Abstract

A fluorescent microdroplet was formed in elastomer to facilitate handling and wavelength tuning. A methanol solution of rhodamine 6G was put into a solidifying polysiloxane resin with a needle. Addition of surfactant was effective to stabilize the droplet. Being excited by a laser pulse (532 nm, >50 μJ/mm2, 5 ns), the droplet exhibited a whispering gallery mode emission in the 570–610 nm wavelength range. The resonance peaks shifted as the droplet diameter expanded by elastomer deformation.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. G. B. Garret, W. Kaiser, and W. L. Bond, "Stimulated emission into optical whispering modes of spheres," Phys. Rev. 124, 1807-1809 (1961).
    [CrossRef]
  2. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonance in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
    [CrossRef]
  3. H.-B. Lin, J. D. Eversole, and A. J. Campillo, "Spectral properties of lasing microdroplets," J. Opt. Soc. Am. B 9, 43-50 (1992).
    [CrossRef]
  4. K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
    [CrossRef]
  5. H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, "Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances," Opt. Lett. 9, 499-501 (1984).
    [CrossRef] [PubMed]
  6. M. Tanyeri, R. Perron, and I. M. Kennedy, "Lasing droplets in a microfabricated channel," Opt. Lett. 32, 2529-2531 (2007).
    [CrossRef] [PubMed]
  7. A. Kiraz, S. �?. Yavuz, Y. Karada�?, A. Kurt, A. Sennaroglu, and H. �?ankaya, "Large spectral tuning of liquid microdroplets standing on a superhydrophobic surface using optical scattering force," Appl. Phys. Lett. 91, 231102-1-3 (2007).
    [CrossRef]
  8. H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
    [CrossRef]
  9. M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, "Continuously color-tunable rubber laser," Adv. Mater. 16, 130-133 (2004).
    [CrossRef]
  10. Z. Li, Z. Zhang, A. Scherer, and D. Psaltis, "Mechanically tunable optofluidic distributed feedback dye laser," Opt. Express 14, 696-701 (2006).
    [CrossRef] [PubMed]
  11. M. Aschwanden and A. Stemmer, "Polymeric, electrically tunable diffraction grating based on artificial muscles," Opt. Lett. 31, 2610-2612 (2006).
    [CrossRef] [PubMed]
  12. I. Teraoka and S. Arnold, "Enhancing the sensitivity of a whispering-gallery mode microsphere sensor by a high-refractive-index surface layer," J. Opt. Soc. Am. B 23, 1434-1441 (2006).
    [CrossRef]
  13. Sonoplot, Inc., "GIX Microplotter," http://www.sonoplot.com/products.html.

2007 (1)

2006 (3)

2004 (1)

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, "Continuously color-tunable rubber laser," Adv. Mater. 16, 130-133 (2004).
[CrossRef]

2001 (1)

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

1997 (1)

K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
[CrossRef]

1992 (1)

1984 (1)

1980 (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonance in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

1961 (1)

C. G. B. Garret, W. Kaiser, and W. L. Bond, "Stimulated emission into optical whispering modes of spheres," Phys. Rev. 124, 1807-1809 (1961).
[CrossRef]

Arnold, S.

Aschwanden, M.

Barber, P. W.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonance in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Benner, R. E.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonance in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Bond, W. L.

C. G. B. Garret, W. Kaiser, and W. L. Bond, "Stimulated emission into optical whispering modes of spheres," Phys. Rev. 124, 1807-1809 (1961).
[CrossRef]

Campillo, A. J.

Chang, R. K.

H.-M. Tzeng, K. F. Wall, M. B. Long, and R. K. Chang, "Laser emission from individual droplets at wavelengths corresponding to morphology-dependent resonances," Opt. Lett. 9, 499-501 (1984).
[CrossRef] [PubMed]

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonance in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Eversole, J. D.

Finkelmann, H.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Fujiwara, H.

K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
[CrossRef]

Garret, C. G. B.

C. G. B. Garret, W. Kaiser, and W. L. Bond, "Stimulated emission into optical whispering modes of spheres," Phys. Rev. 124, 1807-1809 (1961).
[CrossRef]

Haase, A.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, "Continuously color-tunable rubber laser," Adv. Mater. 16, 130-133 (2004).
[CrossRef]

Kaiser, W.

C. G. B. Garret, W. Kaiser, and W. L. Bond, "Stimulated emission into optical whispering modes of spheres," Phys. Rev. 124, 1807-1809 (1961).
[CrossRef]

Kennedy, I. M.

Kern, W.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, "Continuously color-tunable rubber laser," Adv. Mater. 16, 130-133 (2004).
[CrossRef]

Kim, S. T.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Langer, G.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, "Continuously color-tunable rubber laser," Adv. Mater. 16, 130-133 (2004).
[CrossRef]

Li, Z.

Lin, H.-B.

Long, M. B.

Masuhara, H.

K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
[CrossRef]

Muñoz, A.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Owen, J. F.

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonance in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Palffy-Muhoray, P.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Perron, R.

Pogantsch, A.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, "Continuously color-tunable rubber laser," Adv. Mater. 16, 130-133 (2004).
[CrossRef]

Psaltis, D.

Sasaki, K.

K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
[CrossRef]

Scherer, A.

Stemmer, A.

Taheri, B.

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

Tanyeri, M.

Teraoka, I.

Tzeng, H.-M.

Wall, K. F.

Weinberger, M. R.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, "Continuously color-tunable rubber laser," Adv. Mater. 16, 130-133 (2004).
[CrossRef]

Zhang, Z.

Zojer, E.

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, "Continuously color-tunable rubber laser," Adv. Mater. 16, 130-133 (2004).
[CrossRef]

Adv. Mater. (2)

H. Finkelmann, S. T. Kim, A. Muñoz, P. Palffy-Muhoray, and B. Taheri, "Tunable mirrorless lasing in cholesteric liquid crystalline elastomers," Adv. Mater. 13, 1069-1072 (2001).
[CrossRef]

M. R. Weinberger, G. Langer, A. Pogantsch, A. Haase, E. Zojer, and W. Kern, "Continuously color-tunable rubber laser," Adv. Mater. 16, 130-133 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

K. Sasaki, H. Fujiwara, and H. Masuhara, "Photon tunneling from an optically manipulated microsphere to a surface by lasing spectral analysis," Appl. Phys. Lett. 70, 2647-2649 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. (1)

C. G. B. Garret, W. Kaiser, and W. L. Bond, "Stimulated emission into optical whispering modes of spheres," Phys. Rev. 124, 1807-1809 (1961).
[CrossRef]

Phys. Rev. Lett. (1)

R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of structure resonance in the fluorescence spectra from microspheres," Phys. Rev. Lett. 44, 475-478 (1980).
[CrossRef]

Other (2)

A. Kiraz, S. �?. Yavuz, Y. Karada�?, A. Kurt, A. Sennaroglu, and H. �?ankaya, "Large spectral tuning of liquid microdroplets standing on a superhydrophobic surface using optical scattering force," Appl. Phys. Lett. 91, 231102-1-3 (2007).
[CrossRef]

Sonoplot, Inc., "GIX Microplotter," http://www.sonoplot.com/products.html.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Fabrication process of the droplet-elastomer compound.

Fig. 2.
Fig. 2.

Micrographs of a droplet in elastomer (a) before and (b) during a deformation process. (c) Directions of deformation, pump laser irradiation, and fluorescence observation.

Fig. 3.
Fig. 3.

Fluorescence spectra of a methanol solution of rhodamine 6G (5×10-5 mol/l, sample length: 10 mm) and droplets (0.5 mol/l) of ∼60, ∼80, and ∼90 μm diameter. Pump laser fluence was ∼150 (μJ/mm2.

Fig. 4.
Fig. 4.

(a)., (b). Fluorescence spectra and (c), (d). resonance peak wavelengths of droplets. δw denotes elastomer deformation. Droplet diameters were (a), (c) ∼60 and (b), (d) ∼80 μm. Pump laser fluence was ∼500 μJ/mm2.

Fig. 5.
Fig. 5.

(a). Fluorescence spectra of a 90 μm droplet before and during a deformation process (δw=1 mm). (b). Droplet diameter expansion by elastomer deformation. Original droplet diameters were ∼90 and ∼140 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ m = π nd m ( m : integer ) ,
d = λ m λ m + 1 [ π n ( λ m - λ m + 1 ) ] .

Metrics