Abstract

An all-silica photonic bandgap fiber with a cladding index difference of approximately 2 % and diameter-to-pitch ratio (d/Λ) of 0.12 was fabricated and studied. To our knowledge, this is the first report on the properties of photonic bandgap fiber with such a small d/Λ. The fiber is single-mode in the fundamental bandgap. The mode field diameter in the 1000-1200 nm wavelength range is 19-20 μm. The minimum loss in the same range is 20 dB/km for a 30-cm bending diameter. In our opinion, all-silica photonic bandgap fiber can serve as a potential candidate for achieving single-mode propagation with a large mode area.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Argyros, T. A. Birks, S. G. Leon-Saval, C. M. B. Cordeiro, and P. St. J. Russell, "Guidance properties of low-contrast photonic bandgap fibres," Opt. Express 13, 2503-2511 (2005).
    [CrossRef] [PubMed]
  2. A. Wang, A. K. George, and J. C. Knight, "Three-level neodymium fiber laser incorporating photonic bandgap fiber," Opt. Lett. 31, 1388-1390 (2006).
    [CrossRef] [PubMed]
  3. J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A.: Pure Appl. Opt. 6, 667-670 (2004).
    [CrossRef]
  4. A. Isomäki and O. G. Okhotnikov, "Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber," Opt. Express 14, 9238-9243 (2006).
    [CrossRef] [PubMed]
  5. T. A. Birks, G. J. Pearce, and D. M. Bird, "Approximate band structure calculation for photonic bandgap fibres," Opt. Express 14, 9483-9490 (2006).
    [CrossRef] [PubMed]
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fibre," Opt. Lett. 22, 484-485 (1997).
    [CrossRef] [PubMed]
  7. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, "Multipol method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19, 2322-2330 (2002).
    [CrossRef]
  8. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, "Multipol method for microstructured optical fibers. II. Implementation and resultes," J. Opt. Soc. Am. B 19, 2331-2340 (2002).
    [CrossRef]
  9. M. Fox, "Calculation of equivalent step-index parameters for single-mode fibres," Opt. Quantum Electron. 15, 451-455 (1983).
    [CrossRef]
  10. A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
    [CrossRef]
  11. T. A. Birks, F. Luan, G. J. Pearce, A. Wang, J. C. Knight, and D. M. Bird, "Bend loss in all-solid bandgap fibres," Opt. Express 14, 5688-5698 (2006).
    [CrossRef] [PubMed]
  12. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber lasers," Opt. Express 14, 2715-2720 (2006).
    [CrossRef] [PubMed]

2006 (5)

2005 (1)

2004 (2)

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A.: Pure Appl. Opt. 6, 667-670 (2004).
[CrossRef]

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

2002 (2)

1997 (1)

1983 (1)

M. Fox, "Calculation of equivalent step-index parameters for single-mode fibres," Opt. Quantum Electron. 15, 451-455 (1983).
[CrossRef]

Argyros, A.

Bird, D. M.

Birks, T. A.

Bjarklev, A.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A.: Pure Appl. Opt. 6, 667-670 (2004).
[CrossRef]

Botten, L. C.

Broeng, J.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A.: Pure Appl. Opt. 6, 667-670 (2004).
[CrossRef]

Cordeiro, C. M. B.

DiGiovanni, D. J.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

DiMarcello, F. V.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

Ermeneux, S.

Fox, M.

M. Fox, "Calculation of equivalent step-index parameters for single-mode fibres," Opt. Quantum Electron. 15, 451-455 (1983).
[CrossRef]

George, A. K.

Isomäki, A.

Jasapara, J.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

Jones, S. L.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

Knight, J. C.

Kuhlmey, B. T.

Lægsgaard, J.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A.: Pure Appl. Opt. 6, 667-670 (2004).
[CrossRef]

Leon-Saval, S. G.

Limpert, J.

Lines, M. E.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

Luan, F.

Martijn de Sterke, C.

Maystre, D.

McPhedran, R. C.

Monberg, E. M.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

Okhotnikov, O. G.

Pearce, G. J.

Renversez, G.

Ridgway, D. N.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

Riishede, J.

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A.: Pure Appl. Opt. 6, 667-670 (2004).
[CrossRef]

Röser, F.

Rothhardt, J.

Russell, P. St. J.

Salin, F.

Sandels, G. A.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

Schmidt, O.

Schreiber, T.

Tünnermann, A.

Wang, A.

White, I. A.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

White, T. P.

Wisk, P.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

Yablon, A. D.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

Yan, M. F.

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

Yvernault, P.

J. Lightwave Technology (1)

A. D. Yablon, M. F. Yan, D. J. DiGiovanni, M. E. Lines, S. L. Jones, D. N. Ridgway, G. A. Sandels, I. A. White, P. Wisk, F. V. DiMarcello, E. M. Monberg, and J. Jasapara, "Frozen-In Viscoelasticity for Novel Beam Expanders and High-Power Connectors," J. Lightwave Technol. 22, 16-23 (2004).
[CrossRef]

J. Opt. A.: Pure Appl. Opt. (1)

J. Riishede, J. Lægsgaard, J. Broeng, and A. Bjarklev, "All-silica photonic bandgap fibre with zero dispersion and a large mode area at 730 nm," J. Opt. A.: Pure Appl. Opt. 6, 667-670 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (5)

Opt. Lett. (2)

Opt. Quantum Electron. (1)

M. Fox, "Calculation of equivalent step-index parameters for single-mode fibres," Opt. Quantum Electron. 15, 451-455 (1983).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

SEM image of fiber end face.

Fig. 2.
Fig. 2.

The calculated loss of the fundamental and second order modes in the fundamental bandgap of a SC PBG fiber with parameters d/Λ=0.12, rod spacing Λ=11.4 μm, refractive index difference between the rods and the pure silica matrix – 0.028. In insets – the longitudinal Poynting vector distribution for different modes.

Fig. 3.
Fig. 3.

Near field patterns for different launching conditions at the wavelength 1.1 μm. Fiber length is 10 cm.

Fig. 4.
Fig. 4.

Fiber loss measured by thecut back method in the fundamental bandgap.

Fig. 5.
Fig. 5.

Bend loss at different bending diameters.

Metrics