Abstract

A new type of solid-state variable focal length lens is described.It is based on shape changes in an elastomeric membrane driven by compression of a reservoir of a polymer gel. A novel fabrication process based on individual lens components allows for customization of lens power based on the desired application. The lens shape as a function of applied compressive strain is measured using direct surface profile measurements. The focal length of a solid state lens was reversibly changed by a factor of 1.9. Calculated back focal lengths of the lens were consistent with experimental measurements.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. F. Land, and D.-E. Nilsson, Animal Eyes (Oxford University Press, Oxford; New York, 2002).
  2. H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
    [CrossRef]
  3. H. W. Ren, D. W. Fox, B. Wu, and S. T. Wu, "Liquid crystal lens with large focal length tunability and low operating voltage," Opt. Express 15, 11328-11335 (2007).
    [CrossRef] [PubMed]
  4. P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, "Switchable fiber coupling using variable-focal-length microlenses," Rev. Sci. Instrum. 72, 3132-3134 (2001).
    [CrossRef]
  5. A. Raighne, T. Scharf, and E. M. McCabe, "Emerging light fields from liquid crystal microlenses," Rev. Sci. Instrum. 77, 055103 (2006).
    [CrossRef]
  6. K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array," Opt. Express 12, 2494-2500 (2004).
    [CrossRef] [PubMed]
  7. D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view," Opt Commun 249, 175-182 (2005).
    [CrossRef]
  8. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tunability," Appl. Phys. Lett. 82, 3171-3172 (2003).
    [CrossRef]
  9. S. W. Lee, and S. S. Lee, "Focal tunable liquid lens integrated with an electromagnetic actuator," Appl. Phys. Lett. 90, 121129 (2007).
    [CrossRef]
  10. H. W. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, "Tunable-focus liquid lens controlled using a servo motor," Opt. Express 14, 8031-8036 (2006).
    [CrossRef] [PubMed]
  11. H. W. Ren, and S. T. Wu, "Variable-focus liquid lens," Opt. Express 15, 5931-5936 (2007).
    [CrossRef] [PubMed]
  12. P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
    [CrossRef]
  13. B. Berge, and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000).
  14. B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, "Electrowetting-based variable-focus lens for miniature systems," Opt. Rev. 12, 255-259 (2005).
    [CrossRef]
  15. T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003).
    [CrossRef]
  16. S. Kuiper, and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
    [CrossRef]
  17. A. L. Glebov, L. D. Huang, S. Aoki, M. Lee, and K. Yokouchi, "Planar hybrid polymer-silica microlenses with tunable beamwidth and focal length," IEEE Photon. Technol. Lett. 16, 1107-1109 (2004).
    [CrossRef]
  18. S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, "Thermal actuated solid tunable lens," IEEE Photon. Technol. Lett. 18, 2191-2193 (2006).
    [CrossRef]
  19. M. Bass, Optical Society of America Handbook of Optics, Volume II, Devices, measurements, and properties (McGraw-Hill, New York, 1995).
  20. M. J. Wiggins, J. M. Anderson, and A. Hiltner, "Biodegradation of polyurethane under fatigue loading," J. Biomed. Mater. Res. A 65, 524-535 (2003).
    [CrossRef]

2007

2006

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, "Thermal actuated solid tunable lens," IEEE Photon. Technol. Lett. 18, 2191-2193 (2006).
[CrossRef]

H. W. Ren, D. Fox, P. A. Anderson, B. Wu, and S. T. Wu, "Tunable-focus liquid lens controlled using a servo motor," Opt. Express 14, 8031-8036 (2006).
[CrossRef] [PubMed]

A. Raighne, T. Scharf, and E. M. McCabe, "Emerging light fields from liquid crystal microlenses," Rev. Sci. Instrum. 77, 055103 (2006).
[CrossRef]

2005

D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view," Opt Commun 249, 175-182 (2005).
[CrossRef]

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, "Electrowetting-based variable-focus lens for miniature systems," Opt. Rev. 12, 255-259 (2005).
[CrossRef]

2004

S. Kuiper, and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

A. L. Glebov, L. D. Huang, S. Aoki, M. Lee, and K. Yokouchi, "Planar hybrid polymer-silica microlenses with tunable beamwidth and focal length," IEEE Photon. Technol. Lett. 16, 1107-1109 (2004).
[CrossRef]

K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, "Tunable microdoublet lens array," Opt. Express 12, 2494-2500 (2004).
[CrossRef] [PubMed]

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

2003

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tunability," Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

M. J. Wiggins, J. M. Anderson, and A. Hiltner, "Biodegradation of polyurethane under fatigue loading," J. Biomed. Mater. Res. A 65, 524-535 (2003).
[CrossRef]

T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

2001

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, "Switchable fiber coupling using variable-focal-length microlenses," Rev. Sci. Instrum. 72, 3132-3134 (2001).
[CrossRef]

2000

B. Berge, and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000).

Anderson, J. M.

M. J. Wiggins, J. M. Anderson, and A. Hiltner, "Biodegradation of polyurethane under fatigue loading," J. Biomed. Mater. Res. A 65, 524-535 (2003).
[CrossRef]

Anderson, P. A.

Aoki, S.

A. L. Glebov, L. D. Huang, S. Aoki, M. Lee, and K. Yokouchi, "Planar hybrid polymer-silica microlenses with tunable beamwidth and focal length," IEEE Photon. Technol. Lett. 16, 1107-1109 (2004).
[CrossRef]

Berdichevsky, Y.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tunability," Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Berge, B.

B. Berge, and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000).

Chan, M. L.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Chen, W. C.

S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, "Thermal actuated solid tunable lens," IEEE Photon. Technol. Lett. 18, 2191-2193 (2006).
[CrossRef]

Choi, J.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tunability," Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Chronis, N.

Commander, L. G.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, "Switchable fiber coupling using variable-focal-length microlenses," Rev. Sci. Instrum. 72, 3132-3134 (2001).
[CrossRef]

Day, S. E.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, "Switchable fiber coupling using variable-focal-length microlenses," Rev. Sci. Instrum. 72, 3132-3134 (2001).
[CrossRef]

Dharmatilleke, S.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Fan, Y. H.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

Fang, W. L.

S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, "Thermal actuated solid tunable lens," IEEE Photon. Technol. Lett. 18, 2191-2193 (2006).
[CrossRef]

Fox, D.

Fox, D. W.

Gauza, S.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

Glebov, A. L.

A. L. Glebov, L. D. Huang, S. Aoki, M. Lee, and K. Yokouchi, "Planar hybrid polymer-silica microlenses with tunable beamwidth and focal length," IEEE Photon. Technol. Lett. 16, 1107-1109 (2004).
[CrossRef]

Hendriks, B. H. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, "Electrowetting-based variable-focus lens for miniature systems," Opt. Rev. 12, 255-259 (2005).
[CrossRef]

S. Kuiper, and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

Hiltner, A.

M. J. Wiggins, J. M. Anderson, and A. Hiltner, "Biodegradation of polyurethane under fatigue loading," J. Biomed. Mater. Res. A 65, 524-535 (2003).
[CrossRef]

Huang, L. D.

A. L. Glebov, L. D. Huang, S. Aoki, M. Lee, and K. Yokouchi, "Planar hybrid polymer-silica microlenses with tunable beamwidth and focal length," IEEE Photon. Technol. Lett. 16, 1107-1109 (2004).
[CrossRef]

Jeong, K. H.

Justis, N.

D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view," Opt Commun 249, 175-182 (2005).
[CrossRef]

Khaw, A. H.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Kuiper, S.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, "Electrowetting-based variable-focus lens for miniature systems," Opt. Rev. 12, 255-259 (2005).
[CrossRef]

S. Kuiper, and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

Lee, L. P.

Lee, M.

A. L. Glebov, L. D. Huang, S. Aoki, M. Lee, and K. Yokouchi, "Planar hybrid polymer-silica microlenses with tunable beamwidth and focal length," IEEE Photon. Technol. Lett. 16, 1107-1109 (2004).
[CrossRef]

Lee, S. N.

S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, "Thermal actuated solid tunable lens," IEEE Photon. Technol. Lett. 18, 2191-2193 (2006).
[CrossRef]

Lee, S. S.

S. W. Lee, and S. S. Lee, "Focal tunable liquid lens integrated with an electromagnetic actuator," Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Lee, S. W.

S. W. Lee, and S. S. Lee, "Focal tunable liquid lens integrated with an electromagnetic actuator," Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Lien, V.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tunability," Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Liu, G. L.

Lo, Y. H.

D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view," Opt Commun 249, 175-182 (2005).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tunability," Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

McCabe, E. M.

A. Raighne, T. Scharf, and E. M. McCabe, "Emerging light fields from liquid crystal microlenses," Rev. Sci. Instrum. 77, 055103 (2006).
[CrossRef]

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, "Switchable fiber coupling using variable-focal-length microlenses," Rev. Sci. Instrum. 72, 3132-3134 (2001).
[CrossRef]

Moran, P. M.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Peseux, J.

B. Berge, and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000).

Raighne, A.

A. Raighne, T. Scharf, and E. M. McCabe, "Emerging light fields from liquid crystal microlenses," Rev. Sci. Instrum. 77, 055103 (2006).
[CrossRef]

Ren, H. W.

Renders, C. A.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, "Electrowetting-based variable-focus lens for miniature systems," Opt. Rev. 12, 255-259 (2005).
[CrossRef]

Rodriguez, I.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Scharf, T.

A. Raighne, T. Scharf, and E. M. McCabe, "Emerging light fields from liquid crystal microlenses," Rev. Sci. Instrum. 77, 055103 (2006).
[CrossRef]

Selviah, D. R.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, "Switchable fiber coupling using variable-focal-length microlenses," Rev. Sci. Instrum. 72, 3132-3134 (2001).
[CrossRef]

Smith, P. J.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, "Switchable fiber coupling using variable-focal-length microlenses," Rev. Sci. Instrum. 72, 3132-3134 (2001).
[CrossRef]

Tan, K. W.

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

Taylor, C. M.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, "Switchable fiber coupling using variable-focal-length microlenses," Rev. Sci. Instrum. 72, 3132-3134 (2001).
[CrossRef]

Tukker, T. W.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, "Electrowetting-based variable-focus lens for miniature systems," Opt. Rev. 12, 255-259 (2005).
[CrossRef]

Tung, H. W.

S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, "Thermal actuated solid tunable lens," IEEE Photon. Technol. Lett. 18, 2191-2193 (2006).
[CrossRef]

Van As, M. A. J.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, "Electrowetting-based variable-focus lens for miniature systems," Opt. Rev. 12, 255-259 (2005).
[CrossRef]

Wiggins, M. J.

M. J. Wiggins, J. M. Anderson, and A. Hiltner, "Biodegradation of polyurethane under fatigue loading," J. Biomed. Mater. Res. A 65, 524-535 (2003).
[CrossRef]

Wu, B.

Wu, S. T.

Yang, S.

T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Yokouchi, K.

A. L. Glebov, L. D. Huang, S. Aoki, M. Lee, and K. Yokouchi, "Planar hybrid polymer-silica microlenses with tunable beamwidth and focal length," IEEE Photon. Technol. Lett. 16, 1107-1109 (2004).
[CrossRef]

Zhang, D. Y.

D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view," Opt Commun 249, 175-182 (2005).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tunability," Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Appl. Phys. Lett.

H. W. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," Appl. Phys. Lett. 84, 4789-4791 (2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tunability," Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

S. W. Lee, and S. S. Lee, "Focal tunable liquid lens integrated with an electromagnetic actuator," Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

P. M. Moran, S. Dharmatilleke, A. H. Khaw, K. W. Tan, M. L. Chan, and I. Rodriguez, "Fluidic lenses with variable focal length," Appl. Phys. Lett. 88, 041120 (2006).
[CrossRef]

T. Krupenkin, S. Yang, and P. Mach, "Tunable liquid microlens," Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

S. Kuiper, and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

Eur. Phys. J. E

B. Berge, and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Eur. Phys. J. E 3, 159-163 (2000).

IEEE Photon. Technol. Lett.

A. L. Glebov, L. D. Huang, S. Aoki, M. Lee, and K. Yokouchi, "Planar hybrid polymer-silica microlenses with tunable beamwidth and focal length," IEEE Photon. Technol. Lett. 16, 1107-1109 (2004).
[CrossRef]

S. N. Lee, H. W. Tung, W. C. Chen, and W. L. Fang, "Thermal actuated solid tunable lens," IEEE Photon. Technol. Lett. 18, 2191-2193 (2006).
[CrossRef]

J. Biomed. Mater. Res. A

M. J. Wiggins, J. M. Anderson, and A. Hiltner, "Biodegradation of polyurethane under fatigue loading," J. Biomed. Mater. Res. A 65, 524-535 (2003).
[CrossRef]

Opt Commun

D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view," Opt Commun 249, 175-182 (2005).
[CrossRef]

Opt. Express

Opt. Rev.

B. H. W. Hendriks, S. Kuiper, M. A. J. Van As, C. A. Renders, and T. W. Tukker, "Electrowetting-based variable-focus lens for miniature systems," Opt. Rev. 12, 255-259 (2005).
[CrossRef]

Rev. Sci. Instrum.

P. J. Smith, C. M. Taylor, E. M. McCabe, D. R. Selviah, S. E. Day, and L. G. Commander, "Switchable fiber coupling using variable-focal-length microlenses," Rev. Sci. Instrum. 72, 3132-3134 (2001).
[CrossRef]

A. Raighne, T. Scharf, and E. M. McCabe, "Emerging light fields from liquid crystal microlenses," Rev. Sci. Instrum. 77, 055103 (2006).
[CrossRef]

Other

M. F. Land, and D.-E. Nilsson, Animal Eyes (Oxford University Press, Oxford; New York, 2002).

M. Bass, Optical Society of America Handbook of Optics, Volume II, Devices, measurements, and properties (McGraw-Hill, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Fabrication and assembly of variable focal length lens. (a). Fabrication of deformable membrane, (b). Assembly of variable focal length lens, (c). Final injection and cure of PDMS lens core. Final diagram labeled with dimensions of lens tested in this work.

Fig. 2.
Fig. 2.

Schematic of the mechanism for variable focal length. Pushing a plunger a distance ΔL causes the deformable elastomer within the lens to expand out against the pliable outer membrane. Dashed lines indicate plunger and surface locations before compression. Little compression is necessary; the maximum ΔL cited here is 1.28 mm.

Fig. 3.
Fig. 3.

Plot of surface profiles as interpolated from fitted measurements. Dotted lines represent lens mount.

Fig. 4.
Fig. 4.

Images acquired at two different zoom states of the lens. The magnification of the object in these images differs by a factor of 1.8.

Tables (2)

Tables Icon

Table 1. Materials used in the fabrication of tunable lenses.

Tables Icon

Table 2: The first two sections present results of surface fits to measured surfaces as a function of plunger displacement ΔL. The standard deviation of the difference between data points and the fit is given in microns, and all other parameters are outlined in the text. The last section presents focal length information, both predicted and observed back focal lengths, and the resulting overall focal lengths. Uncertainty in the observed focal lengths is 0.5mm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

1 F Composite 1 F PMMA + 1 F Tunable
1 F Composite 1 F PMMA + R 0 F 0 R
z = c ( x 2 + y 2 ) 1 + 1 c 2 ( x 2 + y 2 )
z = c x x 2 + c y y 2 1 + 1 ( 1 + k x ) c x 2 x 2 ( 1 + k y ) c y 2 y 2

Metrics