. Witkowska, S. G. Leon-Saval, T. A. Birks, and W. J. Wadsworth, “Enhanced visible continuum generation from a microchip 1064nm laser,” Opt. Express 14, 6188–6193 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6188.
[Crossref] [PubMed]

W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13, 6541–6549 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6541.
[Crossref] [PubMed]

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett 30, 1980–1982 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-15-1980.
[Crossref] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. Russell, and M. W. Mason, “Su-percontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2864.
[Crossref] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Scalar modulation stability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett 28, 2225–2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225.
[Crossref] [PubMed]

Wang, X.

C. Cheng, X. Wang, Z. Fang, and B. Shen, “Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber,” Opt. Commun 244, 219–225 (2005).
[Crossref]

Westbrook, P. S.

P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Grating phase matching beyond a continuum edge,” Opt. Lett 32, 2629–2631 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2629.
[Crossref] [PubMed]

Withford, M. J.

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M.de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett 32, 1644–1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
[Crossref] [PubMed]

Witkowska, A.

Wong, G. K. L.

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Scalar modulation stability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett 28, 2225–2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225.
[Crossref] [PubMed]

Wood, D.

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron 25, 2665–2673 (1989).
[Crossref]

Xiong, C.

Yeom, D.-I.

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M.de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett 32, 1644–1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
[Crossref] [PubMed]

Yu, M.

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, “Noise amplification in dispersive nonlinear media,” Phys. Rev A  51, 4086–4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086.
[Crossref]

Yulin, A. V.

Zweck, J.

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol 21, 61–68 (2003). http://dx.doi.org/10.1109/JLT.2003.808628
[Crossref]

Appl. Phys. Lett (1)

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, “Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers,” Appl. Phys. Lett 92, 141103 (2008).
[Crossref]

Elements of Photonics (1)

K. Iizuka, “In free space and special media,” Vol.  1 of “Elements of Photonics” (John Wiley & Sons, New York, 2002), pp. 389–392.

IEEE J. Quant. Electron (1)

M. Nakazawa, K. Suzuki, and H. A. Haus, “The Modulational Instability Laser-Part I: Experiment,” IEEE J. Quant. Electron 25, 2036–2044 (1989).
[Crossref]

IEEE J. Quantum Electron (1)

K. J. Blow and D. Wood, “Theoretical description of transient stimulated Raman scattering in optical fibers,” IEEE J. Quantum Electron 25, 2665–2673 (1989).
[Crossref]

IEEE Photon. Technol. Lett (1)

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, “High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser,” IEEE Photon. Technol. Lett 17, 1172–1174 (2005).
[Crossref]

J. Biomed. Opt (1)

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, “Feasibility of white-light time-resolved optical mammography,” J. Biomed. Opt 11, 54035 (2006).
[Crossref]

J. Lightwave Technol (2)

J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, “Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with C-band OLT L-band ONU, and U-band monitoring,” J. Lightwave Technol 25, 2891–2897 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-10-2891.
[Crossref]

O. V. Sinkin, R. Holzlöhner, J. Zweck, and C. R. Menyuk, “Optimization of the split-step Fourier method in modeling optical-fiber communications systems,” J. Lightwave Technol 21, 61–68 (2003). http://dx.doi.org/10.1109/JLT.2003.808628
[Crossref]

J. Microsc (1)

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc 227, 203–215 (2007).
[Crossref] [PubMed]

J. Opt. Soc. Am (4)

N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” J. Opt. Soc. Am B  20, 2329–2337 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-11-2329.
[Crossref]

M. H. Frosz, T. Sørensen, and O. Bang, “Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping,” J. Opt. Soc. Am B  23, 1692–1699 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-8-1692.
[Crossref]

G. Genty, S. Coen, and J. M. Dudley, “Fiber supercontinuum sources,” J. Opt. Soc. Am B  24, 1771–1785 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-8-1771.
[Crossref]

J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, “Mode areas and field-energy distribution in honeycomb photonic bandgap fibers,” J. Opt. Soc. Am B  20, 2037–2045 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-10-2037.
[Crossref]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1058 (2007).
[Crossref] [PubMed]

Opt. Commun (2)

C. Cheng, X. Wang, Z. Fang, and B. Shen, “Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber,” Opt. Commun 244, 219–225 (2005).
[Crossref]

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrès, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, “Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm,” Opt. Commun 281, 433–438 (2008).
[Crossref]

Opt. Express (20)

C. Xiong, A. Witkowska, S. G. Leon-Saval, T. A. Birks, and W. J. Wadsworth, “Enhanced visible continuum generation from a microchip 1064nm laser,” Opt. Express 14, 6188–6193 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6188.
[Crossref] [PubMed]

W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, “Hole inflation and tapering of stock photonic crystal fibres,” Opt. Express 13, 6541–6549 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6541.
[Crossref] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, “Supercontinuum generation in a photonic crystal fiber with two zero-dispersion wavelengths tapered to normal dispersion at all wavelengths,” Opt. Express 13, 7535–7540 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7535.
[Crossref] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. Russell, and M. W. Mason, “Su-percontinuum generation in submicron fibre waveguides,” Opt. Express 12, 2864–2869 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2864.
[Crossref] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14, 5715–5722 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5715.
[Crossref] [PubMed]

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14, 1245–1160 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-3-1145.
[Crossref]

E. Räikköen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, “Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers,” Opt. Express 14, 7914–7923 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-17-7914.
[Crossref]

S. Martin-Lopez, L. Abrardi, P. Corredera, M. Gonzalez-Herraez, and A. Mussot, “Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths,” Opt. Express 16, 6745–6755 (2008).http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6745.
[Crossref] [PubMed]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W high power CW supercontinuum source,” Opt. Express 16, 5954–5962 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5954.
[Crossref] [PubMed]

A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, “Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths,” Opt. Express 15, 11553–11563 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11553.
[Crossref] [PubMed]

J. M. Dudley, G. Genty, and B. J. Eggleton, “Harnessing and control of optical rogue waves in supercontinuum generation,” Opt. Express 16, 3644–3651 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-3644.
[Crossref] [PubMed]

S. Johnson and J. Joannopoulos, “Block-iterative frequency-domain methods for maxwell’s equations in a planewave basis,” Opt. Express 8, 173–190 (2001). http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-3-173.
[Crossref] [PubMed]

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Opt. Express 12, 1045–1054 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1045.
[Crossref] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, “Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses,” Opt. Express 12, 4614–4624 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4614.
[Crossref] [PubMed]

T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. Tünnermann, “Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths,” Opt. Express 13, 9556–9569 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9556.
[Crossref] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. Russell, “Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling,” Opt. Express 12, 6498–6507 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6498.
[Crossref] [PubMed]

M. H. Frosz, P. Falk, and O. Bang, “The role of the second zero-dispersion wavelength in generation of super-continua and bright-bright soliton-pairs across the zero-dispersion wavelength,” Opt. Express 13, 6181–6192 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6181. + Erratum, Opt. Express 15, 5262–5263 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5262.
[Crossref] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, “Super-continuum generation at 1.06 μm in holey fibers with dispersion flattened profiles,” Opt. Express 14, 4445–4451 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445.
[Crossref] [PubMed]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, “Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers,” Opt. Express 12, 2838–2843 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2838.
[Crossref] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14, 9391–9407 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391.
[Crossref] [PubMed]

Opt. Lett (10)

C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, “Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train,” Opt. Lett 27, 915–917 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-11-915.
[Crossref]

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett 28, 1123–1125 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1123.
[Crossref] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Scalar modulation stability in the normal dispersion regime by use of a photonic crystal fiber,” Opt. Lett 28, 2225–2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225.
[Crossref] [PubMed]

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, “Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber,” Opt. Lett 30, 1234–1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234.
[Crossref] [PubMed]

P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Grating phase matching beyond a continuum edge,” Opt. Lett 32, 2629–2631 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2629.
[Crossref] [PubMed]

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M.de Sterke, and B. J. Eggleton, “Tunable spectral enhancement of fiber supercontinuum,” Opt. Lett 32, 1644–1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
[Crossref] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, “Extended blue supercontinuum generation in cascaded holey fibers,” Opt. Lett 30, 3132–3134 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3132.
[Crossref] [PubMed]

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng “Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves,” Opt. Lett 33, 621–623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
[Crossref] [PubMed]

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, “Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser,” Opt. Lett 30, 1980–1982 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-15-1980.
[Crossref] [PubMed]

F. Lu, Y. Deng, and W. H. Knox, “Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers,” Opt. Lett 30, 1566–1568 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566.
[Crossref] [PubMed]

Phys. Rev (2)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev A  51, 2602–2607 (1995).
[Crossref]

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, “Noise amplification in dispersive nonlinear media,” Phys. Rev A  51, 4086–4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086.
[Crossref]

Rev. Mod. Phys (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys 78, 1135–1184 (2006).
[Crossref]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, “Soliton self-frequency shift cancellation in photonic crystal fibers,” Science 301, 1705–1708 (2003).
[Crossref] [PubMed]

Other (4)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001), 3rd ed.

P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, “Back seeding of picosecond supercontinuum generation in photonic crystal fibres,” in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE6990, 24 (2008).

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, “Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 μm,𥀝 in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc.  70, FA9-1–FA9-3 (2002).

T. T. Alkeskjold, crystal Fibre A/S, Blokken 84, DK-3460, Birkerød, Denmark (personal communication, 2008).

Supplementary Material (1)

» Media 1: AVI (2193 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Characteristics of the 1050-zero-2 fiber. (a) Estimated dispersion profile with ZDWs at 954 nm and 1152 nm. (b) FWM phase matching gain bands as a function of power and pump wavelength. The FWM gain peaks for the 1064 nm pump at 116 W peak power are at 877 nm, 1039 nm, 1091 nm, and 1354 nm, respectively. (c) The phase matching wavelengths for dispersive wave generation from solitons as a function of the solitons central wavelength. This has been marked both without the contribution from the soliton power and for a soliton peak power of 2 kW. Simulations have indicated that the maximum soliton peak power sould be around 1.5 kW. (d) Scanning Electron Microscope (SEM) image of a fiber cross-section, the core diameter is 2.3 μm.

Fig. 2.
Fig. 2.

The setup used to produce the feedback and measure the spectrum. The ”Spectral and Delay Control” (SDC) mirror could be altered in order to produce different seed spectra. The round trip time of the seed, was matched with pump pulse frequency by tuning the distance between the fiber output and the SDC mirror. Meanwhile the output light was monitored on an Optical Spectrum Analyzer. Mirror 6 was removed and substituted with a fiber going to the OSA or a powermeter head when the seed light, was measured. Mirror 12 is used to filter out residual pump power to avoid reflections back to the pomp system.

Fig. 3.
Fig. 3.

(a) Output of the PCF. Gray: spectrum without seeding. Black: spectrum with seeding. Black dashed: the seed which was fed back through the system. (b) Spectrum of the pump at the input of the PCF

Fig. 4.
Fig. 4.

SC spectra generated using various feedback spectra. The three columns correspond to the spectra produced using a 1200-1700 nm mirror (left), an Ag mirror (center), and a broad spectrum mirror centered at 780 nm (right) as the SDC mirror. The top row shows the output spectrum from the PCF with (black) and without (gray) feedback, while the bottom row shows the spectrum which is fed back through the system, measured at mirror 6 in the setup. Note that all these spectra are plotted on a linear scale.

Fig. 5.
Fig. 5.

Experimental measurement of the difference in dB between the spectra with and without feedback as a function of delay of the seed. The Y-axis shows the delay between the feedback pulse and the pump pulse measured at the output

Fig. 6.
Fig. 6.

Spectra measured in the experiment with different feedback delays corresponding to slices in the plot in Fig. 5. Black lines show the spectrum with feedback, gray lines without feedback.

Fig. 7.
Fig. 7.

Comparison between simulated and measured spectra. Black: Measured spectrum. Grey dashed: Simulated spectrum.

Fig. 8.
Fig. 8.

Development of the spectrum along the fiber according to numerical simulations. Vertical dotted black lines mark the ZDWs at 954 nm and 1152 nm. The FWM gain, shown in the lower part of the figure, is calculated for the pump power of 116 mW. The FWM gain peaks are at 877 nm, 1039 nm, 1091 nm, and 1354 nm.

Fig. 9.
Fig. 9.

Spectrogram showing the calculated temporal distribution of the spectral energy at the output of the fiber. The white horizontal lines mark the position of the ZDWs. The evolution of the spectrogram along the fiber can be downloaded as a movie (2.2MB). [Media 1]

Fig. 10.
Fig. 10.

Numerical simulation result of a seeding with one, two and three roundtrips in the cavity. Dashed black lines mark the FWM gain areas. Vertical black dotted lines mark the outer ZDWs.

Fig. 11.
Fig. 11.

Numerically simulated effect of varying the feedback delay. Dashed black lines mark the FWM gain areas. Black dotted lines mark the outer ZDWs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ω max = ± ( 2 γ P 0 β 2 ) 1 2 ,
à z = i m 2 β m m ! [ ω ω 0 ] m à α ( ω ) 2 à + i γ ( ω ) [ 1 + ω ω 0 ω 0 ] { A z T R ( T' ) A z T T' 2 d T' } ,
R ( t ) = ( 1 f R ) δ ( t ) + f R h ( t ) = ( 1 f R ) δ ( t ) + f R τ 1 2 + τ 2 2 τ 2 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) Θ ( t )

Metrics