Abstract

Increased coupling is observed in distributed-feedback quantum cascade lasers when placing a shallow second order grating between a continuous surface-plasmon layer and the active region. The combined effect of an air cladding and a metallic layer on the opposite sides of the waveguide increases the overlap with the grating region resulting in calculated coupling coefficients up to 100 cm-1. The waveguide design was implemented by Au thermo-compression bonding after grating formation and subsequent backside processing of ridges with air claddings. Lasers as short as 176 μm show single-mode behavior with a side-mode-suppression-ratio of 20 dB and thresholds (10 kA/cm2) as well as output powers (> 150 mW) close to Fabry-Pérot device performances are reached for 360 μm long devices.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994).
    [CrossRef] [PubMed]
  2. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301-305 (2002).
    [CrossRef] [PubMed]
  3. A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
    [CrossRef]
  4. C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).
  5. A. A. Kosterev and F. K. Tittel, "Chemical Sensors based on Quantum Cascade Lasers," IEEE J. Quantum Electron. 38, 582-591 (2002).
    [CrossRef]
  6. G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001).
    [CrossRef]
  7. R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
    [CrossRef]
  8. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670-2672 (1997).
    [CrossRef]
  9. S. R. Darvish, S. Slivken, A. Evans, J. S. Yu, and M. Razeghi, "Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm," Appl. Phys. Lett. 88, 201114 (2006).
    [CrossRef]
  10. S. Golka, C. Pflügl, W. Schrenk, and G. Strasser, "Quantum cascade lasers with lateral double-sided distributed feedback grating," Appl. Phys. Lett. 86, 111103 (2005).
    [CrossRef]
  11. K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson, and J. W. Cockburn, "High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings," Appl. Phys. Lett. 89, 201117 (2006).
    [CrossRef]
  12. A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
    [CrossRef]
  13. B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
    [CrossRef]
  14. D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 µm quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
    [CrossRef]
  15. V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
    [CrossRef] [PubMed]
  16. W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086-2088 (2000).
    [CrossRef]
  17. C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
    [CrossRef]
  18. H. Kogelnik and C. V. Shank, "Coupled-Wave Theory of Distributed Feedback Lasers," J. Appl. Phys. 43, 2327-2335 (1972).
    [CrossRef]
  19. R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
    [CrossRef] [PubMed]
  20. A. Lyakha, P. Zory, M. D�??Souza, D. Botez, and D. Bour, "Substrate-emitting, distributed feedback quantum cascade lasers," Appl. Phys. Lett. 91, 181116 (2006).
    [CrossRef]
  21. N. Finger, W. Schrenk, and E , Gornik, "Analysis of TM-Polarized DFB Laser Structures with Metal Surface Gratings," IEEE J. Quantum Electron. 36, 780-786 (2000).
    [CrossRef]
  22. C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698-4700 (2003).
    [CrossRef]
  23. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, "GaAs/AlxGa1-xAs quantum cascade lasers," Appl. Phys. Lett. 73, 3486-3488 (1998).
    [CrossRef]
  24. B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at λ �?? 100 µm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
    [CrossRef]
  25. S. Golka, S. Schartner, W. Schrenk, and G. Strasser, "Low bias reactive ion etching of GaAs with a SiCl4/N2/O2 time-multiplexed process," J. Vac. Sci. Technol. B 25, 839-844 (2007).
    [CrossRef]
  26. M. Klanjšek Gunde and M. Ma�?ek, "Infrared Optical Constants and Dielectric Response Functions of Silicon Nitride," Phys. Status Solidi. A 183, 439-449 (2001).
    [CrossRef]
  27. M. A. Afromowitz, "Thermal conductivity of Ga1-xAlxAs alloys," J. Appl. Phys. 44, 1292-1294 (1972).
    [CrossRef]
  28. A. K. Saxena, "Electron mobility in Ga1-xAlxAs alloys "Phys. Rev. B 24, 3295-3302 (1981).
    [CrossRef]
  29. N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. Chang, and H. Morkoc, "Comprehensive study of Si-dopedAlxGa1-xAs (x = 0 to 1): Theory and experiments," Phys. Rev. B 30, 4484-4492 (1984).
  30. R. J. Noll and S. H. Macomber, "Analysis of grating surface emitting lasers," IEEE J. Quantum Electron. 26, 456-466 (1990).
    [CrossRef]

2007 (5)

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

S. Golka, S. Schartner, W. Schrenk, and G. Strasser, "Low bias reactive ion etching of GaAs with a SiCl4/N2/O2 time-multiplexed process," J. Vac. Sci. Technol. B 25, 839-844 (2007).
[CrossRef]

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

2006 (5)

A. Lyakha, P. Zory, M. D�??Souza, D. Botez, and D. Bour, "Substrate-emitting, distributed feedback quantum cascade lasers," Appl. Phys. Lett. 91, 181116 (2006).
[CrossRef]

S. R. Darvish, S. Slivken, A. Evans, J. S. Yu, and M. Razeghi, "Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm," Appl. Phys. Lett. 88, 201114 (2006).
[CrossRef]

K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson, and J. W. Cockburn, "High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings," Appl. Phys. Lett. 89, 201117 (2006).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

2005 (2)

S. Golka, C. Pflügl, W. Schrenk, and G. Strasser, "Quantum cascade lasers with lateral double-sided distributed feedback grating," Appl. Phys. Lett. 86, 111103 (2005).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
[CrossRef]

2003 (3)

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698-4700 (2003).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at λ �?? 100 µm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

2002 (2)

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301-305 (2002).
[CrossRef] [PubMed]

A. A. Kosterev and F. K. Tittel, "Chemical Sensors based on Quantum Cascade Lasers," IEEE J. Quantum Electron. 38, 582-591 (2002).
[CrossRef]

2001 (2)

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001).
[CrossRef]

M. Klanjšek Gunde and M. Ma�?ek, "Infrared Optical Constants and Dielectric Response Functions of Silicon Nitride," Phys. Status Solidi. A 183, 439-449 (2001).
[CrossRef]

2000 (2)

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

N. Finger, W. Schrenk, and E , Gornik, "Analysis of TM-Polarized DFB Laser Structures with Metal Surface Gratings," IEEE J. Quantum Electron. 36, 780-786 (2000).
[CrossRef]

1999 (1)

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 µm quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
[CrossRef]

1998 (1)

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, "GaAs/AlxGa1-xAs quantum cascade lasers," Appl. Phys. Lett. 73, 3486-3488 (1998).
[CrossRef]

1997 (1)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

1990 (1)

R. J. Noll and S. H. Macomber, "Analysis of grating surface emitting lasers," IEEE J. Quantum Electron. 26, 456-466 (1990).
[CrossRef]

1984 (1)

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. Chang, and H. Morkoc, "Comprehensive study of Si-dopedAlxGa1-xAs (x = 0 to 1): Theory and experiments," Phys. Rev. B 30, 4484-4492 (1984).

1981 (1)

A. K. Saxena, "Electron mobility in Ga1-xAlxAs alloys "Phys. Rev. B 24, 3295-3302 (1981).
[CrossRef]

1972 (2)

M. A. Afromowitz, "Thermal conductivity of Ga1-xAlxAs alloys," J. Appl. Phys. 44, 1292-1294 (1972).
[CrossRef]

H. Kogelnik and C. V. Shank, "Coupled-Wave Theory of Distributed Feedback Lasers," J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

Aellen, T.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301-305 (2002).
[CrossRef] [PubMed]

Afromowitz, M. A.

M. A. Afromowitz, "Thermal conductivity of Ga1-xAlxAs alloys," J. Appl. Phys. 44, 1292-1294 (1972).
[CrossRef]

Anders, S.

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698-4700 (2003).
[CrossRef]

Audet, R.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Austerer, M.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
[CrossRef]

Bahriz, M.

Bai, Y.

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

Baillargeon, J. N.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

Barbieri, S.

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, "GaAs/AlxGa1-xAs quantum cascade lasers," Appl. Phys. Lett. 73, 3486-3488 (1998).
[CrossRef]

Beck, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301-305 (2002).
[CrossRef] [PubMed]

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 µm quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
[CrossRef]

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, "GaAs/AlxGa1-xAs quantum cascade lasers," Appl. Phys. Lett. 73, 3486-3488 (1998).
[CrossRef]

Becker, C.

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698-4700 (2003).
[CrossRef]

Belkin, M. A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Blaser, S.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

Bonetti, Y.

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698-4700 (2003).
[CrossRef]

Botez, D.

A. Lyakha, P. Zory, M. D�??Souza, D. Botez, and D. Bour, "Substrate-emitting, distributed feedback quantum cascade lasers," Appl. Phys. Lett. 91, 181116 (2006).
[CrossRef]

Bour, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

A. Lyakha, P. Zory, M. D�??Souza, D. Botez, and D. Bour, "Substrate-emitting, distributed feedback quantum cascade lasers," Appl. Phys. Lett. 91, 181116 (2006).
[CrossRef]

Callebaut, H.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at λ �?? 100 µm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

Capasso, F.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Chand, N.

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. Chang, and H. Morkoc, "Comprehensive study of Si-dopedAlxGa1-xAs (x = 0 to 1): Theory and experiments," Phys. Rev. B 30, 4484-4492 (1984).

Chang, Y.

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. Chang, and H. Morkoc, "Comprehensive study of Si-dopedAlxGa1-xAs (x = 0 to 1): Theory and experiments," Phys. Rev. B 30, 4484-4492 (1984).

Chapman, D.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Cho, A. Y.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Cockburn, J. W.

K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson, and J. W. Cockburn, "High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings," Appl. Phys. Lett. 89, 201117 (2006).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
[CrossRef]

Collot, P.

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, "GaAs/AlxGa1-xAs quantum cascade lasers," Appl. Phys. Lett. 73, 3486-3488 (1998).
[CrossRef]

Colombelli, R.

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Corzine, S.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

D???Souza, M.

A. Lyakha, P. Zory, M. D�??Souza, D. Botez, and D. Bour, "Substrate-emitting, distributed feedback quantum cascade lasers," Appl. Phys. Lett. 91, 181116 (2006).
[CrossRef]

Darvish, S. R.

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

S. R. Darvish, S. Slivken, A. Evans, J. S. Yu, and M. Razeghi, "Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm," Appl. Phys. Lett. 88, 201114 (2006).
[CrossRef]

Diehl, L.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Evans, A.

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

S. R. Darvish, S. Slivken, A. Evans, J. S. Yu, and M. Razeghi, "Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm," Appl. Phys. Lett. 88, 201114 (2006).
[CrossRef]

Faist, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301-305 (2002).
[CrossRef] [PubMed]

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 µm quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
[CrossRef]

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, "GaAs/AlxGa1-xAs quantum cascade lasers," Appl. Phys. Lett. 73, 3486-3488 (1998).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Fan, J.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).

Finger, N.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

N. Finger, W. Schrenk, and E , Gornik, "Analysis of TM-Polarized DFB Laser Structures with Metal Surface Gratings," IEEE J. Quantum Electron. 36, 780-786 (2000).
[CrossRef]

Fischer, R.

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. Chang, and H. Morkoc, "Comprehensive study of Si-dopedAlxGa1-xAs (x = 0 to 1): Theory and experiments," Phys. Rev. B 30, 4484-4492 (1984).

Gianordoli, S.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

Gini, E.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301-305 (2002).
[CrossRef] [PubMed]

Giovannini, M.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

Gmachl, C.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

Go, R.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).

Golka, S.

S. Golka, S. Schartner, W. Schrenk, and G. Strasser, "Low bias reactive ion etching of GaAs with a SiCl4/N2/O2 time-multiplexed process," J. Vac. Sci. Technol. B 25, 839-844 (2007).
[CrossRef]

S. Golka, C. Pflügl, W. Schrenk, and G. Strasser, "Quantum cascade lasers with lateral double-sided distributed feedback grating," Appl. Phys. Lett. 86, 111103 (2005).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
[CrossRef]

Gornik, E

N. Finger, W. Schrenk, and E , Gornik, "Analysis of TM-Polarized DFB Laser Structures with Metal Surface Gratings," IEEE J. Quantum Electron. 36, 780-786 (2000).
[CrossRef]

Gornik, E.

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

Green, R. P.

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
[CrossRef]

Groom, K. M.

K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson, and J. W. Cockburn, "High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings," Appl. Phys. Lett. 89, 201117 (2006).
[CrossRef]

Henderson, T.

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. Chang, and H. Morkoc, "Comprehensive study of Si-dopedAlxGa1-xAs (x = 0 to 1): Theory and experiments," Phys. Rev. B 30, 4484-4492 (1984).

Höfler, G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Hofstetter, D.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301-305 (2002).
[CrossRef] [PubMed]

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 µm quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
[CrossRef]

Hogg, R. A.

K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson, and J. W. Cockburn, "High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings," Appl. Phys. Lett. 89, 201117 (2006).
[CrossRef]

Hu, Q.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at λ �?? 100 µm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

Hutchinson, A.L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Hvozdara, L.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

Hwang, W.-Y.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001).
[CrossRef]

Ilegems, M.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301-305 (2002).
[CrossRef] [PubMed]

Ishaug, B.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001).
[CrossRef]

Kennedy, K.

K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson, and J. W. Cockburn, "High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings," Appl. Phys. Lett. 89, 201117 (2006).
[CrossRef]

Klanjšek Gunde, M.

M. Klanjšek Gunde and M. Ma�?ek, "Infrared Optical Constants and Dielectric Response Functions of Silicon Nitride," Phys. Status Solidi. A 183, 439-449 (2001).
[CrossRef]

Klem, J.

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. Chang, and H. Morkoc, "Comprehensive study of Si-dopedAlxGa1-xAs (x = 0 to 1): Theory and experiments," Phys. Rev. B 30, 4484-4492 (1984).

Kogelnik, H.

H. Kogelnik and C. V. Shank, "Coupled-Wave Theory of Distributed Feedback Lasers," J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

Kosterev, A. A.

A. A. Kosterev and F. K. Tittel, "Chemical Sensors based on Quantum Cascade Lasers," IEEE J. Quantum Electron. 38, 582-591 (2002).
[CrossRef]

Kruck, P.

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, "GaAs/AlxGa1-xAs quantum cascade lasers," Appl. Phys. Lett. 73, 3486-3488 (1998).
[CrossRef]

Krysa, A. B.

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson, and J. W. Cockburn, "High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings," Appl. Phys. Lett. 89, 201117 (2006).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
[CrossRef]

Kumar, S.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at λ �?? 100 µm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

Le, H. Q.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001).
[CrossRef]

Lee, B. G.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Lin, C.-H.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001).
[CrossRef]

Luo, G. P.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001).
[CrossRef]

Lyakha, A.

A. Lyakha, P. Zory, M. D�??Souza, D. Botez, and D. Bour, "Substrate-emitting, distributed feedback quantum cascade lasers," Appl. Phys. Lett. 91, 181116 (2006).
[CrossRef]

Ma??ek, M.

M. Klanjšek Gunde and M. Ma�?ek, "Infrared Optical Constants and Dielectric Response Functions of Silicon Nitride," Phys. Status Solidi. A 183, 439-449 (2001).
[CrossRef]

MacArthur, J.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Macomber, S. H.

R. J. Noll and S. H. Macomber, "Analysis of grating surface emitting lasers," IEEE J. Quantum Electron. 26, 456-466 (1990).
[CrossRef]

Masselink, W. T.

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. Chang, and H. Morkoc, "Comprehensive study of Si-dopedAlxGa1-xAs (x = 0 to 1): Theory and experiments," Phys. Rev. B 30, 4484-4492 (1984).

Maulini, R.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Melchior, H.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301-305 (2002).
[CrossRef] [PubMed]

Mohan, A.

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

Moreau, V.

Morkoc, H.

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. Chang, and H. Morkoc, "Comprehensive study of Si-dopedAlxGa1-xAs (x = 0 to 1): Theory and experiments," Phys. Rev. B 30, 4484-4492 (1984).

Muller, A.

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698-4700 (2003).
[CrossRef]

Nagle, J.

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, "GaAs/AlxGa1-xAs quantum cascade lasers," Appl. Phys. Lett. 73, 3486-3488 (1998).
[CrossRef]

Napoleone, A.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Nguyen, J.

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

Noll, R. J.

R. J. Noll and S. H. Macomber, "Analysis of grating surface emitting lasers," IEEE J. Quantum Electron. 26, 456-466 (1990).
[CrossRef]

Oakley, D. C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

Oesterle, U.

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301-305 (2002).
[CrossRef] [PubMed]

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 µm quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
[CrossRef]

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, "GaAs/AlxGa1-xAs quantum cascade lasers," Appl. Phys. Lett. 73, 3486-3488 (1998).
[CrossRef]

Painter, O.

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Patel, C. K. N.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).

Pei, S. S.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001).
[CrossRef]

Peng, C.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001).
[CrossRef]

Perahia, R.

Pflügl, C.

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).

S. Golka, C. Pflügl, W. Schrenk, and G. Strasser, "Quantum cascade lasers with lateral double-sided distributed feedback grating," Appl. Phys. Lett. 86, 111103 (2005).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
[CrossRef]

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698-4700 (2003).
[CrossRef]

Razeghi, M.

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

S. R. Darvish, S. Slivken, A. Evans, J. S. Yu, and M. Razeghi, "Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm," Appl. Phys. Lett. 88, 201114 (2006).
[CrossRef]

Reno, J. L.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at λ �?? 100 µm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

Revin, D. G.

K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson, and J. W. Cockburn, "High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings," Appl. Phys. Lett. 89, 201117 (2006).
[CrossRef]

Roberts, J. S.

K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson, and J. W. Cockburn, "High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings," Appl. Phys. Lett. 89, 201117 (2006).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
[CrossRef]

Saxena, A. K.

A. K. Saxena, "Electron mobility in Ga1-xAlxAs alloys "Phys. Rev. B 24, 3295-3302 (1981).
[CrossRef]

Schartner, S.

S. Golka, S. Schartner, W. Schrenk, and G. Strasser, "Low bias reactive ion etching of GaAs with a SiCl4/N2/O2 time-multiplexed process," J. Vac. Sci. Technol. B 25, 839-844 (2007).
[CrossRef]

Schrenk, W.

S. Golka, S. Schartner, W. Schrenk, and G. Strasser, "Low bias reactive ion etching of GaAs with a SiCl4/N2/O2 time-multiplexed process," J. Vac. Sci. Technol. B 25, 839-844 (2007).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
[CrossRef]

S. Golka, C. Pflügl, W. Schrenk, and G. Strasser, "Quantum cascade lasers with lateral double-sided distributed feedback grating," Appl. Phys. Lett. 86, 111103 (2005).
[CrossRef]

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698-4700 (2003).
[CrossRef]

N. Finger, W. Schrenk, and E , Gornik, "Analysis of TM-Polarized DFB Laser Structures with Metal Surface Gratings," IEEE J. Quantum Electron. 36, 780-786 (2000).
[CrossRef]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

Sergent, A. M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Shank, C. V.

H. Kogelnik and C. V. Shank, "Coupled-Wave Theory of Distributed Feedback Lasers," J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

Sirtori, C.

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698-4700 (2003).
[CrossRef]

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, "GaAs/AlxGa1-xAs quantum cascade lasers," Appl. Phys. Lett. 73, 3486-3488 (1998).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Sivco, D. I.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Sivco, D. L.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

Slivken, S.

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

S. R. Darvish, S. Slivken, A. Evans, J. S. Yu, and M. Razeghi, "Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm," Appl. Phys. Lett. 88, 201114 (2006).
[CrossRef]

Srinivasan, K.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Strasser, G.

S. Golka, S. Schartner, W. Schrenk, and G. Strasser, "Low bias reactive ion etching of GaAs with a SiCl4/N2/O2 time-multiplexed process," J. Vac. Sci. Technol. B 25, 839-844 (2007).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
[CrossRef]

S. Golka, C. Pflügl, W. Schrenk, and G. Strasser, "Quantum cascade lasers with lateral double-sided distributed feedback grating," Appl. Phys. Lett. 86, 111103 (2005).
[CrossRef]

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698-4700 (2003).
[CrossRef]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

Tanbun-Ek, T.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).

Tennant, D. M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Tittel, F. K.

A. A. Kosterev and F. K. Tittel, "Chemical Sensors based on Quantum Cascade Lasers," IEEE J. Quantum Electron. 38, 582-591 (2002).
[CrossRef]

Troccoli, M.

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Tsekoun, A.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).

Um, J.

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001).
[CrossRef]

Wang, X.

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).

Williams, B. S.

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at λ �?? 100 µm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

Wilson, L. R.

V. Moreau, M. Bahriz, R. Colombelli, R. Perahia, O. Painter, L. R. Wilson, and A. B. Krysa, "Demonstration of air-guided quantum cascade lasers without top claddings," Opt. Express 15, 14861-14869 (2007).
[CrossRef] [PubMed]

K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson, and J. W. Cockburn, "High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings," Appl. Phys. Lett. 89, 201117 (2006).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
[CrossRef]

Wittmann, A.

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

Yu, J. S.

S. R. Darvish, S. Slivken, A. Evans, J. S. Yu, and M. Razeghi, "Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm," Appl. Phys. Lett. 88, 201114 (2006).
[CrossRef]

Zory, P.

A. Lyakha, P. Zory, M. D�??Souza, D. Botez, and D. Bour, "Substrate-emitting, distributed feedback quantum cascade lasers," Appl. Phys. Lett. 91, 181116 (2006).
[CrossRef]

Appl. Phys. Lett. (16)

G. P. Luo, C. Peng, H. Q. Le, S. S. Pei, W.-Y. Hwang, B. Ishaug, J. Um, J. N. Baillargeon, and C.-H. Lin, "Grating-tuned external-cavity quantum-cascade semiconductor lasers," Appl. Phys. Lett. 78, 2834-2836 (2001).
[CrossRef]

R. Maulini, A. Mohan, M. Giovannini, J. Faist, and E. Gini, "External cavity quantum-cascade laser tunable from 8.2 to 10.4 µm using a gain element with a heterogeneous cascade," Appl. Phys. Lett. 88, 201113 (2006).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, "Distributed feedback quantum cascade lasers," Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

S. R. Darvish, S. Slivken, A. Evans, J. S. Yu, and M. Razeghi, "Room-temperature, high-power, and continuous-wave operation of distributed-feedback quantum-cascade lasers at λ ~ 9.6 µm," Appl. Phys. Lett. 88, 201114 (2006).
[CrossRef]

S. Golka, C. Pflügl, W. Schrenk, and G. Strasser, "Quantum cascade lasers with lateral double-sided distributed feedback grating," Appl. Phys. Lett. 86, 111103 (2005).
[CrossRef]

K. Kennedy, A. B. Krysa, J. S. Roberts, K. M. Groom, R. A. Hogg, D. G. Revin, L. R. Wilson, and J. W. Cockburn, "High performance InP-based quantum cascade distributed feedback lasers with deeply etched lateral gratings," Appl. Phys. Lett. 89, 201117 (2006).
[CrossRef]

A. Wittmann, M. Giovannini, J. Faist, L. Hvozdara, S. Blaser, D. Hofstetter, and E. Gini, "Room temperature, continuous wave operation of distributed feedback quantum cascade lasers with widely spaced operation frequencies," Appl. Phys. Lett. 89, 141116 (2006).
[CrossRef]

B. G. Lee, M. A. Belkin, R. Audet, J. MacArthur, L. Diehl, C. Pflügl, F. Capasso, D. C. Oakley, D. Chapman, A. Napoleone, D. Bour, S. Corzine, G. Höfler, and J. Faist, "Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy," Appl. Phys. Lett. 91, 231101 (2007).
[CrossRef]

D. Hofstetter, J. Faist, M. Beck, and U. Oesterle, "Surface-emitting 10.1 µm quantum-cascade distributed feedback lasers," Appl. Phys. Lett. 75, 3769-3771 (1999).
[CrossRef]

W. Schrenk, N. Finger, S. Gianordoli, L. Hvozdara, G. Strasser, and E. Gornik, "Surface-emitting distributed feedback quantum-cascade lasers," Appl. Phys. Lett. 77, 2086-2088 (2000).
[CrossRef]

C. Pflügl, M. Austerer, W. Schrenk, S. Golka, G. Strasser, R. P. Green, L. R. Wilson, J. W. Cockburn, A. B. Krysa, and J. S. Roberts, "Single-mode surface-emitting quantum-cascade lasers," Appl. Phys. Lett. 86, 211102 (2005).
[CrossRef]

A. Evans, S. R. Darvish, S. Slivken, J. Nguyen, Y. Bai, and M. Razeghi, "Buried heterostructure quantum cascade lasers with high continuous-wave wall plug efficiency," Appl. Phys. Lett. 91, 071101 (2007).
[CrossRef]

C. Pflügl, W. Schrenk, S. Anders, G. Strasser, C. Becker, C. Sirtori, Y. Bonetti, and A. Muller, "High-temperature performance of GaAs-based bound-to-continuum quantum-cascade lasers," Appl. Phys. Lett. 83, 4698-4700 (2003).
[CrossRef]

C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, and U. Oesterle, "GaAs/AlxGa1-xAs quantum cascade lasers," Appl. Phys. Lett. 73, 3486-3488 (1998).
[CrossRef]

B. S. Williams, S. Kumar, H. Callebaut, Q. Hu, and J. L. Reno, "Terahertz quantum-cascade laser at λ �?? 100 µm using metal waveguide for mode confinement," Appl. Phys. Lett. 83, 2124-2126 (2003).
[CrossRef]

A. Lyakha, P. Zory, M. D�??Souza, D. Botez, and D. Bour, "Substrate-emitting, distributed feedback quantum cascade lasers," Appl. Phys. Lett. 91, 181116 (2006).
[CrossRef]

Electron. Lett. (1)

C. Pflügl, L. Diehl, A. Tsekoun, R. Go, C. K. N. Patel, X. Wang, J. Fan, T. Tanbun-Ek, and F. Capasso, "Room-temperature continuous-wave operation of long wavelength (λ = 9.5 l µm) MOVPE-grown quantum cascade lasers," Electron. Lett. 43, 19 (2007).

IEEE J. Quantum Electron. (3)

A. A. Kosterev and F. K. Tittel, "Chemical Sensors based on Quantum Cascade Lasers," IEEE J. Quantum Electron. 38, 582-591 (2002).
[CrossRef]

N. Finger, W. Schrenk, and E , Gornik, "Analysis of TM-Polarized DFB Laser Structures with Metal Surface Gratings," IEEE J. Quantum Electron. 36, 780-786 (2000).
[CrossRef]

R. J. Noll and S. H. Macomber, "Analysis of grating surface emitting lasers," IEEE J. Quantum Electron. 26, 456-466 (1990).
[CrossRef]

J. Appl. Phys. (2)

M. A. Afromowitz, "Thermal conductivity of Ga1-xAlxAs alloys," J. Appl. Phys. 44, 1292-1294 (1972).
[CrossRef]

H. Kogelnik and C. V. Shank, "Coupled-Wave Theory of Distributed Feedback Lasers," J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

J. Vac. Sci. Technol. B (1)

S. Golka, S. Schartner, W. Schrenk, and G. Strasser, "Low bias reactive ion etching of GaAs with a SiCl4/N2/O2 time-multiplexed process," J. Vac. Sci. Technol. B 25, 839-844 (2007).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (2)

A. K. Saxena, "Electron mobility in Ga1-xAlxAs alloys "Phys. Rev. B 24, 3295-3302 (1981).
[CrossRef]

N. Chand, T. Henderson, J. Klem, W. T. Masselink, R. Fischer, Y. Chang, and H. Morkoc, "Comprehensive study of Si-dopedAlxGa1-xAs (x = 0 to 1): Theory and experiments," Phys. Rev. B 30, 4484-4492 (1984).

Phys. Status Solidi. A (1)

M. Klanjšek Gunde and M. Ma�?ek, "Infrared Optical Constants and Dielectric Response Functions of Silicon Nitride," Phys. Status Solidi. A 183, 439-449 (2001).
[CrossRef]

Science (3)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264, 553-556 (1994).
[CrossRef] [PubMed]

M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, and H. Melchior, "Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature," Science 295, 301-305 (2002).
[CrossRef] [PubMed]

R. Colombelli, K. Srinivasan, M. Troccoli, O. Painter, C. Gmachl, D. M. Tennant, A. M. Sergent, D. I. Sivco, A. Y. Cho, and F. Capasso, "Quantum Cascade Surface-Emitting Photonic Crystal Laser," Science 302, 1374-1377 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

A schematic view of the waveguide (drawn to scale, including the proper waveguide modes) is given together with a diagram showing absolute coupling strengths |κ| and waveguide losses α for several variations on the waveguide: (A) represents the waveguide as it was used for the fabricated device. Cases B-D do not correspond to actually fabricated devices but are for illustration purposes only. In case (B) the GaAs template and the Au layer is replaced by air. For (C) the lower air cladding was additionally replaced by highly doped (2×1018 cm-3) GaAs forming a plasmon-enhanced dielectric cladding. (D) shows the case when a loss reducing core layer of 2.5 μm medium doped GaAs (4×1016 cm-3) is inserted between the active region and the n+GaAs. Case (E) represents a typical optimized waveguide for a surface emitting DFB QCL as used in Ref. [17]. As can be deduced from decrease in coupling strength |κ| from (A) over (B) to (C) it is the combined influence of the closed metal and the air cladding the provide that enable high coupling via a increased modal overlap with the grating region.

Fig. 2.
Fig. 2.

(a). Calculated coupling strength and waveguide losses over duty-cycle for a 700 nm deep grating. (b). Waveguide modes for two different duty-cycles are shown together with the according line up of the real part of the refractive index. For higher duty-cycles an increased fraction of the mode is present in the grating region.

Fig. 3.
Fig. 3.

Process steps necessary prior to standard ridge processing on the backside: (a) Before the laser material is bonded on the GaAs template the grating is fabricated. Via a lift off process a metal grating is formed on the laser chip. Subsequent RIE transfers the grating into the underlying Al0.9Ga0.1As buffer layer. The GaAs template is covered by a continuous gold layer. (b) The laser chip is bonded grating down on the template. The actual bond therefore is taking place between the continuous Au layer on the template and the Au stripes on top of the grating bars. (c) As a last step the substrate on the laser side is mechanically thinned and finally removed by selectively wet etching in H2O2:NH3. A 200 nm Al0.48Ga0.52As layer acts as an etch stop and is removed afterwards in concentrated HF. Finally the bare epi-layers are ready for backside processing.

Fig. 4.
Fig. 4.

(a). SEM picture of a portion of a bonded device. End facets do not have a metal coating but are covered with lossy SiNx in order to minimize the facet reflectivity. Also the air window and the lateral contact stripes can be seen. The clear visibility of the grating surrounding the laser ridge is a result of the PCVD process where SiNx bridges are formed between the metallic grating stripes on the etch bottom. (b) A pictorial view of the laser cross section is shown including all relevant layers. The grating was omitted for clarity in this sketch. (c) A longitudinal cut is shown in including the grating.

Fig. 5.
Fig. 5.

Surface emitted peak power versus current and voltage versus current characteristics for various temperatures are plotted for a 360 μm long and 30 μm wide device. The laser was driven with a repetition rate of 5 kHz and 100 ns pulse-width. The inset shows a single-mode spectrum of the same QCL taken at 78 K at a current density of 14.4 kA/cm2. The emitted wavenumber is 987.3 cm-1.

Fig. 6.
Fig. 6.

Single-mode spectra taken from the facet of a device cleaved to a length of 176 μm. The backside facet still carries the absorbing SiNx layer. The main graph shows a single spectrum taken at a current density of 17.0 kA/cm2 in logarithmic scale. The device has a SMSR of 20 dB and emits at a wavenumber of 988.6 cm-1. The inset shows spectra of the same device driven with an equal current. Each spectrum refers to a certain heat sink temperature between 78 K an 120 K and therefore shows the tuning of the single-mode with temperature.

Fig. 7.
Fig. 7.

Two far fields stemming from a 176 μm and 360 μm long device. The scan direction is parallel to the laser ridge. The far fields are dual-lobed with main maxima being separated by ±1° and ±2° for devices 360 μm and 176 μm long, respectively. The double lobed far field is expected for index coupled 2nd order DFB lasers and therefore confirms our simulation results on the coupling coefficient having a comparably small imaginary part.

Metrics