Abstract

Sensitive, real-time chirp and spectral phase diagnostics along with full field reconstruction of femtosecond laser pulses are performed using a single rapid-scan interferometric autocorrelator. Through the use of phase retrieval error maps, ambiguities in pulse retrievals based on the pulse spectrum and various forms of MOSAIC traces are discussed. We show second-order autocorrelations can introduce significantly different amounts of chirp depending on the implementation. Examples are presented that illustrate the sensitivity and fidelity of the scheme even with low signal-to-noise.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. -C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale, (Academic, Calif., 1996).
  2. J. -C. Diels, J. J. Fontaine, I. C. McMichael, and F. Simoni, "Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy," Appl. Opt. 24, 1270-1282 (1985).
    [CrossRef] [PubMed]
  3. D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
    [CrossRef]
  4. C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
    [CrossRef]
  5. V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
    [CrossRef] [PubMed]
  6. J. W. Nicholson and W. R. Rudolph, "Noise sensitivity and accuracy of femtosecond pulse retrieval by phase and intensity from correlation and spectrum only (PICASO)," J. Opt. Soc. Am. B 19, 330-339 (2002).
    [CrossRef]
  7. P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett. 26, 932-934 (2001).
    [CrossRef]
  8. T. Hirayama and M. Sheik-Bahae, "Real-time chirp diagnostic for ultrashort laser pulses," Opt. Lett. 27, 860-864 (2002).
    [CrossRef]
  9. D. A. Bender, M. P. Hasselbeck, and M. Sheik-Bahae, "Sensitive ultrashort pulse chirp measurement," Opt. Lett. 31, 122-124 (2006).
    [CrossRef] [PubMed]
  10. J. Chung and A. M. Weiner, "Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum," IEEE J. Sel. Top. Quantum Electron. 7, 656-666 (2001).
    [CrossRef]
  11. S. -H. Shim, D. B. Strasfeld, and M. T. Zanni, "Generation and characterization of phase and amplitude shaped femtosecond mid-IR pulses," Opt. Express 14, 13120-13130 (2006).
    [CrossRef] [PubMed]
  12. A. K. Sharma, P. A. Naik, and P. D. Gupta, "Simultaneous visual detection of pulse chirp and temporal asymmetry in ultrashort laser pulses using analysis of unbalanced interferometric correlation envelope (ICE) functions," Apl. Phys. B 87, 655-663 (2007).
    [CrossRef]
  13. J. Fatome, S. Pitois, and G. Millot, "Sensitivity of SHG-FROG for the characterization of ultrahigh-repetition-rate telecommunication laser sources," Opt. Fiber Technol. 10, 73-78 (2004).
    [CrossRef]
  14. M. Sheik-Bahae, "Femtosecond Kerr-lens autocorrelation," Opt. Lett. 22, 399-401 (1997).
    [CrossRef] [PubMed]
  15. D. A. Bender and M. Sheik-Bahae, "Modified spectrum autointerferometric correlation for single-shot pulse characterization," Opt. Lett. 32, 2822-2824 (2007).
    [CrossRef] [PubMed]
  16. B. Yellampalle, R. D. Averitt, and A. J. Taylor, "Unambiguous chirp characterization using modified-spectrum auto-interferometric correlation and pulse spectrum," Opt. Express 14, 8890-8899 (2006).
    [CrossRef] [PubMed]
  17. K. Naganuma, K. Modi, and H. Yamada, "General Method for ultrashort pulse chirp measurement," IEEE J. Quantum Electron. 25, 1225-1233 (1989).
    [CrossRef]
  18. C. -W. Chen, J. Y. Huang, and C-L Pan, "Pulse retrieval from interferometric autocorrelation measurement by use of the population-split genetic algorithm," Opt. Express 14, 10930-10938 (2006).
    [CrossRef] [PubMed]
  19. D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, "Light-emitting diodes as measurement devices for femtosecond laser pulses," Opt. Lett. 22, 233-235 (1997).
    [CrossRef] [PubMed]
  20. D. A. Bender, "Precision optical characterization on the nanometer length and femtosecond time scales," Ph.D Dissertation, University of New Mexico, (2008).
  21. W. Rudolph, M. Sheik-Bahae, A. Bernstein, and L. F. Lester, "Femtosecond autocorrelation measurements based on two-photon photoconductivity in ZnSe," Opt. Lett. 22, 313-315 (1997).
    [CrossRef] [PubMed]
  22. A. Gutierrez, P. Dorn, D. King, L. F. Lester, W. Rudolph, and M. Sheik-Bahae, "Autocorrelation measurement of femtosecond laser pulses by use of a ZnSe two-photon detector array," Opt. Lett. 24, 1175-1177 (1999).
    [CrossRef]

2007

A. K. Sharma, P. A. Naik, and P. D. Gupta, "Simultaneous visual detection of pulse chirp and temporal asymmetry in ultrashort laser pulses using analysis of unbalanced interferometric correlation envelope (ICE) functions," Apl. Phys. B 87, 655-663 (2007).
[CrossRef]

D. A. Bender and M. Sheik-Bahae, "Modified spectrum autointerferometric correlation for single-shot pulse characterization," Opt. Lett. 32, 2822-2824 (2007).
[CrossRef] [PubMed]

2006

2004

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

J. Fatome, S. Pitois, and G. Millot, "Sensitivity of SHG-FROG for the characterization of ultrahigh-repetition-rate telecommunication laser sources," Opt. Fiber Technol. 10, 73-78 (2004).
[CrossRef]

2002

2001

J. Chung and A. M. Weiner, "Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum," IEEE J. Sel. Top. Quantum Electron. 7, 656-666 (2001).
[CrossRef]

P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett. 26, 932-934 (2001).
[CrossRef]

1999

C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

A. Gutierrez, P. Dorn, D. King, L. F. Lester, W. Rudolph, and M. Sheik-Bahae, "Autocorrelation measurement of femtosecond laser pulses by use of a ZnSe two-photon detector array," Opt. Lett. 24, 1175-1177 (1999).
[CrossRef]

1997

1993

D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

1989

K. Naganuma, K. Modi, and H. Yamada, "General Method for ultrashort pulse chirp measurement," IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

1985

Averitt, R. D.

Bender, D. A.

Bernstein, A.

Chen, C. -W.

Chung, J.

J. Chung and A. M. Weiner, "Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum," IEEE J. Sel. Top. Quantum Electron. 7, 656-666 (2001).
[CrossRef]

Dantus, M.

Diels, J. -C.

Dorn, P.

Fatome, J.

J. Fatome, S. Pitois, and G. Millot, "Sensitivity of SHG-FROG for the characterization of ultrahigh-repetition-rate telecommunication laser sources," Opt. Fiber Technol. 10, 73-78 (2004).
[CrossRef]

Fontaine, J. J.

Gu, X.

Gupta, P. D.

A. K. Sharma, P. A. Naik, and P. D. Gupta, "Simultaneous visual detection of pulse chirp and temporal asymmetry in ultrashort laser pulses using analysis of unbalanced interferometric correlation envelope (ICE) functions," Apl. Phys. B 87, 655-663 (2007).
[CrossRef]

Gutierrez, A.

Hasselbeck, M. P.

Hirayama, T.

Huang, J. Y.

Iaconis, C.

C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

Kane, D. J.

D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

Kimmel, M.

King, D.

Lester, L. F.

Lozovoy, V. V.

McGowan, C.

McMichael, I. C.

Millot, G.

J. Fatome, S. Pitois, and G. Millot, "Sensitivity of SHG-FROG for the characterization of ultrahigh-repetition-rate telecommunication laser sources," Opt. Fiber Technol. 10, 73-78 (2004).
[CrossRef]

Modi, K.

K. Naganuma, K. Modi, and H. Yamada, "General Method for ultrashort pulse chirp measurement," IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

Naganuma, K.

K. Naganuma, K. Modi, and H. Yamada, "General Method for ultrashort pulse chirp measurement," IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

Naik, P. A.

A. K. Sharma, P. A. Naik, and P. D. Gupta, "Simultaneous visual detection of pulse chirp and temporal asymmetry in ultrashort laser pulses using analysis of unbalanced interferometric correlation envelope (ICE) functions," Apl. Phys. B 87, 655-663 (2007).
[CrossRef]

Nicholson, J. W.

O'Shea, P.

Padgett, M.

Pan, C-L

Pastirk, I.

Pitois, S.

J. Fatome, S. Pitois, and G. Millot, "Sensitivity of SHG-FROG for the characterization of ultrahigh-repetition-rate telecommunication laser sources," Opt. Fiber Technol. 10, 73-78 (2004).
[CrossRef]

Reid, D. T.

Rudolph, W.

Rudolph, W. R.

Sharma, A. K.

A. K. Sharma, P. A. Naik, and P. D. Gupta, "Simultaneous visual detection of pulse chirp and temporal asymmetry in ultrashort laser pulses using analysis of unbalanced interferometric correlation envelope (ICE) functions," Apl. Phys. B 87, 655-663 (2007).
[CrossRef]

Sheik-Bahae, M.

Shim, S. -H.

Sibbett, W.

Simoni, F.

Sleat, W. E.

Strasfeld, D. B.

Taylor, A. J.

Trebino, R.

P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett. 26, 932-934 (2001).
[CrossRef]

D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

Walmsley, I. A.

C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

Weiner, A. M.

J. Chung and A. M. Weiner, "Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum," IEEE J. Sel. Top. Quantum Electron. 7, 656-666 (2001).
[CrossRef]

Yamada, H.

K. Naganuma, K. Modi, and H. Yamada, "General Method for ultrashort pulse chirp measurement," IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

Yellampalle, B.

Zanni, M. T.

Apl. Phys. B

A. K. Sharma, P. A. Naik, and P. D. Gupta, "Simultaneous visual detection of pulse chirp and temporal asymmetry in ultrashort laser pulses using analysis of unbalanced interferometric correlation envelope (ICE) functions," Apl. Phys. B 87, 655-663 (2007).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency resolved optical gating," IEEE J. Quantum Electron. 29, 571-579 (1993).
[CrossRef]

C. Iaconis and I. A. Walmsley, "Self-referencing spectral interferometry for measuring ultrashort optical pulses," IEEE J. Quantum Electron. 35, 501-509 (1999).
[CrossRef]

K. Naganuma, K. Modi, and H. Yamada, "General Method for ultrashort pulse chirp measurement," IEEE J. Quantum Electron. 25, 1225-1233 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. Chung and A. M. Weiner, "Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum," IEEE J. Sel. Top. Quantum Electron. 7, 656-666 (2001).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Fiber Technol.

J. Fatome, S. Pitois, and G. Millot, "Sensitivity of SHG-FROG for the characterization of ultrahigh-repetition-rate telecommunication laser sources," Opt. Fiber Technol. 10, 73-78 (2004).
[CrossRef]

Opt. Lett.

M. Sheik-Bahae, "Femtosecond Kerr-lens autocorrelation," Opt. Lett. 22, 399-401 (1997).
[CrossRef] [PubMed]

D. A. Bender and M. Sheik-Bahae, "Modified spectrum autointerferometric correlation for single-shot pulse characterization," Opt. Lett. 32, 2822-2824 (2007).
[CrossRef] [PubMed]

P. O'Shea, M. Kimmel, X. Gu, and R. Trebino, "Highly simplified device for ultrashort-pulse measurement," Opt. Lett. 26, 932-934 (2001).
[CrossRef]

T. Hirayama and M. Sheik-Bahae, "Real-time chirp diagnostic for ultrashort laser pulses," Opt. Lett. 27, 860-864 (2002).
[CrossRef]

D. A. Bender, M. P. Hasselbeck, and M. Sheik-Bahae, "Sensitive ultrashort pulse chirp measurement," Opt. Lett. 31, 122-124 (2006).
[CrossRef] [PubMed]

V. V. Lozovoy, I. Pastirk, and M. Dantus, "Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation," Opt. Lett. 29, 775-777 (2004).
[CrossRef] [PubMed]

D. T. Reid, M. Padgett, C. McGowan, W. E. Sleat, and W. Sibbett, "Light-emitting diodes as measurement devices for femtosecond laser pulses," Opt. Lett. 22, 233-235 (1997).
[CrossRef] [PubMed]

W. Rudolph, M. Sheik-Bahae, A. Bernstein, and L. F. Lester, "Femtosecond autocorrelation measurements based on two-photon photoconductivity in ZnSe," Opt. Lett. 22, 313-315 (1997).
[CrossRef] [PubMed]

A. Gutierrez, P. Dorn, D. King, L. F. Lester, W. Rudolph, and M. Sheik-Bahae, "Autocorrelation measurement of femtosecond laser pulses by use of a ZnSe two-photon detector array," Opt. Lett. 24, 1175-1177 (1999).
[CrossRef]

Other

D. A. Bender, "Precision optical characterization on the nanometer length and femtosecond time scales," Ph.D Dissertation, University of New Mexico, (2008).

J. -C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques and Applications on a Femtosecond Time Scale, (Academic, Calif., 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig 1.
Fig 1.

Experimental setup for MOSAIC based phase retrieval. Two nonlinear detection methods are shown; SHG followed by linear detection and two photon photoconductivity using an LED.

Fig. 2.
Fig. 2.

MOSAIC signals generated from the same pulse and detected using (a) a BBO crystal and a linear detector (pulse duration: 60 fs FWHM) and (b) a two photon absorbing LED (76 fs FWHM). Insets shows fringe resolved MOSAIC. Measured IAC signals from which the MOSAIC traces in (a) and (b) were derived are shown in (c) and (d), respectively. The structure of the IAC waveforms appears almost identical, while the MOSAIC traces reveal chirp induced by the detection method.

Fig. 3.
Fig. 3.

(a) Measured second-order IAC (b) Experimental MOSAIC (pink lines) and reconstructed MOSAIC (dots) from the measured spectrum and retrieved phase of (c). Time domain pulse (d).

Fig. 4.
Fig. 4.

Error maps for (a) an IAC, (b) a fringe resolved MOSAIC, (c) E-MOSAIC and (d) E-MOSAIC with DFP on a pulse having GVD, TOD and a symmetric spectrum.

Fig. 5.
Fig. 5.

Normalized DFP signals showing sensitivity to relative sign on GVD and TOD dispersion coefficients.

Fig. 6.
Fig. 6.

(a) A retrieved pulse from E-MOSAIC and DFP showing peak/valley correlation (inset). (b) A second pulse reconstructing the same E-MOSAIC, however, the DFP (inset) shows peak/valley anti-correlation indicating it is not the correct pulse. Polynomial fit to the phase across the FWHM of pulse spectrum is shown in red.

Fig. 7.
Fig. 7.

Normalized algorithm performance for spectral phase retrieval on our 60 fs Ti:sapphire laser pulses. All algorithms are evaluated with the MATLAB software platform.

Fig. 8.
Fig. 8.

(a) Chirp response in MOSAIC and (b) signal-to-noise of the second order IAC as an MSM detector is brought through focus.

Fig. 9.
Fig. 9.

(a) Single IAC trace just above the noise level of a frequency doubled mode-locked Ti:sapphire laser pulse (λ = 415 nm). (b) Averaged MOSAIC waveform produced from 1000 noisy IAC traces.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

S IAC ( τ ) = 1 + 2 f ( t ) f ( t + τ ) dt
+ f ( t ) f ( t + τ ) cos ( 2 ωτ + 2 Δ ϕ ) dt
+ 2 f 1 2 ( t ) f 3 2 ( t + τ ) cos ( ωτ + Δ ϕ ) dt
+ 2 f 3 2 ( t ) f 1 2 ( t + τ ) cos ( ωτ + Δ ϕ ) dt
S MOSAIC ( τ ) = g ( τ ) + g ˜ 2 ω ( τ ) cos [ 2 ωτ + Φ ( τ ) ]
g ˜ 2 ω ( τ ) = f ( t ) f ( t + τ ) e 2 i ϕ ( t , τ ) dt
S MOSAIC ( τ ) = g ( τ ) ± g ˜ 2 ω ( τ ) .
S min ( τ ) = g ( τ ) η g ˜ 2 ω ( τ )
η = g ( 0 ) S min ( 0 ) g ˜ 2 ω ( 0 )
g ˜ 2 ω ( τ ) = F 1 { E ˜ ( 2 ω ) 2 }
g ˜ 2 ω TL ( τ ) = F 1 { E ˜ ( ω ) ∣∣ E ˜ ( ω ω ) } .
Δ = { 1 2 N [ k = 1 N ( S max , k s max , k ) 2 + k = 1 N ( S min , k s min , k ) 2 ] } 1 2
δ DFP ( τ ) = Φ ( τ ) Φ T L ( τ ) .

Metrics