Abstract

In photonic crystal fibers with closely spaced zero dispersion wavelengths it is possible to have two pairs of four-wave mixing (FWM) gain peaks. Here, we demonstrate both numerically and experimentally how the outer four-wave mixing gain peaks can be used to produce a strong amplification peak in a picosecond supercontinuum. The method involves feeding back part of the output light of a SC source and time matching it with the pump light. In this way it is possible to produce a gain of over 20 dB near the FWM gain wavelengths.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
    [CrossRef]
  2. A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1245-1160 (2006).
    [CrossRef]
  3. P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, "Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves," Opt. Lett. 33, 621- 623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
    [CrossRef] [PubMed]
  4. A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, "Feasibility of white-light time-resolved optical mammography," J. Biomed. Opt. 11, 54035 (2006).
    [CrossRef]
  5. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging," J. Microsc. 227, 203-215 (2007).
    [CrossRef] [PubMed]
  6. J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, "Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with Cband OLT L-band ONU, and U-band monitoring," J. Lightwave Technol. 25, 2891-2897 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-10-2891.
    [CrossRef]
  7. E. Raikkonen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, "Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers," Opt. Express 14, 7914-7923 (2006).
    [CrossRef]
  8. P. S. Westbrook, J. W. Nicholson, and K. S. Feder, "Grating phase matching beyond a continuum edge," Opt. Lett. 32, 2629-2631 (2007).http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2629.
    [CrossRef] [PubMed]
  9. D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M. de Sterke, and B. J. Eggleton, "Tunable spectral enhancement of fiber supercontinuum," Opt. Lett. 32, 1644-1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
    [CrossRef] [PubMed]
  10. J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3132.
    [CrossRef] [PubMed]
  11. J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrཿes, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, "Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm," Opt. Commun. 281, 433-438 (2008).
    [CrossRef]
  12. C. Xiong, A. Witkowska, S. G. Leon-Saval, T. A. Birks, and W. J. Wadsworth, "Enhanced visible continuum generation from a microchip 1064nm laser," Opt. Express 14, 6188-6193 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6188.
    [CrossRef] [PubMed]
  13. W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, "Hole inflation and tapering of stock photonic crystal fibres," Opt. Express 13, 6541-6549 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6541.
    [CrossRef] [PubMed]
  14. P. Falk, M. H. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zerodispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535-7540 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7535.
    [CrossRef] [PubMed]
  15. F. Lu, Y. Deng, and W. H. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566.
    [CrossRef] [PubMed]
  16. S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2864.
    [CrossRef] [PubMed]
  17. C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, "Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser," Opt. Lett. 30, 1980-1982 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-15-1980.
    [CrossRef] [PubMed]
  18. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5715.
    [CrossRef] [PubMed]
  19. C. Cheng, X. Wang, Z. Fang, and B. Shen, "Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber," Opt. Commun. 244, 219-225 (2005).
    [CrossRef]
  20. S. Martin-Lopez, L. Abrardi, P. Corredera, M. Gonzalez-Herraez, and A. Mussot, "Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths," Opt. Express 16, 6745-6755 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6745.
    [CrossRef] [PubMed]
  21. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "29 W high power CW supercontinuum source," Opt. Express 16, 5954-5962 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5954.
    [CrossRef] [PubMed]
  22. A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008).
    [CrossRef]
  23. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11553.
    [CrossRef] [PubMed]
  24. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-11-2329.
    [CrossRef]
  25. M. H. Frosz, T. Sørensen, and O. Bang, "Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-8-1692.
    [CrossRef]
  26. J. M. Dudley, G. Genty, and B. J. Eggleton, "Harnessing and control of optical rogue waves in supercontinuum generation," Opt. Express 16, 3644-3651 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-3644.
    [CrossRef] [PubMed]
  27. M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
    [CrossRef]
  28. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225- 2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225.
    [CrossRef] [PubMed]
  29. Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett. 30, 1234-1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234.
    [CrossRef] [PubMed]
  30. S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for maxwellཿs equations in a planewave basis," Opt. Express 8, 173-190 (2001). http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-3-173.
    [CrossRef] [PubMed]
  31. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001), 3rd ed.
  32. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1045.
    [CrossRef] [PubMed]
  33. G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4614.
    [CrossRef] [PubMed]
  34. T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. T¨unnermann, "Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths," Opt. Express 13, 9556-9569 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9556.
    [CrossRef] [PubMed]
  35. A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in smallcore photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6498.
    [CrossRef] [PubMed]
  36. M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6181+ Erratum, Opt. Express 15, 5262- 5263 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5262.
    [CrossRef] [PubMed]
  37. M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445.
    [CrossRef] [PubMed]
  38. D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
    [CrossRef] [PubMed]
  39. G. Genty, S. Coen, and J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Am. B 24, 1771-1785 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-8-1771.
    [CrossRef]
  40. K. Iizuka, "In free space and special media," Vol. 1 of "Elements of Photonics" (John Wiley & Sons, New York, 2002), pp. 389-392.
  41. P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, "Back seeding of picosecond supercontinuum generation in photonic crystal fibres," in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE 6990, 24 (2008).
  42. M. Nakazawa, K. Suzuki, and H. A. Haus, "The Modulational Instability Laser-Part I: Experiment," IEEE J. Quantum Electron. 25, 2036-2044 (1989).
    [CrossRef]
  43. C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, "Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train," Opt. Lett. 27, 915-917 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-11-915.
    [CrossRef]
  44. J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, "Mode areas and field-energy distribution in honeycomb photonic bandgap fibers," J. Opt. Soc. Am. B 20, 2037-2045 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-10-2037.
    [CrossRef]
  45. K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
    [CrossRef]
  46. O. V. Sinkin, R. Holzl¨ohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003). http://dx.doi.org/10.1109/JLT.2003.808628.
    [CrossRef]
  47. M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391.
    [CrossRef] [PubMed]
  48. S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086.
    [CrossRef]
  49. A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2838.
    [CrossRef] [PubMed]
  50. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, "Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 ?m," in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc. 70, FA9-1-FA9-3 (2002).
  51. T. T. Alkeskjold, Crystal Fibre A/S, Blokken 84, DK-3460, Birkerød, Denmark (personal communication, 2008).
  52. N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
    [CrossRef]
  53. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature 450, 1054-1058 (2007).
    [CrossRef] [PubMed]
  54. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1123.
    [CrossRef] [PubMed]

2008 (7)

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrཿes, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, "Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm," Opt. Commun. 281, 433-438 (2008).
[CrossRef]

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, "Back seeding of picosecond supercontinuum generation in photonic crystal fibres," in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE 6990, 24 (2008).

J. M. Dudley, G. Genty, and B. J. Eggleton, "Harnessing and control of optical rogue waves in supercontinuum generation," Opt. Express 16, 3644-3651 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-3644.
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, "Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves," Opt. Lett. 33, 621- 623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
[CrossRef] [PubMed]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "29 W high power CW supercontinuum source," Opt. Express 16, 5954-5962 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5954.
[CrossRef] [PubMed]

S. Martin-Lopez, L. Abrardi, P. Corredera, M. Gonzalez-Herraez, and A. Mussot, "Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths," Opt. Express 16, 6745-6755 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6745.
[CrossRef] [PubMed]

2007 (7)

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging," J. Microsc. 227, 203-215 (2007).
[CrossRef] [PubMed]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature 450, 1054-1058 (2007).
[CrossRef] [PubMed]

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M. de Sterke, and B. J. Eggleton, "Tunable spectral enhancement of fiber supercontinuum," Opt. Lett. 32, 1644-1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
[CrossRef] [PubMed]

G. Genty, S. Coen, and J. M. Dudley, "Fiber supercontinuum sources," J. Opt. Soc. Am. B 24, 1771-1785 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-8-1771.
[CrossRef]

A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11553.
[CrossRef] [PubMed]

P. S. Westbrook, J. W. Nicholson, and K. S. Feder, "Grating phase matching beyond a continuum edge," Opt. Lett. 32, 2629-2631 (2007).http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2629.
[CrossRef] [PubMed]

J. H. Lee, K. Lee, Y.-G. Han, S. B. Lee, and C. H. Kim, "Single, depolarized, CW supercontinuum-based wavelength-division-multiplexed passive optical network architecture with Cband OLT L-band ONU, and U-band monitoring," J. Lightwave Technol. 25, 2891-2897 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=JLT-25-10-2891.
[CrossRef]

2006 (9)

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445.
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5715.
[CrossRef] [PubMed]

C. Xiong, A. Witkowska, S. G. Leon-Saval, T. A. Birks, and W. J. Wadsworth, "Enhanced visible continuum generation from a microchip 1064nm laser," Opt. Express 14, 6188-6193 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6188.
[CrossRef] [PubMed]

M. H. Frosz, T. Sørensen, and O. Bang, "Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-8-1692.
[CrossRef]

E. Raikkonen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, "Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers," Opt. Express 14, 7914-7923 (2006).
[CrossRef]

M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391.
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1245-1160 (2006).
[CrossRef]

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, "Feasibility of white-light time-resolved optical mammography," J. Biomed. Opt. 11, 54035 (2006).
[CrossRef]

2005 (9)

C. Cheng, X. Wang, Z. Fang, and B. Shen, "Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber," Opt. Commun. 244, 219-225 (2005).
[CrossRef]

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett. 30, 1234-1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234.
[CrossRef] [PubMed]

F. Lu, Y. Deng, and W. H. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566.
[CrossRef] [PubMed]

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, "Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser," Opt. Lett. 30, 1980-1982 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-15-1980.
[CrossRef] [PubMed]

W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, "Hole inflation and tapering of stock photonic crystal fibres," Opt. Express 13, 6541-6549 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6541.
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zerodispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535-7540 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7535.
[CrossRef] [PubMed]

T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. T¨unnermann, "Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths," Opt. Express 13, 9556-9569 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9556.
[CrossRef] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3132.
[CrossRef] [PubMed]

2004 (5)

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1045.
[CrossRef] [PubMed]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2838.
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2864.
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4614.
[CrossRef] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in smallcore photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6498.
[CrossRef] [PubMed]

2003 (6)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

O. V. Sinkin, R. Holzl¨ohner, J. Zweck, and C. R. Menyuk, "Optimization of the split-step Fourier method in modeling optical-fiber communications systems," J. Lightwave Technol. 21, 61-68 (2003). http://dx.doi.org/10.1109/JLT.2003.808628.
[CrossRef]

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1123.
[CrossRef] [PubMed]

J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, "Mode areas and field-energy distribution in honeycomb photonic bandgap fibers," J. Opt. Soc. Am. B 20, 2037-2045 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-10-2037.
[CrossRef]

N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-11-2329.
[CrossRef]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225- 2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225.
[CrossRef] [PubMed]

2002 (1)

2001 (1)

1995 (2)

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086.
[CrossRef]

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef]

1989 (2)

M. Nakazawa, K. Suzuki, and H. A. Haus, "The Modulational Instability Laser-Part I: Experiment," IEEE J. Quantum Electron. 25, 2036-2044 (1989).
[CrossRef]

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Abrardi, L.

Agrawal, G. P.

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett. 30, 1234-1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234.
[CrossRef] [PubMed]

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086.
[CrossRef]

Aguirre, A. D.

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1245-1160 (2006).
[CrossRef]

Akhmediev, N.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef]

Andersen, P. E.

Andersen, T. V.

Andr?es, M.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrཿes, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, "Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm," Opt. Commun. 281, 433-438 (2008).
[CrossRef]

Austin, D. R.

Bang, O.

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, "Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves," Opt. Lett. 33, 621- 623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
[CrossRef] [PubMed]

P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, "Back seeding of picosecond supercontinuum generation in photonic crystal fibres," in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE 6990, 24 (2008).

M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391.
[CrossRef] [PubMed]

M. H. Frosz, T. Sørensen, and O. Bang, "Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping," J. Opt. Soc. Am. B 23, 1692-1699 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=josab-23-8-1692.
[CrossRef]

P. Falk, M. H. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zerodispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535-7540 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7535.
[CrossRef] [PubMed]

N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, "Improving efficiency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing," J. Opt. Soc. Am. B 20, 2329-2337 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=josab-20-11-2329.
[CrossRef]

Bassi, A.

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, "Feasibility of white-light time-resolved optical mammography," J. Biomed. Opt. 11, 54035 (2006).
[CrossRef]

Beaugeois, M.

Biancalana, F.

Birks, T. A.

Bjarklev, A.

Bjarklev, A. O.

Blow, K. J.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Bolger, J. A.

Bouazaoui, M.

Bouwmans, G.

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

Broderick, N. G. R.

Broeng, J.

Buchter, S. C.

Cascante-Vindas, J.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrཿes, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, "Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm," Opt. Commun. 281, 433-438 (2008).
[CrossRef]

Cavalcanti, S. B.

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086.
[CrossRef]

Cheng, C.

C. Cheng, X. Wang, Z. Fang, and B. Shen, "Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber," Opt. Commun. 244, 219-225 (2005).
[CrossRef]

Chestnut, D. A.

Coen, S.

Cordeiro, C. M. B.

Corredera, P.

Cruz, J.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrཿes, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, "Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm," Opt. Commun. 281, 433-438 (2008).
[CrossRef]

Cubeddu, R.

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, "Feasibility of white-light time-resolved optical mammography," J. Biomed. Opt. 11, 54035 (2006).
[CrossRef]

Cumberland, B. A.

de Matos, C. J. S.

de Sterke, C. M.

Deng, Y.

Diez, A.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrཿes, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, "Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm," Opt. Commun. 281, 433-438 (2008).
[CrossRef]

Ding, L.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Dudley, J. M.

Efimov, A.

Eggleton, B. J.

Elder, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging," J. Microsc. 227, 203-215 (2007).
[CrossRef] [PubMed]

Falk, P.

Fang, Z.

C. Cheng, X. Wang, Z. Fang, and B. Shen, "Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber," Opt. Commun. 244, 219-225 (2005).
[CrossRef]

Feder, K. S.

Feng, M.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Finot, C.

Frank, J. H.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging," J. Microsc. 227, 203-215 (2007).
[CrossRef] [PubMed]

Frosz, M. H.

Fujimoto, J. G.

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1245-1160 (2006).
[CrossRef]

Genty, G.

George, A. K.

Giusto, A.

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, "Feasibility of white-light time-resolved optical mammography," J. Biomed. Opt. 11, 54035 (2006).
[CrossRef]

Gonzalez-Herraez, M.

Han, Y.-G.

Hansen, K. P.

Harvey, J. D.

Haus, H. A.

M. Nakazawa, K. Suzuki, and H. A. Haus, "The Modulational Instability Laser-Part I: Experiment," IEEE J. Quantum Electron. 25, 2036-2044 (1989).
[CrossRef]

Hayes, J. R.

Hilligsøe, K. M.

Holzl¨ohner, R.

Horak, P.

Jalali, B.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature 450, 1054-1058 (2007).
[CrossRef] [PubMed]

Jeyasekharan, A. D.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging," J. Microsc. 227, 203-215 (2007).
[CrossRef] [PubMed]

Joannopoulos, J.

Johnson, S.

Joly, N. Y.

Kaivola, M.

Kaminski, C. F.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging," J. Microsc. 227, 203-215 (2007).
[CrossRef] [PubMed]

Karlsson, M.

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef]

Keiding, S.

Keiding, S. R.

Kim, C. H.

Kimmelma, O.

Knight, J. C.

Knox, W. H.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature 450, 1054-1058 (2007).
[CrossRef] [PubMed]

Kopf, D.

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1245-1160 (2006).
[CrossRef]

Kristiansen, R.

Kudlinski, A.

Kuhlmey, B. T.

Lægsgaard, J.

Lantz, E.

Larsen, J. J.

Lederer, M.

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1245-1160 (2006).
[CrossRef]

Lee, J. H.

Lee, K.

Lee, S. B.

Lehtonen, M.

Leonhardt, R.

Leon-Saval, S. G.

Li, J.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Li, J. F.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Li, Y. G.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Limpert, J.

Lin, Q.

Lu, F.

Lu, K. C.

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

Luan, F.

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Ludvigsen, H.

Maillotte, H.

Marshall, G. D.

Martin-Lopez, S.

Mason, M. W.

Menyuk, C. R.

Miret, J.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrཿes, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, "Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm," Opt. Commun. 281, 433-438 (2008).
[CrossRef]

Mølmer, K.

Mortensen, N. A.

Moselund, P. M.

P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, "Back seeding of picosecond supercontinuum generation in photonic crystal fibres," in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE 6990, 24 (2008).

Mussot, A.

Nakazawa, M.

M. Nakazawa, K. Suzuki, and H. A. Haus, "The Modulational Instability Laser-Part I: Experiment," IEEE J. Quantum Electron. 25, 2036-2044 (1989).
[CrossRef]

Nicholson, J. W.

Nielsen, C. K.

Nikolov, N. I.

Nishizawa, N.

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1245-1160 (2006).
[CrossRef]

Omenetto, F. G.

Ortigosa-Blanch, A.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrཿes, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, "Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm," Opt. Commun. 281, 433-438 (2008).
[CrossRef]

Paulsen, H. N.

Pifferi, A.

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, "Feasibility of white-light time-resolved optical mammography," J. Biomed. Opt. 11, 54035 (2006).
[CrossRef]

Pitois, S.

Poletti, F.

Popov, S. V.

Price, J. H. V.

Quiquempois, Y.

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

R¨aikkonen, E.

Richardson, D. J.

Ropers, C.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature 450, 1054-1058 (2007).
[CrossRef] [PubMed]

Rulkov, A. B.

Russell, P. S.

Russell, P. S. J.

Schimpf, D.

Schreiber, T.

Seitz, W.

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1245-1160 (2006).
[CrossRef]

Shen, B.

C. Cheng, X. Wang, Z. Fang, and B. Shen, "Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber," Opt. Commun. 244, 219-225 (2005).
[CrossRef]

Silvestre, E.

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrཿes, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, "Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm," Opt. Commun. 281, 433-438 (2008).
[CrossRef]

Sinkin, O. V.

Skryabin, D. V.

Solli, D. R.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature 450, 1054-1058 (2007).
[CrossRef] [PubMed]

Sørensen, T.

Spinelli, L.

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, "Feasibility of white-light time-resolved optical mammography," J. Biomed. Opt. 11, 54035 (2006).
[CrossRef]

Suzuki, K.

M. Nakazawa, K. Suzuki, and H. A. Haus, "The Modulational Instability Laser-Part I: Experiment," IEEE J. Quantum Electron. 25, 2036-2044 (1989).
[CrossRef]

Swartling, J.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging," J. Microsc. 227, 203-215 (2007).
[CrossRef] [PubMed]

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, "Feasibility of white-light time-resolved optical mammography," J. Biomed. Opt. 11, 54035 (2006).
[CrossRef]

Sylvestre, T.

T¨unnermann, A.

Taylor, A. J.

Taylor, J. R.

Thøgersen, J.

Thomsen, C. L.

P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, "Back seeding of picosecond supercontinuum generation in photonic crystal fibres," in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE 6990, 24 (2008).

Thrane, L.

Torricelli, A.

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, "Feasibility of white-light time-resolved optical mammography," J. Biomed. Opt. 11, 54035 (2006).
[CrossRef]

Travers, J. C.

Tse, M. L. V.

Venkitaraman, A. R.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging," J. Microsc. 227, 203-215 (2007).
[CrossRef] [PubMed]

Wadsworth, W. J.

Wang, X.

C. Cheng, X. Wang, Z. Fang, and B. Shen, "Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber," Opt. Commun. 244, 219-225 (2005).
[CrossRef]

Westbrook, P. S.

Withford, M. J.

Witkowska, A.

Wong, G. K. L.

Wood, D.

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

Xiong, C.

Yeom, D.-I.

Yu, M.

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086.
[CrossRef]

Yulin, A. V.

Zweck, J.

Appl. Phys. Lett. (1)

A. Kudlinski, G. Bouwmans, Y. Quiquempois, and A. Mussot, "Experimental demonstration of multiwatt continuous-wave supercontinuum tailoring in photonic crystal fibers," Appl. Phys. Lett. 92, 141103 (2008).
[CrossRef]

IEEE J. Quantum Electron. (2)

M. Nakazawa, K. Suzuki, and H. A. Haus, "The Modulational Instability Laser-Part I: Experiment," IEEE J. Quantum Electron. 25, 2036-2044 (1989).
[CrossRef]

K. J. Blow and D. Wood, "Theoretical description of transient stimulated Raman scattering in optical fibers," IEEE J. Quantum Electron. 25, 2665-2673 (1989).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Feng, Y. G. Li, J. Li, J. F. Li, L. Ding, and K. C. Lu, "High-power supercontinuum generation in a nested linear cavity involving a CW Raman fiber laser," IEEE Photon. Technol. Lett. 17, 1172-1174 (2005).
[CrossRef]

J. Biomed. Opt. (1)

A. Bassi, L. Spinelli, A. Giusto, J. Swartling, A. Pifferi, A. Torricelli, and R. Cubeddu, "Feasibility of white-light time-resolved optical mammography," J. Biomed. Opt. 11, 54035 (2006).
[CrossRef]

J. Lightwave Technol. (2)

J. Microsc. (1)

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, "A white light confocal microscope for spectrally resolved multidimensional imaging," J. Microsc. 227, 203-215 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (4)

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, "Optical rogue waves," Nature 450, 1054-1058 (2007).
[CrossRef] [PubMed]

Opt. Commun. (2)

C. Cheng, X. Wang, Z. Fang, and B. Shen, "Enhanced dispersive wave generation by using chirped pulses in a microstructured fiber," Opt. Commun. 244, 219-225 (2005).
[CrossRef]

J. Cascante-Vindas, A. Diez, J. Cruz, M. Andrཿes, E. Silvestre, J. Miret, and A. Ortigosa-Blanch, "Tapering photonic crystal fibres for supercontinuum generation with nanosecond pulses at 532 nm," Opt. Commun. 281, 433-438 (2008).
[CrossRef]

Opt. Express (19)

C. Xiong, A. Witkowska, S. G. Leon-Saval, T. A. Birks, and W. J. Wadsworth, "Enhanced visible continuum generation from a microchip 1064nm laser," Opt. Express 14, 6188-6193 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6188.
[CrossRef] [PubMed]

W. J. Wadsworth, A. Witkowska, S. G. Leon-Saval, and T. A. Birks, "Hole inflation and tapering of stock photonic crystal fibres," Opt. Express 13, 6541-6549 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-17-6541.
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, and O. Bang, "Supercontinuum generation in a photonic crystal fiber with two zerodispersion wavelengths tapered to normal dispersion at all wavelengths," Opt. Express 13, 7535-7540 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-19-7535.
[CrossRef] [PubMed]

S. G. Leon-Saval, T. A. Birks, W. J. Wadsworth, P. S. Russell, and M. W. Mason, "Supercontinuum generation in submicron fibre waveguides," Opt. Express 12, 2864-2869 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-13-2864.
[CrossRef] [PubMed]

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, "Zerodispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation," Opt. Express 14, 5715-5722 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5715.
[CrossRef] [PubMed]

A. D. Aguirre, N. Nishizawa, J. G. Fujimoto, W. Seitz, M. Lederer, and D. Kopf, "Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm," Opt. Express 14, 1245-1160 (2006).
[CrossRef]

E. Raikkonen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, and S. C. Buchter, "Supercontinuum generation by nanosecond dual-wavelength pumping in microstructured optical fibers," Opt. Express 14, 7914-7923 (2006).
[CrossRef]

S. Martin-Lopez, L. Abrardi, P. Corredera, M. Gonzalez-Herraez, and A. Mussot, "Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths," Opt. Express 16, 6745-6755 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6745.
[CrossRef] [PubMed]

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, "29 W high power CW supercontinuum source," Opt. Express 16, 5954-5962 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-8-5954.
[CrossRef] [PubMed]

A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15, 11553-11563 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-18-11553.
[CrossRef] [PubMed]

J. M. Dudley, G. Genty, and B. J. Eggleton, "Harnessing and control of optical rogue waves in supercontinuum generation," Opt. Express 16, 3644-3651 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-3644.
[CrossRef] [PubMed]

K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, "Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths," Opt. Express 12, 1045-1054 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1045.
[CrossRef] [PubMed]

G. Genty, M. Lehtonen, and H. Ludvigsen, "Effect of cross-phase modulation on supercontinuum generated in microstructured fibers with sub-30 fs pulses," Opt. Express 12, 4614-4624 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4614.
[CrossRef] [PubMed]

T. Schreiber, T. V. Andersen, D. Schimpf, J. Limpert, and A. T¨unnermann, "Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths," Opt. Express 13, 9556-9569 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-23-9556.
[CrossRef] [PubMed]

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. S. Russell, "Time-spectrally-resolved ultrafast nonlinear dynamics in smallcore photonic crystal fibers: Experiment and modelling," Opt. Express 12, 6498-6507 (2004). http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6498.
[CrossRef] [PubMed]

S. Johnson and J. Joannopoulos, "Block-iterative frequency-domain methods for maxwellཿs equations in a planewave basis," Opt. Express 8, 173-190 (2001). http://www.opticsinfobase.org/abstract.cfm?URI=oe-8-3-173.
[CrossRef] [PubMed]

M. L. V. Tse, P. Horak, F. Poletti, N. G. R. Broderick, J. H. V. Price, J. R. Hayes, and D. J. Richardson, "Supercontinuum generation at 1.06 μm in holey fibers with dispersion flattened profiles," Opt. Express 14, 4445-4451 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4445.
[CrossRef] [PubMed]

A. Mussot, E. Lantz, H. Maillotte, T. Sylvestre, C. Finot, and S. Pitois, "Spectral broadening of a partially coherent CW laser beam in single-mode optical fibers," Opt. Express 12, 2838-2843 (2004). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-13-2838.
[CrossRef] [PubMed]

M. H. Frosz, O. Bang, and A. Bjarklev, "Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation," Opt. Express 14, 9391-9407 (2006). http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-9391.
[CrossRef] [PubMed]

Opt. Lett. (10)

C. J. S. de Matos, D. A. Chestnut, and J. R. Taylor, "Low-threshold self-induced modulational instability ring laser in highly nonlinear fiber yielding a continuous-wave 262-GHz soliton train," Opt. Lett. 27, 915-917 (2002). http://www.opticsinfobase.org/abstract.cfm?URI=ol-27-11-915.
[CrossRef]

H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, "Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source," Opt. Lett. 28, 1123-1125 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-13-1123.
[CrossRef] [PubMed]

J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber," Opt. Lett. 28, 2225- 2227 (2003). http://www.opticsinfobase.org/abstract.cfm?URI=ol-28-22-2225.
[CrossRef] [PubMed]

Y. Deng, Q. Lin, F. Lu, G. P. Agrawal, and W. H. Knox, "Broadly tunable femtosecond parametric oscillator using a photonic crystal fiber," Opt. Lett. 30, 1234-1236 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-10-1234.
[CrossRef] [PubMed]

P. S. Westbrook, J. W. Nicholson, and K. S. Feder, "Grating phase matching beyond a continuum edge," Opt. Lett. 32, 2629-2631 (2007).http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-17-2629.
[CrossRef] [PubMed]

D.-I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M. J. Withford, C. M. de Sterke, and B. J. Eggleton, "Tunable spectral enhancement of fiber supercontinuum," Opt. Lett. 32, 1644-1646 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=ol-32-12-1644.
[CrossRef] [PubMed]

J. C. Travers, S. V. Popov, and J. R. Taylor, "Extended blue supercontinuum generation in cascaded holey fibers," Opt. Lett. 30, 3132-3134 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-23-3132.
[CrossRef] [PubMed]

P. Falk, M. H. Frosz, O. Bang, L. Thrane, P. E. Andersen, A. O. Bjarklev, K. P. Hansen, and J. Broeng, "Broadband light generation around 1300nm through spectrally recoiled solitons and dispersive waves," Opt. Lett. 33, 621- 623 (2008). http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-6-621
[CrossRef] [PubMed]

C. M. B. Cordeiro, W. J. Wadsworth, T. A. Birks, and P. S. J. Russell, "Engineering the dispersion of tapered fibers for supercontinuum generation with a 1064 nm pump laser," Opt. Lett. 30, 1980-1982 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-15-1980.
[CrossRef] [PubMed]

F. Lu, Y. Deng, and W. H. Knox, "Generation of broadband femtosecond visible pulses in dispersion-micromanaged holey fibers," Opt. Lett. 30, 1566-1568 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-12-1566.
[CrossRef] [PubMed]

Phys. Rev. A (2)

N. Akhmediev and M. Karlsson, "Cherenkov radiation emitted by solitons in optical fibers," Phys. Rev. A 51, 2602-2607 (1995).
[CrossRef]

S. B. Cavalcanti, G. P. Agrawal, and M. Yu, "Noise amplification in dispersive nonlinear media," Phys. Rev. A 51, 4086-4092 (1995). http://dx.doi.org/10.1103/PhysRevA.51.4086.
[CrossRef]

Proc. SPIE (1)

P. M. Moselund, M. H. Frosz, O. Bang, and C. L. Thomsen, "Back seeding of picosecond supercontinuum generation in photonic crystal fibres," in Proceedings of SPIE Photonics Europe, Conference on Photonic Crystal Fibres, Proc. SPIE 6990, 24 (2008).

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78, 1135-1184 (2006).
[CrossRef]

Science (1)

D. V. Skryabin, F. Luan, J. C. Knight, and P. S. J. Russell, "Soliton self-frequency shift cancellation in photonic crystal fibers," Science 301, 1705-1708 (2003).
[CrossRef] [PubMed]

Other (5)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, California, 2001), 3rd ed.

M. H. Frosz, P. Falk, and O. Bang, "The role of the second zero-dispersion wavelength in generation of supercontinua and bright-bright soliton-pairs across the zero-dispersion wavelength," Opt. Express 13, 6181-6192 (2005). http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-16-6181+ Erratum, Opt. Express 15, 5262- 5263 (2007). http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5262.
[CrossRef] [PubMed]

K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, "Highly nonlinear photonic crystal fiber with zero-dispersion at 1.55 ?m," in Proceedings of Optical Fiber Communication Conference and Exhibit (OFC) Proc. 70, FA9-1-FA9-3 (2002).

T. T. Alkeskjold, Crystal Fibre A/S, Blokken 84, DK-3460, Birkerød, Denmark (personal communication, 2008).

K. Iizuka, "In free space and special media," Vol. 1 of "Elements of Photonics" (John Wiley & Sons, New York, 2002), pp. 389-392.

Supplementary Material (1)

» Media 1: AVI (2193 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Characteristics of the 1050-zero-2 fiber. (a) Estimated dispersion profile with ZDWs at 954 nm and 1152 nm. (b) FWM phase matching gain bands as a function of power and pump wavelength. The FWM gain peaks for the 1064 nm pump at 116 W peak power are at 877 nm, 1039 nm, 1091 nm, and 1354 nm, respectively. (c) The phase matching wavelengths for dispersive wave generation from solitons as a function of the solitons central wavelength. This has been marked both without the contribution from the soliton power and for a soliton peak power of 2 kW. Simulations have indicated that the maximum soliton peak power sould be around 1.5 kW. (d) Scanning Electron Microscope (SEM) image of a fiber cross-section, the core diameter is 2.3 μm.

Fig. 2.
Fig. 2.

The setup used to produce the feedback and measure the spectrum. The ”Spectral and Delay Control” (SDC) mirror could be altered in order to produce different seed spectra. The round trip time of the seed, was matched with pump pulse frequency by tuning the distance between the fiber output and the SDC mirror. Meanwhile the output light was monitored on an Optical Spectrum Analyzer. Mirror 6 was removed and substituted with a fiber going to the OSA or a powermeter head when the seed light, was measured. Mirror 12 is used to filter out residual pump power to avoid reflections back to the pomp system.

Fig. 3.
Fig. 3.

(a) Output of the PCF. Gray: spectrum without seeding. Black: spectrum with seeding. Black dashed: the seed which was fed back through the system. (b) Spectrum of the pump at the input of the PCF

Fig. 4.
Fig. 4.

SC spectra generated using various feedback spectra. The three columns correspond to the spectra produced using a 1200-1700 nm mirror (left), an Ag mirror (center), and a broad spectrum mirror centered at 780 nm (right) as the SDC mirror. The top row shows the output spectrum from the PCF with (black) and without (gray) feedback, while the bottom row shows the spectrum which is fed back through the system, measured at mirror 6 in the setup. Note that all these spectra are plotted on a linear scale.

Fig. 5.
Fig. 5.

Experimental measurement of the difference in dB between the spectra with and without feedback as a function of delay of the seed. The Y-axis shows the delay between the feedback pulse and the pump pulse measured at the output

Fig. 6.
Fig. 6.

Spectra measured in the experiment with different feedback delays corresponding to slices in the plot in Fig. 5. Black lines show the spectrum with feedback, gray lines without feedback.

Fig. 7.
Fig. 7.

Comparison between simulated and measured spectra. Black: Measured spectrum. Grey dashed: Simulated spectrum.

Fig. 8.
Fig. 8.

Development of the spectrum along the fiber according to numerical simulations. Vertical dotted black lines mark the ZDWs at 954 nm and 1152 nm. The FWM gain, shown in the lower part of the figure, is calculated for the pump power of 116 mW. The FWM gain peaks are at 877 nm, 1039 nm, 1091 nm, and 1354 nm.

Fig. 9.
Fig. 9.

Spectrogram showing the calculated temporal distribution of the spectral energy at the output of the fiber. The white horizontal lines mark the position of the ZDWs. The evolution of the spectrogram along the fiber can be downloaded as a movie (2.2MB). [Media 1]

Fig. 10.
Fig. 10.

Numerical simulation result of a seeding with one, two and three roundtrips in the cavity. Dashed black lines mark the FWM gain areas. Vertical black dotted lines mark the outer ZDWs.

Fig. 11.
Fig. 11.

Numerically simulated effect of varying the feedback delay. Dashed black lines mark the FWM gain areas. Black dotted lines mark the outer ZDWs.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ω max = ± ( 2 γ P 0 β 2 ) 1 2 ,
à z = i m 2 β m m ! [ ω ω 0 ] m à α ( ω ) 2 à + i γ ( ω ) [ 1 + ω ω 0 ω 0 ] { A z T R ( T' ) A z T T' 2 d T' } ,
R ( t ) = ( 1 f R ) δ ( t ) + f R h ( t ) = ( 1 f R ) δ ( t ) + f R τ 1 2 + τ 2 2 τ 2 τ 2 2 exp ( t τ 2 ) sin ( t τ 1 ) Θ ( t )

Metrics