Abstract

We developed a rigorous simulation model to evaluate ablation algorithms and surgery outcomes in laser refractive surgery. The model (CASIM: Corneal Ablation SIMulator) simulates an entire surgical process,which includes calculating an ablation profile from measured wavefront errors, generating a shot pattern for a flying spot laser beam, simulation of the shot-by-shot ablation process based on a measured or modeled beam profile, and healing of the cornea after surgery. Using simulated post-surgery corneal shapes for various ablation parameters and beam fluences,we calculated angular dependence of ablation efficiency and the amount of increase in corneal asphericity. Without considering the effect of corneal healing, our result shows the following; 1) ablation efficiency reduction in the periphery depends on the peak fluence of the laser beam, 2) corneal asphericity increases even in the surgery using an ablation profile based on the exact Munnerlyn formula, contrary to previous reports, and 3) post-surgery corneal asphericity increases by a smaller amount in high fluence small Gaussian beam surgery than in low fluence truncated Gaussian beam.Our model can provide improved ablation profiles that compensate for the change of corneal asphericity and induction of spherical aberration in a flying spot laser system, resulting in better surgery outcomes in laser refractive surgeries.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Krueger and S. Trokel, "Quantitation of Corneal Ablation by Ultraviolet Laser Light," Arch. Ophthalmol. 103, 1741-1742 (1985).
    [CrossRef] [PubMed]
  2. F. Manns, J.-H. Shen, P. Söderberg, T. Matsui, and J.-M. Parel, "Development of an algorithm for corneal reshaping with a scanning laser beam," Appl. Opt. 34, 4600-4608 (1995).
    [CrossRef] [PubMed]
  3. M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early Results in Three Eyes," J. Refract. Surg. 16, 116-121 (2000).
    [PubMed]
  4. E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular Aberrations before and after Myopic Corneal Refractive Surgery: LASIK-induced changes measured with Laser Ray Tracing," IOVS 42, 1396-1403 (2001).
  5. S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK Surgery for Myopia from Total and Corneal Aberration Measurements," IOVS 42, 3349-3356 (2001).
  6. C. B. O'Donnell, J. Kemner, and FrancisE. O'Donnell Jr., "Ablation smoothness as a function of excimer laser delivery system," J. Cataract. Refract. Surg. 22, 682-685 (1996).
    [PubMed]
  7. B. Muller, T. Boeck, and C. Hartmann, "Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy," J. Cataract. Refract. Surg. 30, 464-470 (2004).
    [CrossRef] [PubMed]
  8. M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, "Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration," J. Cataract. Refract. Surg. 27, 362-369 (2001).
    [CrossRef] [PubMed]
  9. M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, "Aberration-sensing and Wavefront-guided Laser in situ Keratomileusis: Management of Decentered Ablation," J. Refract. Surg. 18, 418-429 (2002).
    [PubMed]
  10. N. M. Taylor, R. H. Eikelboom, P. P. v. Sarloos, and P. G. Reid, "Determining the accuracy of an Eye Tracking System for Laser Refractive Surgery," J. Refract. Surg. 16, S643-S646 (2000).
    [PubMed]
  11. M. Bueeler, M. Mrochen, and T. Seiler, "Effect of spot size, ablation depth, and eye-tracker latency on the optical outcome of corneal laser surgery with a scanning spot laser," in Ophthalmic Technologies XIII (SPIE, 2003), pp. 150-160.
  12. D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, "The Effect of Corneal Flap on Optical Aberrations," Am. J. Ophthalmol. 138, 190-193 (2004).
    [CrossRef] [PubMed]
  13. M. Mrochen, and T. Seiler, "Influence of Corneal Curvature on Calculation of Ablation Patterns used in Photorefractive Laser Surgery," J. Refract. Surg. 17, S584-S587 (2001).
    [PubMed]
  14. P. S. Hersh, K. Fry, and J. W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy Clinical results and theoretical models of etiology," J. Cataract. Refract. Surg. 29, 2096-2104 (2003).
    [CrossRef] [PubMed]
  15. J. R. Jimenez, R. G. Anera, L. J. d. Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81, 1521-1523 (2002).
    [CrossRef]
  16. R. G. Anera, J. R. Jiménez, L. J. d. Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003).
    [CrossRef] [PubMed]
  17. D. Cano, S. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A 21, 926-936 (2004).
    [CrossRef]
  18. J. R. Jiménez, F. Rodríguez-Marín, R. G. Anera, and L. J. -d. Barco, "Deviations of Lambert-Beer's law affect corneal refractive parameters after refractive surgery," Opt. Express 14, 5411-5417 (2006).
    [CrossRef] [PubMed]
  19. C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
    [CrossRef] [PubMed]
  20. C. Roberts, "Biomechanics of the Cornea and Wavefront guided Laser Refractive Surgery," J. Refract. Surg. 18, S589-S592 (2002).
    [PubMed]
  21. D. Huang, M. Tang, and R. Shekhar, "Mathematical Model of Corneal Surface Smoothing after Laser Refractive Surgery," Am. J. Ophthal. 135, 267-278 (2003).
    [CrossRef] [PubMed]
  22. C. Roberts, "Biomechanical customization: The next generation of laser refractive surgery," J. Cataract. Refract. Surg. 31, 2-5 (2005).
    [CrossRef] [PubMed]
  23. G. Yoon, S. MacRae, D. R. Williams, and I. G. Cox, "Causes of spherical aberration induced by laser refractive surgery," J. Cataract. Refract. Surg. 31, 127-135 (2005).
    [CrossRef] [PubMed]
  24. C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: A technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988).
    [PubMed]
  25. R. W. Frey, J. H. Burkhalter, and G. P. Gray, "Laser Sculpting System," (2001), US Patent #6,261,220.
  26. D. Gatinel, T. Hoang-Xuan, and D. T. Azar, "Determination of Corneal Asphericity after Myopia Surgery with the Excimer Laser: A Mathematical Model," IOVS 42, 1736-1742 (2001).
  27. J. R. Jiménez, R. G. Anera, and L. J. d. Barco, "Equation for Corneal Asphericity After Corneal Refractive Surgery," J. Refract. Surg. 19, 65-69 (2003).
    [PubMed]
  28. S. Marcos, D. Cano, and S. Barbero, "Increase in Corneal Asphericity After Standard Laser in situ Keratomileusis for Myopia is not Inherent to the Munnerlyn Algorithm," J. Refract. Surg. 19, S592-S596 (2003).
    [PubMed]
  29. A. Vogel and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003).
    [CrossRef] [PubMed]
  30. T. F. Deutsch and M. W. Geis, "Self-developing UV photoresist using excimer laser exposure," J. Appl. Phys. 54, 7201-7204 (1983).
    [CrossRef]
  31. B. Fisher and D. Hahn, "Development and Numnerical Solution of a Mechanistic Model for Corneal Tissue Ablation with the 193-nm Argon Fluoride Excimer Laser," J. Opt. Soc. Am. A 24, 265-277 (2007).
    [CrossRef]
  32. S. J. Orfanidis, Electromagnetic Waves & Antennas (2004), http://www.ece.rutgers.edu/~orfanidi/ewa/.
  33. R. W. Frey, J. H. Burkhalter and G. P. Gray, " Laser Sculpting Method and System," US Patent 5,849,006 (1998).
  34. C. Dorronsoro, J. Merayo-Lloves, and S. Marcos, "An Experimental Correction Factor of Radial Laser Efficiency Losses in Corneal Refractive Surgery," IOVS  47 E-Abstract 3611 (2006).
  35. S. Marcos, "Spherical Aberration: Biomechanics or Physical Laser Effects?," presented in Wavefront Congress 2006 Meeting (Nassau, Bahamas. January 06, 2006).
  36. J. R. Jimenez, R. G. Anera, J. A. Dıaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004).
    [CrossRef]
  37. R. G. Anera, J. R. Jimenez, L. J. d. Barco, J. Bermudez and E. Hita, "Changes in corneal asphericity after laser in situ keratomileusis," J. Cataract. Refract. Surg. 29, 762-768 (2003).
    [CrossRef] [PubMed]
  38. Y. Kwon and S. Bott, "Post-surgery asphericity and spherical aberration due to ablation efficiency reduction and corneal remodeling in refractive surgeries," in prep. (2008).

2007 (1)

2006 (3)

2005 (2)

C. Roberts, "Biomechanical customization: The next generation of laser refractive surgery," J. Cataract. Refract. Surg. 31, 2-5 (2005).
[CrossRef] [PubMed]

G. Yoon, S. MacRae, D. R. Williams, and I. G. Cox, "Causes of spherical aberration induced by laser refractive surgery," J. Cataract. Refract. Surg. 31, 127-135 (2005).
[CrossRef] [PubMed]

2004 (4)

D. Cano, S. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A 21, 926-936 (2004).
[CrossRef]

J. R. Jimenez, R. G. Anera, J. A. Dıaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004).
[CrossRef]

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, "The Effect of Corneal Flap on Optical Aberrations," Am. J. Ophthalmol. 138, 190-193 (2004).
[CrossRef] [PubMed]

B. Muller, T. Boeck, and C. Hartmann, "Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy," J. Cataract. Refract. Surg. 30, 464-470 (2004).
[CrossRef] [PubMed]

2003 (7)

P. S. Hersh, K. Fry, and J. W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy Clinical results and theoretical models of etiology," J. Cataract. Refract. Surg. 29, 2096-2104 (2003).
[CrossRef] [PubMed]

R. G. Anera, J. R. Jiménez, L. J. d. Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003).
[CrossRef] [PubMed]

R. G. Anera, J. R. Jimenez, L. J. d. Barco, J. Bermudez and E. Hita, "Changes in corneal asphericity after laser in situ keratomileusis," J. Cataract. Refract. Surg. 29, 762-768 (2003).
[CrossRef] [PubMed]

D. Huang, M. Tang, and R. Shekhar, "Mathematical Model of Corneal Surface Smoothing after Laser Refractive Surgery," Am. J. Ophthal. 135, 267-278 (2003).
[CrossRef] [PubMed]

J. R. Jiménez, R. G. Anera, and L. J. d. Barco, "Equation for Corneal Asphericity After Corneal Refractive Surgery," J. Refract. Surg. 19, 65-69 (2003).
[PubMed]

S. Marcos, D. Cano, and S. Barbero, "Increase in Corneal Asphericity After Standard Laser in situ Keratomileusis for Myopia is not Inherent to the Munnerlyn Algorithm," J. Refract. Surg. 19, S592-S596 (2003).
[PubMed]

A. Vogel and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

2002 (3)

C. Roberts, "Biomechanics of the Cornea and Wavefront guided Laser Refractive Surgery," J. Refract. Surg. 18, S589-S592 (2002).
[PubMed]

J. R. Jimenez, R. G. Anera, L. J. d. Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81, 1521-1523 (2002).
[CrossRef]

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, "Aberration-sensing and Wavefront-guided Laser in situ Keratomileusis: Management of Decentered Ablation," J. Refract. Surg. 18, 418-429 (2002).
[PubMed]

2001 (5)

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, "Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration," J. Cataract. Refract. Surg. 27, 362-369 (2001).
[CrossRef] [PubMed]

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular Aberrations before and after Myopic Corneal Refractive Surgery: LASIK-induced changes measured with Laser Ray Tracing," IOVS 42, 1396-1403 (2001).

S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK Surgery for Myopia from Total and Corneal Aberration Measurements," IOVS 42, 3349-3356 (2001).

M. Mrochen, and T. Seiler, "Influence of Corneal Curvature on Calculation of Ablation Patterns used in Photorefractive Laser Surgery," J. Refract. Surg. 17, S584-S587 (2001).
[PubMed]

D. Gatinel, T. Hoang-Xuan, and D. T. Azar, "Determination of Corneal Asphericity after Myopia Surgery with the Excimer Laser: A Mathematical Model," IOVS 42, 1736-1742 (2001).

2000 (2)

M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early Results in Three Eyes," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

N. M. Taylor, R. H. Eikelboom, P. P. v. Sarloos, and P. G. Reid, "Determining the accuracy of an Eye Tracking System for Laser Refractive Surgery," J. Refract. Surg. 16, S643-S646 (2000).
[PubMed]

1996 (1)

C. B. O'Donnell, J. Kemner, and FrancisE. O'Donnell Jr., "Ablation smoothness as a function of excimer laser delivery system," J. Cataract. Refract. Surg. 22, 682-685 (1996).
[PubMed]

1995 (1)

1988 (1)

C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: A technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988).
[PubMed]

1985 (1)

R. R. Krueger and S. Trokel, "Quantitation of Corneal Ablation by Ultraviolet Laser Light," Arch. Ophthalmol. 103, 1741-1742 (1985).
[CrossRef] [PubMed]

1983 (1)

T. F. Deutsch and M. W. Geis, "Self-developing UV photoresist using excimer laser exposure," J. Appl. Phys. 54, 7201-7204 (1983).
[CrossRef]

Anera, R. G.

J. R. Jiménez, F. Rodríguez-Marín, R. G. Anera, and L. J. -d. Barco, "Deviations of Lambert-Beer's law affect corneal refractive parameters after refractive surgery," Opt. Express 14, 5411-5417 (2006).
[CrossRef] [PubMed]

J. R. Jimenez, R. G. Anera, J. A. Dıaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004).
[CrossRef]

R. G. Anera, J. R. Jimenez, L. J. d. Barco, J. Bermudez and E. Hita, "Changes in corneal asphericity after laser in situ keratomileusis," J. Cataract. Refract. Surg. 29, 762-768 (2003).
[CrossRef] [PubMed]

J. R. Jiménez, R. G. Anera, and L. J. d. Barco, "Equation for Corneal Asphericity After Corneal Refractive Surgery," J. Refract. Surg. 19, 65-69 (2003).
[PubMed]

R. G. Anera, J. R. Jiménez, L. J. d. Barco, and E. Hita, "Changes in corneal asphericity after laser refractive surgery, including reflection losses and nonnormal incidence upon the anterior cornea," Opt. Lett. 28, 417-419 (2003).
[CrossRef] [PubMed]

J. R. Jimenez, R. G. Anera, L. J. d. Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81, 1521-1523 (2002).
[CrossRef]

Azar, D. T.

D. Gatinel, T. Hoang-Xuan, and D. T. Azar, "Determination of Corneal Asphericity after Myopia Surgery with the Excimer Laser: A Mathematical Model," IOVS 42, 1736-1742 (2001).

Barbero, S.

D. Cano, S. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A 21, 926-936 (2004).
[CrossRef]

S. Marcos, D. Cano, and S. Barbero, "Increase in Corneal Asphericity After Standard Laser in situ Keratomileusis for Myopia is not Inherent to the Munnerlyn Algorithm," J. Refract. Surg. 19, S592-S596 (2003).
[PubMed]

S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK Surgery for Myopia from Total and Corneal Aberration Measurements," IOVS 42, 3349-3356 (2001).

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular Aberrations before and after Myopic Corneal Refractive Surgery: LASIK-induced changes measured with Laser Ray Tracing," IOVS 42, 1396-1403 (2001).

Barco, L. J. d.

J. R. Jiménez, R. G. Anera, and L. J. d. Barco, "Equation for Corneal Asphericity After Corneal Refractive Surgery," J. Refract. Surg. 19, 65-69 (2003).
[PubMed]

Barco, L. J. -d.

Blaker, J. W.

P. S. Hersh, K. Fry, and J. W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy Clinical results and theoretical models of etiology," J. Cataract. Refract. Surg. 29, 2096-2104 (2003).
[CrossRef] [PubMed]

Boeck, T.

B. Muller, T. Boeck, and C. Hartmann, "Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy," J. Cataract. Refract. Surg. 30, 464-470 (2004).
[CrossRef] [PubMed]

Bueeler, M.

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, "Aberration-sensing and Wavefront-guided Laser in situ Keratomileusis: Management of Decentered Ablation," J. Refract. Surg. 18, 418-429 (2002).
[PubMed]

Cano, D.

Carrillo, C.

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, "The Effect of Corneal Flap on Optical Aberrations," Am. J. Ophthalmol. 138, 190-193 (2004).
[CrossRef] [PubMed]

Chayet, A. S.

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, "The Effect of Corneal Flap on Optical Aberrations," Am. J. Ophthalmol. 138, 190-193 (2004).
[CrossRef] [PubMed]

Cox, I. G.

G. Yoon, S. MacRae, D. R. Williams, and I. G. Cox, "Causes of spherical aberration induced by laser refractive surgery," J. Cataract. Refract. Surg. 31, 127-135 (2005).
[CrossRef] [PubMed]

Deutsch, T. F.

T. F. Deutsch and M. W. Geis, "Self-developing UV photoresist using excimer laser exposure," J. Appl. Phys. 54, 7201-7204 (1983).
[CrossRef]

Diaz, J. A.

Dorronsoro, C.

C. Dorronsoro, J. Merayo-Lloves, and S. Marcos, "An Experimental Correction Factor of Radial Laser Efficiency Losses in Corneal Refractive Surgery," IOVS  47 E-Abstract 3611 (2006).

C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
[CrossRef] [PubMed]

Eikelboom, R. H.

N. M. Taylor, R. H. Eikelboom, P. P. v. Sarloos, and P. G. Reid, "Determining the accuracy of an Eye Tracking System for Laser Refractive Surgery," J. Refract. Surg. 16, S643-S646 (2000).
[PubMed]

Fisher, B.

Francis, J.

C. B. O'Donnell, J. Kemner, and FrancisE. O'Donnell Jr., "Ablation smoothness as a function of excimer laser delivery system," J. Cataract. Refract. Surg. 22, 682-685 (1996).
[PubMed]

Fry, K.

P. S. Hersh, K. Fry, and J. W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy Clinical results and theoretical models of etiology," J. Cataract. Refract. Surg. 29, 2096-2104 (2003).
[CrossRef] [PubMed]

Gatinel, D.

D. Gatinel, T. Hoang-Xuan, and D. T. Azar, "Determination of Corneal Asphericity after Myopia Surgery with the Excimer Laser: A Mathematical Model," IOVS 42, 1736-1742 (2001).

Geis, M. W.

T. F. Deutsch and M. W. Geis, "Self-developing UV photoresist using excimer laser exposure," J. Appl. Phys. 54, 7201-7204 (1983).
[CrossRef]

Hahn, D.

Hartmann, C.

B. Muller, T. Boeck, and C. Hartmann, "Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy," J. Cataract. Refract. Surg. 30, 464-470 (2004).
[CrossRef] [PubMed]

Hersh, P. S.

P. S. Hersh, K. Fry, and J. W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy Clinical results and theoretical models of etiology," J. Cataract. Refract. Surg. 29, 2096-2104 (2003).
[CrossRef] [PubMed]

Hoang-Xuan, T.

D. Gatinel, T. Hoang-Xuan, and D. T. Azar, "Determination of Corneal Asphericity after Myopia Surgery with the Excimer Laser: A Mathematical Model," IOVS 42, 1736-1742 (2001).

Huang, D.

D. Huang, M. Tang, and R. Shekhar, "Mathematical Model of Corneal Surface Smoothing after Laser Refractive Surgery," Am. J. Ophthal. 135, 267-278 (2003).
[CrossRef] [PubMed]

Jimenez, J. R.

J. R. Jimenez, R. G. Anera, J. A. Dıaz, and F. Perez-Ocon, "Corneal asphericity after refractive surgery when the Munnerlyn formula is applied," J. Opt. Soc. Am. A 21, 98-103 (2004).
[CrossRef]

R. G. Anera, J. R. Jimenez, L. J. d. Barco, J. Bermudez and E. Hita, "Changes in corneal asphericity after laser in situ keratomileusis," J. Cataract. Refract. Surg. 29, 762-768 (2003).
[CrossRef] [PubMed]

J. R. Jimenez, R. G. Anera, L. J. d. Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81, 1521-1523 (2002).
[CrossRef]

Jiménez, J. R.

Kaemmerer, M.

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, "Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration," J. Cataract. Refract. Surg. 27, 362-369 (2001).
[CrossRef] [PubMed]

M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early Results in Three Eyes," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

Kemner, J.

C. B. O'Donnell, J. Kemner, and FrancisE. O'Donnell Jr., "Ablation smoothness as a function of excimer laser delivery system," J. Cataract. Refract. Surg. 22, 682-685 (1996).
[PubMed]

Koons, S. J.

C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: A technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988).
[PubMed]

Krueger, R. R.

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, "Aberration-sensing and Wavefront-guided Laser in situ Keratomileusis: Management of Decentered Ablation," J. Refract. Surg. 18, 418-429 (2002).
[PubMed]

R. R. Krueger and S. Trokel, "Quantitation of Corneal Ablation by Ultraviolet Laser Light," Arch. Ophthalmol. 103, 1741-1742 (1985).
[CrossRef] [PubMed]

Litwak, S.

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, "The Effect of Corneal Flap on Optical Aberrations," Am. J. Ophthalmol. 138, 190-193 (2004).
[CrossRef] [PubMed]

Llorente, L.

S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK Surgery for Myopia from Total and Corneal Aberration Measurements," IOVS 42, 3349-3356 (2001).

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular Aberrations before and after Myopic Corneal Refractive Surgery: LASIK-induced changes measured with Laser Ray Tracing," IOVS 42, 1396-1403 (2001).

Lloves, J. M.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular Aberrations before and after Myopic Corneal Refractive Surgery: LASIK-induced changes measured with Laser Ray Tracing," IOVS 42, 1396-1403 (2001).

MacRae, S.

G. Yoon, S. MacRae, D. R. Williams, and I. G. Cox, "Causes of spherical aberration induced by laser refractive surgery," J. Cataract. Refract. Surg. 31, 127-135 (2005).
[CrossRef] [PubMed]

Manns, F.

Marcos, S.

C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
[CrossRef] [PubMed]

C. Dorronsoro, J. Merayo-Lloves, and S. Marcos, "An Experimental Correction Factor of Radial Laser Efficiency Losses in Corneal Refractive Surgery," IOVS  47 E-Abstract 3611 (2006).

D. Cano, S. Barbero, and S. Marcos, "Comparison of real and computer-simulated outcomes of LASIK refractive surgery," J. Opt. Soc. Am. A 21, 926-936 (2004).
[CrossRef]

S. Marcos, D. Cano, and S. Barbero, "Increase in Corneal Asphericity After Standard Laser in situ Keratomileusis for Myopia is not Inherent to the Munnerlyn Algorithm," J. Refract. Surg. 19, S592-S596 (2003).
[PubMed]

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular Aberrations before and after Myopic Corneal Refractive Surgery: LASIK-induced changes measured with Laser Ray Tracing," IOVS 42, 1396-1403 (2001).

S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK Surgery for Myopia from Total and Corneal Aberration Measurements," IOVS 42, 3349-3356 (2001).

Marshall, J.

C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: A technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988).
[PubMed]

Matsui, T.

Merayo-Lloves, J.

C. Dorronsoro, D. Cano, J. Merayo-Lloves, and S. Marcos, "Experiments on PMMA models to predict the impact of corneal refractive surgery on corneal shape," Opt. Express 14, 6142-6156 (2006).
[CrossRef] [PubMed]

C. Dorronsoro, J. Merayo-Lloves, and S. Marcos, "An Experimental Correction Factor of Radial Laser Efficiency Losses in Corneal Refractive Surgery," IOVS  47 E-Abstract 3611 (2006).

S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK Surgery for Myopia from Total and Corneal Aberration Measurements," IOVS 42, 3349-3356 (2001).

Mierdel, P.

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, "Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration," J. Cataract. Refract. Surg. 27, 362-369 (2001).
[CrossRef] [PubMed]

Missiroli, F.

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, "The Effect of Corneal Flap on Optical Aberrations," Am. J. Ophthalmol. 138, 190-193 (2004).
[CrossRef] [PubMed]

Moreno-Barriuso, E.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular Aberrations before and after Myopic Corneal Refractive Surgery: LASIK-induced changes measured with Laser Ray Tracing," IOVS 42, 1396-1403 (2001).

Mrochen, M.

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, "Aberration-sensing and Wavefront-guided Laser in situ Keratomileusis: Management of Decentered Ablation," J. Refract. Surg. 18, 418-429 (2002).
[PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, "Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration," J. Cataract. Refract. Surg. 27, 362-369 (2001).
[CrossRef] [PubMed]

M. Mrochen, and T. Seiler, "Influence of Corneal Curvature on Calculation of Ablation Patterns used in Photorefractive Laser Surgery," J. Refract. Surg. 17, S584-S587 (2001).
[PubMed]

M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early Results in Three Eyes," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

Muller, B.

B. Muller, T. Boeck, and C. Hartmann, "Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy," J. Cataract. Refract. Surg. 30, 464-470 (2004).
[CrossRef] [PubMed]

Munnerlyn, C. R.

C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: A technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988).
[PubMed]

Navarro, R.

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular Aberrations before and after Myopic Corneal Refractive Surgery: LASIK-induced changes measured with Laser Ray Tracing," IOVS 42, 1396-1403 (2001).

O'Donnell, C. B.

C. B. O'Donnell, J. Kemner, and FrancisE. O'Donnell Jr., "Ablation smoothness as a function of excimer laser delivery system," J. Cataract. Refract. Surg. 22, 682-685 (1996).
[PubMed]

Parel, J.-M.

Perez-Ocon, F.

Roberts, C.

C. Roberts, "Biomechanical customization: The next generation of laser refractive surgery," J. Cataract. Refract. Surg. 31, 2-5 (2005).
[CrossRef] [PubMed]

C. Roberts, "Biomechanics of the Cornea and Wavefront guided Laser Refractive Surgery," J. Refract. Surg. 18, S589-S592 (2002).
[PubMed]

Robledo, N.

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, "The Effect of Corneal Flap on Optical Aberrations," Am. J. Ophthalmol. 138, 190-193 (2004).
[CrossRef] [PubMed]

Rodríguez-Marín, F.

Seiler, T.

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, "Aberration-sensing and Wavefront-guided Laser in situ Keratomileusis: Management of Decentered Ablation," J. Refract. Surg. 18, 418-429 (2002).
[PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, "Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration," J. Cataract. Refract. Surg. 27, 362-369 (2001).
[CrossRef] [PubMed]

M. Mrochen, and T. Seiler, "Influence of Corneal Curvature on Calculation of Ablation Patterns used in Photorefractive Laser Surgery," J. Refract. Surg. 17, S584-S587 (2001).
[PubMed]

M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early Results in Three Eyes," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

Shekhar, R.

D. Huang, M. Tang, and R. Shekhar, "Mathematical Model of Corneal Surface Smoothing after Laser Refractive Surgery," Am. J. Ophthal. 135, 267-278 (2003).
[CrossRef] [PubMed]

Shen, J.-H.

Söderberg, P.

Tang, M.

D. Huang, M. Tang, and R. Shekhar, "Mathematical Model of Corneal Surface Smoothing after Laser Refractive Surgery," Am. J. Ophthal. 135, 267-278 (2003).
[CrossRef] [PubMed]

Taylor, N. M.

N. M. Taylor, R. H. Eikelboom, P. P. v. Sarloos, and P. G. Reid, "Determining the accuracy of an Eye Tracking System for Laser Refractive Surgery," J. Refract. Surg. 16, S643-S646 (2000).
[PubMed]

Trokel, S.

R. R. Krueger and S. Trokel, "Quantitation of Corneal Ablation by Ultraviolet Laser Light," Arch. Ophthalmol. 103, 1741-1742 (1985).
[CrossRef] [PubMed]

Venugopalan, V.

A. Vogel and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

Vogel, A.

A. Vogel and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

Williams, D. R.

G. Yoon, S. MacRae, D. R. Williams, and I. G. Cox, "Causes of spherical aberration induced by laser refractive surgery," J. Cataract. Refract. Surg. 31, 127-135 (2005).
[CrossRef] [PubMed]

Yoon, G.

G. Yoon, S. MacRae, D. R. Williams, and I. G. Cox, "Causes of spherical aberration induced by laser refractive surgery," J. Cataract. Refract. Surg. 31, 127-135 (2005).
[CrossRef] [PubMed]

Zadok, D.

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, "The Effect of Corneal Flap on Optical Aberrations," Am. J. Ophthalmol. 138, 190-193 (2004).
[CrossRef] [PubMed]

Am. J. Ophthal. (1)

D. Huang, M. Tang, and R. Shekhar, "Mathematical Model of Corneal Surface Smoothing after Laser Refractive Surgery," Am. J. Ophthal. 135, 267-278 (2003).
[CrossRef] [PubMed]

Am. J. Ophthalmol. (1)

D. Zadok, C. Carrillo, F. Missiroli, S. Litwak, N. Robledo, and A. S. Chayet, "The Effect of Corneal Flap on Optical Aberrations," Am. J. Ophthalmol. 138, 190-193 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

J. R. Jimenez, R. G. Anera, L. J. d. Barco, and E. Hita, "Effect on laser-ablation algorithms of reflection losses and nonnormal incidence on the anterior cornea," Appl. Phys. Lett. 81, 1521-1523 (2002).
[CrossRef]

Arch. Ophthalmol. (1)

R. R. Krueger and S. Trokel, "Quantitation of Corneal Ablation by Ultraviolet Laser Light," Arch. Ophthalmol. 103, 1741-1742 (1985).
[CrossRef] [PubMed]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, "Mechanisms of Pulsed Laser Ablation of Biological Tissues," Chem. Rev. 103, 577-644 (2003).
[CrossRef] [PubMed]

IOVS (1)

C. Dorronsoro, J. Merayo-Lloves, and S. Marcos, "An Experimental Correction Factor of Radial Laser Efficiency Losses in Corneal Refractive Surgery," IOVS  47 E-Abstract 3611 (2006).

IOVS (3)

D. Gatinel, T. Hoang-Xuan, and D. T. Azar, "Determination of Corneal Asphericity after Myopia Surgery with the Excimer Laser: A Mathematical Model," IOVS 42, 1736-1742 (2001).

E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular Aberrations before and after Myopic Corneal Refractive Surgery: LASIK-induced changes measured with Laser Ray Tracing," IOVS 42, 1396-1403 (2001).

S. Marcos, S. Barbero, L. Llorente, and J. Merayo-Lloves, "Optical response to LASIK Surgery for Myopia from Total and Corneal Aberration Measurements," IOVS 42, 3349-3356 (2001).

J. Appl. Phys. (1)

T. F. Deutsch and M. W. Geis, "Self-developing UV photoresist using excimer laser exposure," J. Appl. Phys. 54, 7201-7204 (1983).
[CrossRef]

J. Cataract. Refract. Surg. (8)

C. Roberts, "Biomechanical customization: The next generation of laser refractive surgery," J. Cataract. Refract. Surg. 31, 2-5 (2005).
[CrossRef] [PubMed]

G. Yoon, S. MacRae, D. R. Williams, and I. G. Cox, "Causes of spherical aberration induced by laser refractive surgery," J. Cataract. Refract. Surg. 31, 127-135 (2005).
[CrossRef] [PubMed]

C. R. Munnerlyn, S. J. Koons, and J. Marshall, "Photorefractive keratectomy: A technique for laser refractive surgery," J. Cataract. Refract. Surg. 14, 46-52 (1988).
[PubMed]

C. B. O'Donnell, J. Kemner, and FrancisE. O'Donnell Jr., "Ablation smoothness as a function of excimer laser delivery system," J. Cataract. Refract. Surg. 22, 682-685 (1996).
[PubMed]

B. Muller, T. Boeck, and C. Hartmann, "Effect of excimer laser beam delivery and beam shaping on corneal sphericity in photorefractive keratectomy," J. Cataract. Refract. Surg. 30, 464-470 (2004).
[CrossRef] [PubMed]

M. Mrochen, M. Kaemmerer, P. Mierdel, and T. Seiler, "Increased higher-order optical aberrations after laser refractive surgery: A problem of subclinical decentration," J. Cataract. Refract. Surg. 27, 362-369 (2001).
[CrossRef] [PubMed]

P. S. Hersh, K. Fry, and J. W. Blaker, "Spherical aberration after laser in situ keratomileusis and photorefractive keratectomy Clinical results and theoretical models of etiology," J. Cataract. Refract. Surg. 29, 2096-2104 (2003).
[CrossRef] [PubMed]

R. G. Anera, J. R. Jimenez, L. J. d. Barco, J. Bermudez and E. Hita, "Changes in corneal asphericity after laser in situ keratomileusis," J. Cataract. Refract. Surg. 29, 762-768 (2003).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

J. Refract. Surg. (7)

C. Roberts, "Biomechanics of the Cornea and Wavefront guided Laser Refractive Surgery," J. Refract. Surg. 18, S589-S592 (2002).
[PubMed]

J. R. Jiménez, R. G. Anera, and L. J. d. Barco, "Equation for Corneal Asphericity After Corneal Refractive Surgery," J. Refract. Surg. 19, 65-69 (2003).
[PubMed]

S. Marcos, D. Cano, and S. Barbero, "Increase in Corneal Asphericity After Standard Laser in situ Keratomileusis for Myopia is not Inherent to the Munnerlyn Algorithm," J. Refract. Surg. 19, S592-S596 (2003).
[PubMed]

M. Mrochen, M. Kaemmerer, and T. Seiler, "Wavefront-guided Laser in situ Keratomileusis: Early Results in Three Eyes," J. Refract. Surg. 16, 116-121 (2000).
[PubMed]

M. Mrochen, and T. Seiler, "Influence of Corneal Curvature on Calculation of Ablation Patterns used in Photorefractive Laser Surgery," J. Refract. Surg. 17, S584-S587 (2001).
[PubMed]

M. Mrochen, R. R. Krueger, M. Bueeler, and T. Seiler, "Aberration-sensing and Wavefront-guided Laser in situ Keratomileusis: Management of Decentered Ablation," J. Refract. Surg. 18, 418-429 (2002).
[PubMed]

N. M. Taylor, R. H. Eikelboom, P. P. v. Sarloos, and P. G. Reid, "Determining the accuracy of an Eye Tracking System for Laser Refractive Surgery," J. Refract. Surg. 16, S643-S646 (2000).
[PubMed]

Opt. Express (2)

Opt. Lett. (1)

Other (6)

M. Bueeler, M. Mrochen, and T. Seiler, "Effect of spot size, ablation depth, and eye-tracker latency on the optical outcome of corneal laser surgery with a scanning spot laser," in Ophthalmic Technologies XIII (SPIE, 2003), pp. 150-160.

R. W. Frey, J. H. Burkhalter, and G. P. Gray, "Laser Sculpting System," (2001), US Patent #6,261,220.

S. Marcos, "Spherical Aberration: Biomechanics or Physical Laser Effects?," presented in Wavefront Congress 2006 Meeting (Nassau, Bahamas. January 06, 2006).

S. J. Orfanidis, Electromagnetic Waves & Antennas (2004), http://www.ece.rutgers.edu/~orfanidi/ewa/.

R. W. Frey, J. H. Burkhalter and G. P. Gray, " Laser Sculpting Method and System," US Patent 5,849,006 (1998).

Y. Kwon and S. Bott, "Post-surgery asphericity and spherical aberration due to ablation efficiency reduction and corneal remodeling in refractive surgeries," in prep. (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic representation of a laser beam at oblique incidence on the surface of the cornea. (A) Laser beam with fluence F incident on the corneal at angle Θ. The radius of curvature of the cornea is RC. (B) Laser beam incidents and splits into a propagated/absorbed beam inside the cornea and a reflected beam. The reflectance and absorption vary with angle. (C) Progressive nature of surgery is shown. The radius of curvature of the cornea varies from RI to RF in myopic surgery as ablation progresses. Each laser shot is expected to remove the tissue of thickness d. Shown also is a complex permittivity of cornea. The thickness d measured along z varies over incidence angle for a given fluence of laser beam.

Fig. 2.
Fig. 2.

Laser beam shot pattern and profiles on the surface of the cornea used in the simulation: (a) Shot pattern for the correction of -3D myopic eye based on Munnerlyn formula. Number of shots in the pattern is 1,417. (b) Gaussian beam with 0.4 mm radius and truncated Gaussian beam with 1 mm radius. For the sake of comparison, we used the same peak fluence of 120mJ/cm2 for the plot.

Fig. 3.
Fig. 3.

Ablation efficiency reduction with Gaussian and truncated Gaussian beams. (a) 12 D correction. (b) 6 D correction. Gaussian beam with 0.4 mm size and Truncated Gaussian beam with 2 mm size are used for the simulation. The reduction is calculated from pre-healed corneal shape. For the comparison with results in the literature, we used R=8mm for the pre-surgery radius of curvature.

Fig. 4.
Fig. 4.

Corneal asphericity calculated for different magnitudes of refractive correction with three initial asphericity values. Gaussian beam and truncated Gaussian beams are used (see the text). Ablation profiles in (a-b) are based on the Munnerlyn formula and (c-d) are based on a parabolic approximation. Initial radius of curvature R=7.8 and initial asphericity of cornea p=0.7, 1.0, and 1.3, respectively, are used for the simulation. (a) and (c) show results without ablation efficiency reduction. (b) and (d) show results with ablation efficiency reduction. The fitting zone size for asphericity is 4.5mm. The Q values shown in the left of each plot are pre-surgery Q values.

Fig. 5.
Fig. 5.

Corneal asphericity from the simulations using truncated Gaussian beams, post-surgery without healing. All profiles are based on the Munnerlyn formula. The number of corrections and clinical data are obtained by digitizing Fig. 2(a) in reference [28] and Fig. 8 in reference [19]. Pre-surgery curvature of radius R=7.8 and clinically measured pre-surgery asphericity with individual corrections (obtained from 8 Fig. 8 in reference [19]) are used for the simulation.Also shown are the data points after Ka corrected by Marcos et al. and clinical data reported by Marcos et al.

Tables (1)

Tables Icon

Table 1. Surgeries and shot patterns used for the simulations. For each sphere correction, we include the number of shots for each of the profiles calculated by the Munnerlyn formula (M) and the parabolic approximation formula (P).In all patterns, a 6 mm optical zone (OZ) size is used without transition zone

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d = 1 α ln F r F TH , if F r > F TH ,
= 0 , if F r F TH ,
sin Θ = y R C .
z = y 2 R C 1 + 1 ( 1 + Q ) y 2 R C 2 ,
F r = F cos Θ .
α Z = [ D R 2 + D I 2 D R 2 ] 1 2 ,
D R = ϖ 2 μ 0 ( ε R sin 2 Θ ) ,
D I = ϖ 2 μ 0 ε I ,
d = 1 2 α Z ln [ F F TH cos Θ ( 1 R REFL ) ] ,
D = 0.376 ( 1 R ' 1 R ) ,
Z M ( r ) = R 2 r 2 R '2 r 2 + R '2 OZ 2 4 R 2 OZ 2 4 ,
Z P ( r ) = 4 Dr 2 3 D OZ 2 3 .
VPS = 0 d 2 πr dr .

Metrics