Abstract

Enamel covers the tooth crown and is responsible for protecting the inner tissues of the teeth. It is thus clinically important to diagnose the anomalies in tooth enamel structures in the early stage for prevention and treatment. In this article, we report the epi-harmonic-generation-microscopic study of various abnormal enamel from the nature surface of human teeth. With a 1230 nm light source and with an epi-collection scheme, an imaging depth greater than 300μm can be achieved. The contrast sources of THG and SHG in the abnormal enamel have been identified and verified by comparing the images from the sound enamel with those from white spot lesions, cracks, and the irradiated enamel. Besides the previously reported interprismatic space, THG is found to be contributed from cracks or the material inhomogeneities inside the enamel prisms; while SHG is attributed to the strain-induced breakage of the 6/m point group symmetry. Combined with the high 3D spatial resolution and no energy release during imaging, our study shows that the infrared-laser-based epi-harmonic generation microscopy can provide different contrasts to differentiate the abnormal enamel from sound enamel and could provide a valuable tool for in vivo monitoring of both morphological changes and strain status of hydroxyapatite crystals in the enamel without sectioning and staining.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Fearnhead, Tooth enamel (Florence, 1989).
  2. Y. C. Chiang, B. S. Lee, Y. L. Wang, Y. A. Cheng, Y. L. Chen, J. S. Shiau, D. M. Wang, and C. P. Lin,“Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser,” Lasers Med. Sci. 23, 41–48 (2008).
    [Crossref]
  3. A. H. Meckel, W. S. Griebstein, and R. J. Neal, “Structure of mature human dental enamel as observed by electron microscopy,” Arch. Oral Biol. 10, 775–783 (1965).
    [Crossref] [PubMed]
  4. H. N. Newman and D. F. G. Poole, “Observations with scanning and transmission electron-microscopy on structure of human surface enamel,” Arch. Oral Biol. 19, 1135& (1974).
    [Crossref] [PubMed]
  5. R. J. Radlanski, H. Renz, U. Willersinn, C. A. Cordis, and H. Duschner, “Outline and arrangement of enamel rods in human deciduous and permanent enamel. 3D-reconstructions obtained from CLSM and SEM images based on serial ground sections,” Oral Sci. 109, 409–414 (2001).
    [Crossref]
  6. M. K. Yamada, M. Uo, S. Ohkawa, T. Akasaka, and A. Watari, “Non-contact surface morphology analysis of CO2 laser-irradiated teeth by scanning electron microscope and confocal laser scanning microscope,” Mater. Trans. 45, 1033–1040 (2004).
    [Crossref]
  7. M. K. Yamada and F. Watari, “Imaging and non-contact profile analysis of Nd:YAG laser-irradiated teeth by scanning electron microscopy and confocal laser scanning microscopy,” Dent. Mater. 22, 556–568 (2003).
    [Crossref]
  8. T. F. Watson, A. Azzopardi, M. Etman, P. C. Cheng, and S. K. Sidhu, “Confocal and multi-photon microscopy of dental hard tissues and biomaterials,” Am. J. Dent. 13, 19D–24D, (2000).
  9. C. J. Lin and F. J. Kao, “Harmonic generation microscopy of dental sections,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CMG6, http://www.opticsinfobase.org/abstract.cfm?URI-CLEO-2003-CMG6
  10. F. J. Kao“The use of optical parametric oscillator for harmonic generation and two-photon UV fluorescence microscopy,” Microsc. Res. Tech. 64, 175–181 (2004).
    [Crossref]
  11. C. K. Sun, “Higher harmonic generation microscopy,” Adv. Biochem. Engin./Biotechnol. 95, 17–56 (2005).
  12. M. H. Chen, W. L. Chen, Y. Sun, P. T. Fwu, and C. Y. Dong, “Multiphoton autofluorescence and second-harmonic generation imaging of the tooth,” J. Biome. Opt. 12, 064018 (2007).
    [Crossref]
  13. R. Elbaum, E. Tai, A. I. Perets, D. Oron, D. Ziskind, Y. Silberberg, and H. D. Wagner, “Dentin microarchitecture using harmonic generation microscopy,” J. Dent. 35, 150–155 (2007).
    [Crossref]
  14. C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biome. Opt. 11, 034023 (2006).
    [Crossref]
  15. C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct.Bio. 147, 19–30 (2004).
    [Crossref]
  16. D. J. White, K. M. Kozak, J. R. Zoladz, H. J. Duschner, and H. Gotz, “Effects of Crest whitestrips bleaching on subsurface microhardness and ultrastructure of tooth enamel and coronal dentin,” Am. J. Dent. 17, 5–11 (2004).
    [PubMed]
  17. Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1996).
    [Crossref]
  18. E. Sanchez-Pastenes and J. Reyes-Gasga, “Determination of the point and space groups for hydroxyapatite by computer simulation of CBED electron diffraction patterns,” Revista Mexicana De Fisica 51, 525–529 (2005).
  19. E. F. Bres, “Space-group determination of human tooth-enamel crystals,” Acta Cryst. B 49, 56–62 (1993).
    [Crossref]
  20. R. W. BoydNonlinear Optics (Academic Press, 1992).
  21. T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
    [Crossref]
  22. I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, Th. Rasing, J. W. Jeong, and S. C. Shin, “Secondharmonic generation from realistic film-substrate interfaces: The effects of strain,” Appl. Phys. Lett. 76, 1848–1850 (2000).
    [Crossref]
  23. C. Zhang, X. Xiao, N. Wang, K. K. Fung, M. M. T. Loy, Z. Chen, and J. Zhou, “Defect-enhanced secondharmonic generation in (SimGen)p superlattices,” Appl. Phys. Lett. 72, 2072–2074 (1998).
    [Crossref]
  24. W. H. Jiang and W. W. Cao, “Second harmonic generation of shear waves in crystals,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 153–162 (2004).
    [Crossref] [PubMed]
  25. T. T. Y. Huang, A. S. Jones, L H He, M. A Darendeliler, and M. V. Swain, “Characterization of enamel white spot lesions using X-ray micro-tomography,” J. Dent. 35, 737–743 (2007).
    [Crossref] [PubMed]
  26. Z. Amjad, P. G. Koutsoukos, and G. H. Nancollas, “The mineralization of enamel surfaces. A constant composition kinetics study,” J. Dent. Res. 60, 1783–1792 (1981).
    [Crossref] [PubMed]
  27. T. E. Popowics, J. M. rensberger, and S. W. Herring, “Enamel microstructure and microstrain in the fracture of human and pig molar cusps,” Arch. Oral Bio. 49, 595–605 (2004).
    [Crossref]
  28. I. Ichim, Q. Li, W. Li, M. V. Swain, and J. Kieser, “Modelling of fracture behaviour in biomaterials,” Biomaterials 28, 1317–1326 (2007).
    [Crossref]
  29. A. Wenzel , “Digital radiography and caries diagnosis,” Dentomaxillofacial Radiol. 27, 3–11 (1998).
    [Crossref]
  30. M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
    [Crossref]
  31. A. Ribeiro, C. Rousseau, J. Girkin, A. Hall, R. Strang, C. J. Whitters, S. Creanor, and A. S. L. Gomes, “A preliminary technique for investigation of a spectroscopic the diagnosis of natural caries lesions, ” J. Dent. 33, 73–78 (2005).
    [Crossref] [PubMed]
  32. M. Fontana, Y. Li, A. J. dunipace, T. W. Noblitt, G. Fischer, B. P. Katz, and G. K Stookey, “Measurement of enamel demineralization using microradiography and confocal microscopy-a correlational study,” Caries Research 30, 317–325 (1996).
    [Crossref] [PubMed]
  33. A. Lussi, R. Hibst, and R. Paulus, “DIAGNOdent: an optical method for caries detection,” J. Dent. Res. 83, C80–C83 (2004).
    [Crossref] [PubMed]
  34. E. D. J. Dejong, F. Sundstrom, H. Westerling, S. Transeus, J. J. Tenbosch, and B. Angmarmansson, “A new method for in-vivo quantification of changes in initial enamel caries with laser fluorescence,” Caries Res. 29, 2–7 (1995).
    [Crossref]
  35. M. A. Pogrel, D. F. Muff, and G. W. Marshall, “Structural changes in dental enamel induced by high energy continuous wave carbon dioxide laser,” Lasers Surg.Med. 13, 89–96 (1993).
    [Crossref] [PubMed]
  36. L. Aponte and F. F. Feagin, “Effects of F- on recrystallization-remineralization and acid resistance of enamel,” J. Dent. Res. 57, 87 (1978).
  37. B. O. Fowler and S. Kuroda, “Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility,” Calcif. Tissue Int. 38, 197–208 (1986).
    [Crossref] [PubMed]
  38. H. C. Kim, K. S. Lee, O. S. Kweon, C. G. Aneziris, and I. J. Kim, “Crack healing, reopening and thermal expansion behavior of Al2TiO5 ceramics at high temperature,” J. Eur. Ceram. Soc. 27, 1431–1434 (2007).
    [Crossref]
  39. L. D. Cynthia and D. Fried, “Real-time near IR (1310nm) imaging of CO2 laser ablation of enamel,” Opt. Express 16, 2685–2693 (2008).
    [Crossref]
  40. C. P. Lin, F. H. Lin, Y. C. Tseng, S. H. Kok, W. H. Lan, and J. D. Liao, “Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: compositional, structural and phase changes of DP-bioglass paste after irradiation by CO2 laser,” Biomaterials 21, 637–643 (2000).
    [Crossref] [PubMed]
  41. J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond laser as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
    [Crossref]
  42. C. L. Tsai, Y. T. Lin, S. T. Huang, and H. W. Chang, “In vitro acid resistance of CO2 and Nd-YAG laser treated human tooth enamel,” Caries Res. 36, 423–427 (2002).
    [Crossref] [PubMed]

2008 (2)

Y. C. Chiang, B. S. Lee, Y. L. Wang, Y. A. Cheng, Y. L. Chen, J. S. Shiau, D. M. Wang, and C. P. Lin,“Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser,” Lasers Med. Sci. 23, 41–48 (2008).
[Crossref]

L. D. Cynthia and D. Fried, “Real-time near IR (1310nm) imaging of CO2 laser ablation of enamel,” Opt. Express 16, 2685–2693 (2008).
[Crossref]

2007 (5)

H. C. Kim, K. S. Lee, O. S. Kweon, C. G. Aneziris, and I. J. Kim, “Crack healing, reopening and thermal expansion behavior of Al2TiO5 ceramics at high temperature,” J. Eur. Ceram. Soc. 27, 1431–1434 (2007).
[Crossref]

T. T. Y. Huang, A. S. Jones, L H He, M. A Darendeliler, and M. V. Swain, “Characterization of enamel white spot lesions using X-ray micro-tomography,” J. Dent. 35, 737–743 (2007).
[Crossref] [PubMed]

I. Ichim, Q. Li, W. Li, M. V. Swain, and J. Kieser, “Modelling of fracture behaviour in biomaterials,” Biomaterials 28, 1317–1326 (2007).
[Crossref]

M. H. Chen, W. L. Chen, Y. Sun, P. T. Fwu, and C. Y. Dong, “Multiphoton autofluorescence and second-harmonic generation imaging of the tooth,” J. Biome. Opt. 12, 064018 (2007).
[Crossref]

R. Elbaum, E. Tai, A. I. Perets, D. Oron, D. Ziskind, Y. Silberberg, and H. D. Wagner, “Dentin microarchitecture using harmonic generation microscopy,” J. Dent. 35, 150–155 (2007).
[Crossref]

2006 (1)

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biome. Opt. 11, 034023 (2006).
[Crossref]

2005 (4)

E. Sanchez-Pastenes and J. Reyes-Gasga, “Determination of the point and space groups for hydroxyapatite by computer simulation of CBED electron diffraction patterns,” Revista Mexicana De Fisica 51, 525–529 (2005).

C. K. Sun, “Higher harmonic generation microscopy,” Adv. Biochem. Engin./Biotechnol. 95, 17–56 (2005).

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[Crossref]

A. Ribeiro, C. Rousseau, J. Girkin, A. Hall, R. Strang, C. J. Whitters, S. Creanor, and A. S. L. Gomes, “A preliminary technique for investigation of a spectroscopic the diagnosis of natural caries lesions, ” J. Dent. 33, 73–78 (2005).
[Crossref] [PubMed]

2004 (7)

W. H. Jiang and W. W. Cao, “Second harmonic generation of shear waves in crystals,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 153–162 (2004).
[Crossref] [PubMed]

T. E. Popowics, J. M. rensberger, and S. W. Herring, “Enamel microstructure and microstrain in the fracture of human and pig molar cusps,” Arch. Oral Bio. 49, 595–605 (2004).
[Crossref]

A. Lussi, R. Hibst, and R. Paulus, “DIAGNOdent: an optical method for caries detection,” J. Dent. Res. 83, C80–C83 (2004).
[Crossref] [PubMed]

F. J. Kao“The use of optical parametric oscillator for harmonic generation and two-photon UV fluorescence microscopy,” Microsc. Res. Tech. 64, 175–181 (2004).
[Crossref]

M. K. Yamada, M. Uo, S. Ohkawa, T. Akasaka, and A. Watari, “Non-contact surface morphology analysis of CO2 laser-irradiated teeth by scanning electron microscope and confocal laser scanning microscope,” Mater. Trans. 45, 1033–1040 (2004).
[Crossref]

C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct.Bio. 147, 19–30 (2004).
[Crossref]

D. J. White, K. M. Kozak, J. R. Zoladz, H. J. Duschner, and H. Gotz, “Effects of Crest whitestrips bleaching on subsurface microhardness and ultrastructure of tooth enamel and coronal dentin,” Am. J. Dent. 17, 5–11 (2004).
[PubMed]

2003 (1)

M. K. Yamada and F. Watari, “Imaging and non-contact profile analysis of Nd:YAG laser-irradiated teeth by scanning electron microscopy and confocal laser scanning microscopy,” Dent. Mater. 22, 556–568 (2003).
[Crossref]

2002 (2)

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond laser as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

C. L. Tsai, Y. T. Lin, S. T. Huang, and H. W. Chang, “In vitro acid resistance of CO2 and Nd-YAG laser treated human tooth enamel,” Caries Res. 36, 423–427 (2002).
[Crossref] [PubMed]

2001 (1)

R. J. Radlanski, H. Renz, U. Willersinn, C. A. Cordis, and H. Duschner, “Outline and arrangement of enamel rods in human deciduous and permanent enamel. 3D-reconstructions obtained from CLSM and SEM images based on serial ground sections,” Oral Sci. 109, 409–414 (2001).
[Crossref]

2000 (4)

T. F. Watson, A. Azzopardi, M. Etman, P. C. Cheng, and S. K. Sidhu, “Confocal and multi-photon microscopy of dental hard tissues and biomaterials,” Am. J. Dent. 13, 19D–24D, (2000).

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, Th. Rasing, J. W. Jeong, and S. C. Shin, “Secondharmonic generation from realistic film-substrate interfaces: The effects of strain,” Appl. Phys. Lett. 76, 1848–1850 (2000).
[Crossref]

C. P. Lin, F. H. Lin, Y. C. Tseng, S. H. Kok, W. H. Lan, and J. D. Liao, “Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: compositional, structural and phase changes of DP-bioglass paste after irradiation by CO2 laser,” Biomaterials 21, 637–643 (2000).
[Crossref] [PubMed]

1998 (2)

A. Wenzel , “Digital radiography and caries diagnosis,” Dentomaxillofacial Radiol. 27, 3–11 (1998).
[Crossref]

C. Zhang, X. Xiao, N. Wang, K. K. Fung, M. M. T. Loy, Z. Chen, and J. Zhou, “Defect-enhanced secondharmonic generation in (SimGen)p superlattices,” Appl. Phys. Lett. 72, 2072–2074 (1998).
[Crossref]

1996 (2)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1996).
[Crossref]

M. Fontana, Y. Li, A. J. dunipace, T. W. Noblitt, G. Fischer, B. P. Katz, and G. K Stookey, “Measurement of enamel demineralization using microradiography and confocal microscopy-a correlational study,” Caries Research 30, 317–325 (1996).
[Crossref] [PubMed]

1995 (1)

E. D. J. Dejong, F. Sundstrom, H. Westerling, S. Transeus, J. J. Tenbosch, and B. Angmarmansson, “A new method for in-vivo quantification of changes in initial enamel caries with laser fluorescence,” Caries Res. 29, 2–7 (1995).
[Crossref]

1993 (2)

M. A. Pogrel, D. F. Muff, and G. W. Marshall, “Structural changes in dental enamel induced by high energy continuous wave carbon dioxide laser,” Lasers Surg.Med. 13, 89–96 (1993).
[Crossref] [PubMed]

E. F. Bres, “Space-group determination of human tooth-enamel crystals,” Acta Cryst. B 49, 56–62 (1993).
[Crossref]

1986 (1)

B. O. Fowler and S. Kuroda, “Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility,” Calcif. Tissue Int. 38, 197–208 (1986).
[Crossref] [PubMed]

1981 (1)

Z. Amjad, P. G. Koutsoukos, and G. H. Nancollas, “The mineralization of enamel surfaces. A constant composition kinetics study,” J. Dent. Res. 60, 1783–1792 (1981).
[Crossref] [PubMed]

1978 (1)

L. Aponte and F. F. Feagin, “Effects of F- on recrystallization-remineralization and acid resistance of enamel,” J. Dent. Res. 57, 87 (1978).

1974 (1)

H. N. Newman and D. F. G. Poole, “Observations with scanning and transmission electron-microscopy on structure of human surface enamel,” Arch. Oral Biol. 19, 1135& (1974).
[Crossref] [PubMed]

1965 (1)

A. H. Meckel, W. S. Griebstein, and R. J. Neal, “Structure of mature human dental enamel as observed by electron microscopy,” Arch. Oral Biol. 10, 775–783 (1965).
[Crossref] [PubMed]

Akasaka, T.

M. K. Yamada, M. Uo, S. Ohkawa, T. Akasaka, and A. Watari, “Non-contact surface morphology analysis of CO2 laser-irradiated teeth by scanning electron microscope and confocal laser scanning microscope,” Mater. Trans. 45, 1033–1040 (2004).
[Crossref]

Amjad, Z.

Z. Amjad, P. G. Koutsoukos, and G. H. Nancollas, “The mineralization of enamel surfaces. A constant composition kinetics study,” J. Dent. Res. 60, 1783–1792 (1981).
[Crossref] [PubMed]

Aneziris, C. G.

H. C. Kim, K. S. Lee, O. S. Kweon, C. G. Aneziris, and I. J. Kim, “Crack healing, reopening and thermal expansion behavior of Al2TiO5 ceramics at high temperature,” J. Eur. Ceram. Soc. 27, 1431–1434 (2007).
[Crossref]

Angmarmansson, B.

E. D. J. Dejong, F. Sundstrom, H. Westerling, S. Transeus, J. J. Tenbosch, and B. Angmarmansson, “A new method for in-vivo quantification of changes in initial enamel caries with laser fluorescence,” Caries Res. 29, 2–7 (1995).
[Crossref]

Aponte, L.

L. Aponte and F. F. Feagin, “Effects of F- on recrystallization-remineralization and acid resistance of enamel,” J. Dent. Res. 57, 87 (1978).

Arnold, W. H.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond laser as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

Azzopardi, A.

T. F. Watson, A. Azzopardi, M. Etman, P. C. Cheng, and S. K. Sidhu, “Confocal and multi-photon microscopy of dental hard tissues and biomaterials,” Am. J. Dent. 13, 19D–24D, (2000).

Barad, Y.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1996).
[Crossref]

Bauer, T.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond laser as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

Boyd, R. W.

R. W. BoydNonlinear Optics (Academic Press, 1992).

Bres, E. F.

E. F. Bres, “Space-group determination of human tooth-enamel crystals,” Acta Cryst. B 49, 56–62 (1993).
[Crossref]

Brown, E. R.

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[Crossref]

Cao, W. W.

W. H. Jiang and W. W. Cao, “Second harmonic generation of shear waves in crystals,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 153–162 (2004).
[Crossref] [PubMed]

Chang, H. W.

C. L. Tsai, Y. T. Lin, S. T. Huang, and H. W. Chang, “In vitro acid resistance of CO2 and Nd-YAG laser treated human tooth enamel,” Caries Res. 36, 423–427 (2002).
[Crossref] [PubMed]

Chen, F.

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

Chen, M. H.

M. H. Chen, W. L. Chen, Y. Sun, P. T. Fwu, and C. Y. Dong, “Multiphoton autofluorescence and second-harmonic generation imaging of the tooth,” J. Biome. Opt. 12, 064018 (2007).
[Crossref]

Chen, S. Y.

C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct.Bio. 147, 19–30 (2004).
[Crossref]

Chen, W. L.

M. H. Chen, W. L. Chen, Y. Sun, P. T. Fwu, and C. Y. Dong, “Multiphoton autofluorescence and second-harmonic generation imaging of the tooth,” J. Biome. Opt. 12, 064018 (2007).
[Crossref]

Chen, Y. L.

Y. C. Chiang, B. S. Lee, Y. L. Wang, Y. A. Cheng, Y. L. Chen, J. S. Shiau, D. M. Wang, and C. P. Lin,“Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser,” Lasers Med. Sci. 23, 41–48 (2008).
[Crossref]

Chen, Z.

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

C. Zhang, X. Xiao, N. Wang, K. K. Fung, M. M. T. Loy, Z. Chen, and J. Zhou, “Defect-enhanced secondharmonic generation in (SimGen)p superlattices,” Appl. Phys. Lett. 72, 2072–2074 (1998).
[Crossref]

Cheng, P. C.

T. F. Watson, A. Azzopardi, M. Etman, P. C. Cheng, and S. K. Sidhu, “Confocal and multi-photon microscopy of dental hard tissues and biomaterials,” Am. J. Dent. 13, 19D–24D, (2000).

Cheng, Y. A.

Y. C. Chiang, B. S. Lee, Y. L. Wang, Y. A. Cheng, Y. L. Chen, J. S. Shiau, D. M. Wang, and C. P. Lin,“Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser,” Lasers Med. Sci. 23, 41–48 (2008).
[Crossref]

Chiang, Y. C.

Y. C. Chiang, B. S. Lee, Y. L. Wang, Y. A. Cheng, Y. L. Chen, J. S. Shiau, D. M. Wang, and C. P. Lin,“Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser,” Lasers Med. Sci. 23, 41–48 (2008).
[Crossref]

Chu, S. W.

C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct.Bio. 147, 19–30 (2004).
[Crossref]

Cordis, C. A.

R. J. Radlanski, H. Renz, U. Willersinn, C. A. Cordis, and H. Duschner, “Outline and arrangement of enamel rods in human deciduous and permanent enamel. 3D-reconstructions obtained from CLSM and SEM images based on serial ground sections,” Oral Sci. 109, 409–414 (2001).
[Crossref]

Creanor, S.

A. Ribeiro, C. Rousseau, J. Girkin, A. Hall, R. Strang, C. J. Whitters, S. Creanor, and A. S. L. Gomes, “A preliminary technique for investigation of a spectroscopic the diagnosis of natural caries lesions, ” J. Dent. 33, 73–78 (2005).
[Crossref] [PubMed]

Culjat, M. O.

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[Crossref]

Cynthia, L. D.

Dadoenkova, N. N.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, Th. Rasing, J. W. Jeong, and S. C. Shin, “Secondharmonic generation from realistic film-substrate interfaces: The effects of strain,” Appl. Phys. Lett. 76, 1848–1850 (2000).
[Crossref]

Darendeliler, M. A

T. T. Y. Huang, A. S. Jones, L H He, M. A Darendeliler, and M. V. Swain, “Characterization of enamel white spot lesions using X-ray micro-tomography,” J. Dent. 35, 737–743 (2007).
[Crossref] [PubMed]

Darling, C. L.

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biome. Opt. 11, 034023 (2006).
[Crossref]

Dejong, E. D. J.

E. D. J. Dejong, F. Sundstrom, H. Westerling, S. Transeus, J. J. Tenbosch, and B. Angmarmansson, “A new method for in-vivo quantification of changes in initial enamel caries with laser fluorescence,” Caries Res. 29, 2–7 (1995).
[Crossref]

Dong, C. Y.

M. H. Chen, W. L. Chen, Y. Sun, P. T. Fwu, and C. Y. Dong, “Multiphoton autofluorescence and second-harmonic generation imaging of the tooth,” J. Biome. Opt. 12, 064018 (2007).
[Crossref]

dunipace, A. J.

M. Fontana, Y. Li, A. J. dunipace, T. W. Noblitt, G. Fischer, B. P. Katz, and G. K Stookey, “Measurement of enamel demineralization using microradiography and confocal microscopy-a correlational study,” Caries Research 30, 317–325 (1996).
[Crossref] [PubMed]

Duschner, H.

R. J. Radlanski, H. Renz, U. Willersinn, C. A. Cordis, and H. Duschner, “Outline and arrangement of enamel rods in human deciduous and permanent enamel. 3D-reconstructions obtained from CLSM and SEM images based on serial ground sections,” Oral Sci. 109, 409–414 (2001).
[Crossref]

Duschner, H. J.

D. J. White, K. M. Kozak, J. R. Zoladz, H. J. Duschner, and H. Gotz, “Effects of Crest whitestrips bleaching on subsurface microhardness and ultrastructure of tooth enamel and coronal dentin,” Am. J. Dent. 17, 5–11 (2004).
[PubMed]

Eisenberg, H.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1996).
[Crossref]

Elbaum, R.

R. Elbaum, E. Tai, A. I. Perets, D. Oron, D. Ziskind, Y. Silberberg, and H. D. Wagner, “Dentin microarchitecture using harmonic generation microscopy,” J. Dent. 35, 150–155 (2007).
[Crossref]

Etman, M.

T. F. Watson, A. Azzopardi, M. Etman, P. C. Cheng, and S. K. Sidhu, “Confocal and multi-photon microscopy of dental hard tissues and biomaterials,” Am. J. Dent. 13, 19D–24D, (2000).

Fallnich, C.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond laser as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

Feagin, F. F.

L. Aponte and F. F. Feagin, “Effects of F- on recrystallization-remineralization and acid resistance of enamel,” J. Dent. Res. 57, 87 (1978).

Fearnhead, R. W.

R. W. Fearnhead, Tooth enamel (Florence, 1989).

Fischer, G.

M. Fontana, Y. Li, A. J. dunipace, T. W. Noblitt, G. Fischer, B. P. Katz, and G. K Stookey, “Measurement of enamel demineralization using microradiography and confocal microscopy-a correlational study,” Caries Research 30, 317–325 (1996).
[Crossref] [PubMed]

Fontana, M.

M. Fontana, Y. Li, A. J. dunipace, T. W. Noblitt, G. Fischer, B. P. Katz, and G. K Stookey, “Measurement of enamel demineralization using microradiography and confocal microscopy-a correlational study,” Caries Research 30, 317–325 (1996).
[Crossref] [PubMed]

Fowler, B. O.

B. O. Fowler and S. Kuroda, “Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility,” Calcif. Tissue Int. 38, 197–208 (1986).
[Crossref] [PubMed]

Fried, D.

L. D. Cynthia and D. Fried, “Real-time near IR (1310nm) imaging of CO2 laser ablation of enamel,” Opt. Express 16, 2685–2693 (2008).
[Crossref]

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biome. Opt. 11, 034023 (2006).
[Crossref]

Fung, K. K.

C. Zhang, X. Xiao, N. Wang, K. K. Fung, M. M. T. Loy, Z. Chen, and J. Zhou, “Defect-enhanced secondharmonic generation in (SimGen)p superlattices,” Appl. Phys. Lett. 72, 2072–2074 (1998).
[Crossref]

Fwu, P. T.

M. H. Chen, W. L. Chen, Y. Sun, P. T. Fwu, and C. Y. Dong, “Multiphoton autofluorescence and second-harmonic generation imaging of the tooth,” J. Biome. Opt. 12, 064018 (2007).
[Crossref]

Girkin, J.

A. Ribeiro, C. Rousseau, J. Girkin, A. Hall, R. Strang, C. J. Whitters, S. Creanor, and A. S. L. Gomes, “A preliminary technique for investigation of a spectroscopic the diagnosis of natural caries lesions, ” J. Dent. 33, 73–78 (2005).
[Crossref] [PubMed]

Gomes, A. S. L.

A. Ribeiro, C. Rousseau, J. Girkin, A. Hall, R. Strang, C. J. Whitters, S. Creanor, and A. S. L. Gomes, “A preliminary technique for investigation of a spectroscopic the diagnosis of natural caries lesions, ” J. Dent. 33, 73–78 (2005).
[Crossref] [PubMed]

Gotz, H.

D. J. White, K. M. Kozak, J. R. Zoladz, H. J. Duschner, and H. Gotz, “Effects of Crest whitestrips bleaching on subsurface microhardness and ultrastructure of tooth enamel and coronal dentin,” Am. J. Dent. 17, 5–11 (2004).
[PubMed]

Griebstein, W. S.

A. H. Meckel, W. S. Griebstein, and R. J. Neal, “Structure of mature human dental enamel as observed by electron microscopy,” Arch. Oral Biol. 10, 775–783 (1965).
[Crossref] [PubMed]

Hall, A.

A. Ribeiro, C. Rousseau, J. Girkin, A. Hall, R. Strang, C. J. Whitters, S. Creanor, and A. S. L. Gomes, “A preliminary technique for investigation of a spectroscopic the diagnosis of natural caries lesions, ” J. Dent. 33, 73–78 (2005).
[Crossref] [PubMed]

He, L H

T. T. Y. Huang, A. S. Jones, L H He, M. A Darendeliler, and M. V. Swain, “Characterization of enamel white spot lesions using X-ray micro-tomography,” J. Dent. 35, 737–743 (2007).
[Crossref] [PubMed]

Herring, S. W.

T. E. Popowics, J. M. rensberger, and S. W. Herring, “Enamel microstructure and microstrain in the fracture of human and pig molar cusps,” Arch. Oral Bio. 49, 595–605 (2004).
[Crossref]

Hibst, R.

A. Lussi, R. Hibst, and R. Paulus, “DIAGNOdent: an optical method for caries detection,” J. Dent. Res. 83, C80–C83 (2004).
[Crossref] [PubMed]

Horowitz, M.

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1996).
[Crossref]

Huang, S. T.

C. L. Tsai, Y. T. Lin, S. T. Huang, and H. W. Chang, “In vitro acid resistance of CO2 and Nd-YAG laser treated human tooth enamel,” Caries Res. 36, 423–427 (2002).
[Crossref] [PubMed]

Huang, T. T. Y.

T. T. Y. Huang, A. S. Jones, L H He, M. A Darendeliler, and M. V. Swain, “Characterization of enamel white spot lesions using X-ray micro-tomography,” J. Dent. 35, 737–743 (2007).
[Crossref] [PubMed]

Huynh, G. D.

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biome. Opt. 11, 034023 (2006).
[Crossref]

Ichim, I.

I. Ichim, Q. Li, W. Li, M. V. Swain, and J. Kieser, “Modelling of fracture behaviour in biomaterials,” Biomaterials 28, 1317–1326 (2007).
[Crossref]

Jeong, J. W.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, Th. Rasing, J. W. Jeong, and S. C. Shin, “Secondharmonic generation from realistic film-substrate interfaces: The effects of strain,” Appl. Phys. Lett. 76, 1848–1850 (2000).
[Crossref]

Jiang, W. H.

W. H. Jiang and W. W. Cao, “Second harmonic generation of shear waves in crystals,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 153–162 (2004).
[Crossref] [PubMed]

Jones, A. S.

T. T. Y. Huang, A. S. Jones, L H He, M. A Darendeliler, and M. V. Swain, “Characterization of enamel white spot lesions using X-ray micro-tomography,” J. Dent. 35, 737–743 (2007).
[Crossref] [PubMed]

Kao, F. J.

F. J. Kao“The use of optical parametric oscillator for harmonic generation and two-photon UV fluorescence microscopy,” Microsc. Res. Tech. 64, 175–181 (2004).
[Crossref]

C. J. Lin and F. J. Kao, “Harmonic generation microscopy of dental sections,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CMG6, http://www.opticsinfobase.org/abstract.cfm?URI-CLEO-2003-CMG6

Kasenbacher, A.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond laser as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

Katz, B. P.

M. Fontana, Y. Li, A. J. dunipace, T. W. Noblitt, G. Fischer, B. P. Katz, and G. K Stookey, “Measurement of enamel demineralization using microradiography and confocal microscopy-a correlational study,” Caries Research 30, 317–325 (1996).
[Crossref] [PubMed]

Kieser, J.

I. Ichim, Q. Li, W. Li, M. V. Swain, and J. Kieser, “Modelling of fracture behaviour in biomaterials,” Biomaterials 28, 1317–1326 (2007).
[Crossref]

Kim, H. C.

H. C. Kim, K. S. Lee, O. S. Kweon, C. G. Aneziris, and I. J. Kim, “Crack healing, reopening and thermal expansion behavior of Al2TiO5 ceramics at high temperature,” J. Eur. Ceram. Soc. 27, 1431–1434 (2007).
[Crossref]

Kim, I. J.

H. C. Kim, K. S. Lee, O. S. Kweon, C. G. Aneziris, and I. J. Kim, “Crack healing, reopening and thermal expansion behavior of Al2TiO5 ceramics at high temperature,” J. Eur. Ceram. Soc. 27, 1431–1434 (2007).
[Crossref]

Kok, S. H.

C. P. Lin, F. H. Lin, Y. C. Tseng, S. H. Kok, W. H. Lan, and J. D. Liao, “Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: compositional, structural and phase changes of DP-bioglass paste after irradiation by CO2 laser,” Biomaterials 21, 637–643 (2000).
[Crossref] [PubMed]

Koutsoukos, P. G.

Z. Amjad, P. G. Koutsoukos, and G. H. Nancollas, “The mineralization of enamel surfaces. A constant composition kinetics study,” J. Dent. Res. 60, 1783–1792 (1981).
[Crossref] [PubMed]

Kozak, K. M.

D. J. White, K. M. Kozak, J. R. Zoladz, H. J. Duschner, and H. Gotz, “Effects of Crest whitestrips bleaching on subsurface microhardness and ultrastructure of tooth enamel and coronal dentin,” Am. J. Dent. 17, 5–11 (2004).
[PubMed]

Kuroda, S.

B. O. Fowler and S. Kuroda, “Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility,” Calcif. Tissue Int. 38, 197–208 (1986).
[Crossref] [PubMed]

Kweon, O. S.

H. C. Kim, K. S. Lee, O. S. Kweon, C. G. Aneziris, and I. J. Kim, “Crack healing, reopening and thermal expansion behavior of Al2TiO5 ceramics at high temperature,” J. Eur. Ceram. Soc. 27, 1431–1434 (2007).
[Crossref]

Lan, W. H.

C. P. Lin, F. H. Lin, Y. C. Tseng, S. H. Kok, W. H. Lan, and J. D. Liao, “Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: compositional, structural and phase changes of DP-bioglass paste after irradiation by CO2 laser,” Biomaterials 21, 637–643 (2000).
[Crossref] [PubMed]

Lee, B. S.

Y. C. Chiang, B. S. Lee, Y. L. Wang, Y. A. Cheng, Y. L. Chen, J. S. Shiau, D. M. Wang, and C. P. Lin,“Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser,” Lasers Med. Sci. 23, 41–48 (2008).
[Crossref]

Lee, K. S.

H. C. Kim, K. S. Lee, O. S. Kweon, C. G. Aneziris, and I. J. Kim, “Crack healing, reopening and thermal expansion behavior of Al2TiO5 ceramics at high temperature,” J. Eur. Ceram. Soc. 27, 1431–1434 (2007).
[Crossref]

Li, Q.

I. Ichim, Q. Li, W. Li, M. V. Swain, and J. Kieser, “Modelling of fracture behaviour in biomaterials,” Biomaterials 28, 1317–1326 (2007).
[Crossref]

Li, W.

I. Ichim, Q. Li, W. Li, M. V. Swain, and J. Kieser, “Modelling of fracture behaviour in biomaterials,” Biomaterials 28, 1317–1326 (2007).
[Crossref]

Li, Y.

M. Fontana, Y. Li, A. J. dunipace, T. W. Noblitt, G. Fischer, B. P. Katz, and G. K Stookey, “Measurement of enamel demineralization using microradiography and confocal microscopy-a correlational study,” Caries Research 30, 317–325 (1996).
[Crossref] [PubMed]

Liao, J. D.

C. P. Lin, F. H. Lin, Y. C. Tseng, S. H. Kok, W. H. Lan, and J. D. Liao, “Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: compositional, structural and phase changes of DP-bioglass paste after irradiation by CO2 laser,” Biomaterials 21, 637–643 (2000).
[Crossref] [PubMed]

Lin, C. J.

C. J. Lin and F. J. Kao, “Harmonic generation microscopy of dental sections,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CMG6, http://www.opticsinfobase.org/abstract.cfm?URI-CLEO-2003-CMG6

Lin, C. P.

Y. C. Chiang, B. S. Lee, Y. L. Wang, Y. A. Cheng, Y. L. Chen, J. S. Shiau, D. M. Wang, and C. P. Lin,“Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser,” Lasers Med. Sci. 23, 41–48 (2008).
[Crossref]

C. P. Lin, F. H. Lin, Y. C. Tseng, S. H. Kok, W. H. Lan, and J. D. Liao, “Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: compositional, structural and phase changes of DP-bioglass paste after irradiation by CO2 laser,” Biomaterials 21, 637–643 (2000).
[Crossref] [PubMed]

Lin, C. Y.

C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct.Bio. 147, 19–30 (2004).
[Crossref]

Lin, F. H.

C. P. Lin, F. H. Lin, Y. C. Tseng, S. H. Kok, W. H. Lan, and J. D. Liao, “Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: compositional, structural and phase changes of DP-bioglass paste after irradiation by CO2 laser,” Biomaterials 21, 637–643 (2000).
[Crossref] [PubMed]

Lin, Y. T.

C. L. Tsai, Y. T. Lin, S. T. Huang, and H. W. Chang, “In vitro acid resistance of CO2 and Nd-YAG laser treated human tooth enamel,” Caries Res. 36, 423–427 (2002).
[Crossref] [PubMed]

Liu, T. M.

C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct.Bio. 147, 19–30 (2004).
[Crossref]

Loy, M. M. T.

C. Zhang, X. Xiao, N. Wang, K. K. Fung, M. M. T. Loy, Z. Chen, and J. Zhou, “Defect-enhanced secondharmonic generation in (SimGen)p superlattices,” Appl. Phys. Lett. 72, 2072–2074 (1998).
[Crossref]

Lu, H.

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

Lussi, A.

A. Lussi, R. Hibst, and R. Paulus, “DIAGNOdent: an optical method for caries detection,” J. Dent. Res. 83, C80–C83 (2004).
[Crossref] [PubMed]

Lyubchanskii, I. L.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, Th. Rasing, J. W. Jeong, and S. C. Shin, “Secondharmonic generation from realistic film-substrate interfaces: The effects of strain,” Appl. Phys. Lett. 76, 1848–1850 (2000).
[Crossref]

Lyubchanskii, M. I.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, Th. Rasing, J. W. Jeong, and S. C. Shin, “Secondharmonic generation from realistic film-substrate interfaces: The effects of strain,” Appl. Phys. Lett. 76, 1848–1850 (2000).
[Crossref]

Marshall, G. W.

M. A. Pogrel, D. F. Muff, and G. W. Marshall, “Structural changes in dental enamel induced by high energy continuous wave carbon dioxide laser,” Lasers Surg.Med. 13, 89–96 (1993).
[Crossref] [PubMed]

Meckel, A. H.

A. H. Meckel, W. S. Griebstein, and R. J. Neal, “Structure of mature human dental enamel as observed by electron microscopy,” Arch. Oral Biol. 10, 775–783 (1965).
[Crossref] [PubMed]

Muff, D. F.

M. A. Pogrel, D. F. Muff, and G. W. Marshall, “Structural changes in dental enamel induced by high energy continuous wave carbon dioxide laser,” Lasers Surg.Med. 13, 89–96 (1993).
[Crossref] [PubMed]

Nancollas, G. H.

Z. Amjad, P. G. Koutsoukos, and G. H. Nancollas, “The mineralization of enamel surfaces. A constant composition kinetics study,” J. Dent. Res. 60, 1783–1792 (1981).
[Crossref] [PubMed]

Neal, R. J.

A. H. Meckel, W. S. Griebstein, and R. J. Neal, “Structure of mature human dental enamel as observed by electron microscopy,” Arch. Oral Biol. 10, 775–783 (1965).
[Crossref] [PubMed]

Neurgaonkar, R. R.

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[Crossref]

Newman, H. N.

H. N. Newman and D. F. G. Poole, “Observations with scanning and transmission electron-microscopy on structure of human surface enamel,” Arch. Oral Biol. 19, 1135& (1974).
[Crossref] [PubMed]

Noblitt, T. W.

M. Fontana, Y. Li, A. J. dunipace, T. W. Noblitt, G. Fischer, B. P. Katz, and G. K Stookey, “Measurement of enamel demineralization using microradiography and confocal microscopy-a correlational study,” Caries Research 30, 317–325 (1996).
[Crossref] [PubMed]

Ohkawa, S.

M. K. Yamada, M. Uo, S. Ohkawa, T. Akasaka, and A. Watari, “Non-contact surface morphology analysis of CO2 laser-irradiated teeth by scanning electron microscope and confocal laser scanning microscope,” Mater. Trans. 45, 1033–1040 (2004).
[Crossref]

Oron, D.

R. Elbaum, E. Tai, A. I. Perets, D. Oron, D. Ziskind, Y. Silberberg, and H. D. Wagner, “Dentin microarchitecture using harmonic generation microscopy,” J. Dent. 35, 150–155 (2007).
[Crossref]

Paulus, R.

A. Lussi, R. Hibst, and R. Paulus, “DIAGNOdent: an optical method for caries detection,” J. Dent. Res. 83, C80–C83 (2004).
[Crossref] [PubMed]

Perets, A. I.

R. Elbaum, E. Tai, A. I. Perets, D. Oron, D. Ziskind, Y. Silberberg, and H. D. Wagner, “Dentin microarchitecture using harmonic generation microscopy,” J. Dent. 35, 150–155 (2007).
[Crossref]

Pogrel, M. A.

M. A. Pogrel, D. F. Muff, and G. W. Marshall, “Structural changes in dental enamel induced by high energy continuous wave carbon dioxide laser,” Lasers Surg.Med. 13, 89–96 (1993).
[Crossref] [PubMed]

Poole, D. F. G.

H. N. Newman and D. F. G. Poole, “Observations with scanning and transmission electron-microscopy on structure of human surface enamel,” Arch. Oral Biol. 19, 1135& (1974).
[Crossref] [PubMed]

Popowics, T. E.

T. E. Popowics, J. M. rensberger, and S. W. Herring, “Enamel microstructure and microstrain in the fracture of human and pig molar cusps,” Arch. Oral Bio. 49, 595–605 (2004).
[Crossref]

Radlanski, R. J.

R. J. Radlanski, H. Renz, U. Willersinn, C. A. Cordis, and H. Duschner, “Outline and arrangement of enamel rods in human deciduous and permanent enamel. 3D-reconstructions obtained from CLSM and SEM images based on serial ground sections,” Oral Sci. 109, 409–414 (2001).
[Crossref]

Rasing, Th.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, Th. Rasing, J. W. Jeong, and S. C. Shin, “Secondharmonic generation from realistic film-substrate interfaces: The effects of strain,” Appl. Phys. Lett. 76, 1848–1850 (2000).
[Crossref]

rensberger, J. M.

T. E. Popowics, J. M. rensberger, and S. W. Herring, “Enamel microstructure and microstrain in the fracture of human and pig molar cusps,” Arch. Oral Bio. 49, 595–605 (2004).
[Crossref]

Renz, H.

R. J. Radlanski, H. Renz, U. Willersinn, C. A. Cordis, and H. Duschner, “Outline and arrangement of enamel rods in human deciduous and permanent enamel. 3D-reconstructions obtained from CLSM and SEM images based on serial ground sections,” Oral Sci. 109, 409–414 (2001).
[Crossref]

Reyes-Gasga, J.

E. Sanchez-Pastenes and J. Reyes-Gasga, “Determination of the point and space groups for hydroxyapatite by computer simulation of CBED electron diffraction patterns,” Revista Mexicana De Fisica 51, 525–529 (2005).

Ribeiro, A.

A. Ribeiro, C. Rousseau, J. Girkin, A. Hall, R. Strang, C. J. Whitters, S. Creanor, and A. S. L. Gomes, “A preliminary technique for investigation of a spectroscopic the diagnosis of natural caries lesions, ” J. Dent. 33, 73–78 (2005).
[Crossref] [PubMed]

Rousseau, C.

A. Ribeiro, C. Rousseau, J. Girkin, A. Hall, R. Strang, C. J. Whitters, S. Creanor, and A. S. L. Gomes, “A preliminary technique for investigation of a spectroscopic the diagnosis of natural caries lesions, ” J. Dent. 33, 73–78 (2005).
[Crossref] [PubMed]

Sanchez-Pastenes, E.

E. Sanchez-Pastenes and J. Reyes-Gasga, “Determination of the point and space groups for hydroxyapatite by computer simulation of CBED electron diffraction patterns,” Revista Mexicana De Fisica 51, 525–529 (2005).

Serbin, J.

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond laser as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

Shiau, J. S.

Y. C. Chiang, B. S. Lee, Y. L. Wang, Y. A. Cheng, Y. L. Chen, J. S. Shiau, D. M. Wang, and C. P. Lin,“Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser,” Lasers Med. Sci. 23, 41–48 (2008).
[Crossref]

Shin, S. C.

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, Th. Rasing, J. W. Jeong, and S. C. Shin, “Secondharmonic generation from realistic film-substrate interfaces: The effects of strain,” Appl. Phys. Lett. 76, 1848–1850 (2000).
[Crossref]

Sidhu, S. K.

T. F. Watson, A. Azzopardi, M. Etman, P. C. Cheng, and S. K. Sidhu, “Confocal and multi-photon microscopy of dental hard tissues and biomaterials,” Am. J. Dent. 13, 19D–24D, (2000).

Silberberg, Y.

R. Elbaum, E. Tai, A. I. Perets, D. Oron, D. Ziskind, Y. Silberberg, and H. D. Wagner, “Dentin microarchitecture using harmonic generation microscopy,” J. Dent. 35, 150–155 (2007).
[Crossref]

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1996).
[Crossref]

Singh, R. S.

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[Crossref]

Stookey, G. K

M. Fontana, Y. Li, A. J. dunipace, T. W. Noblitt, G. Fischer, B. P. Katz, and G. K Stookey, “Measurement of enamel demineralization using microradiography and confocal microscopy-a correlational study,” Caries Research 30, 317–325 (1996).
[Crossref] [PubMed]

Strang, R.

A. Ribeiro, C. Rousseau, J. Girkin, A. Hall, R. Strang, C. J. Whitters, S. Creanor, and A. S. L. Gomes, “A preliminary technique for investigation of a spectroscopic the diagnosis of natural caries lesions, ” J. Dent. 33, 73–78 (2005).
[Crossref] [PubMed]

Sun, C. K.

C. K. Sun, “Higher harmonic generation microscopy,” Adv. Biochem. Engin./Biotechnol. 95, 17–56 (2005).

C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct.Bio. 147, 19–30 (2004).
[Crossref]

Sun, Y.

M. H. Chen, W. L. Chen, Y. Sun, P. T. Fwu, and C. Y. Dong, “Multiphoton autofluorescence and second-harmonic generation imaging of the tooth,” J. Biome. Opt. 12, 064018 (2007).
[Crossref]

Sundstrom, F.

E. D. J. Dejong, F. Sundstrom, H. Westerling, S. Transeus, J. J. Tenbosch, and B. Angmarmansson, “A new method for in-vivo quantification of changes in initial enamel caries with laser fluorescence,” Caries Res. 29, 2–7 (1995).
[Crossref]

Swain, M. V.

T. T. Y. Huang, A. S. Jones, L H He, M. A Darendeliler, and M. V. Swain, “Characterization of enamel white spot lesions using X-ray micro-tomography,” J. Dent. 35, 737–743 (2007).
[Crossref] [PubMed]

I. Ichim, Q. Li, W. Li, M. V. Swain, and J. Kieser, “Modelling of fracture behaviour in biomaterials,” Biomaterials 28, 1317–1326 (2007).
[Crossref]

Tai, E.

R. Elbaum, E. Tai, A. I. Perets, D. Oron, D. Ziskind, Y. Silberberg, and H. D. Wagner, “Dentin microarchitecture using harmonic generation microscopy,” J. Dent. 35, 150–155 (2007).
[Crossref]

Tenbosch, J. J.

E. D. J. Dejong, F. Sundstrom, H. Westerling, S. Transeus, J. J. Tenbosch, and B. Angmarmansson, “A new method for in-vivo quantification of changes in initial enamel caries with laser fluorescence,” Caries Res. 29, 2–7 (1995).
[Crossref]

Transeus, S.

E. D. J. Dejong, F. Sundstrom, H. Westerling, S. Transeus, J. J. Tenbosch, and B. Angmarmansson, “A new method for in-vivo quantification of changes in initial enamel caries with laser fluorescence,” Caries Res. 29, 2–7 (1995).
[Crossref]

Tsai, C. L.

C. L. Tsai, Y. T. Lin, S. T. Huang, and H. W. Chang, “In vitro acid resistance of CO2 and Nd-YAG laser treated human tooth enamel,” Caries Res. 36, 423–427 (2002).
[Crossref] [PubMed]

Tsai, H. J.

C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct.Bio. 147, 19–30 (2004).
[Crossref]

Tsai, T. H.

C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct.Bio. 147, 19–30 (2004).
[Crossref]

Tseng, Y. C.

C. P. Lin, F. H. Lin, Y. C. Tseng, S. H. Kok, W. H. Lan, and J. D. Liao, “Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: compositional, structural and phase changes of DP-bioglass paste after irradiation by CO2 laser,” Biomaterials 21, 637–643 (2000).
[Crossref] [PubMed]

Uo, M.

M. K. Yamada, M. Uo, S. Ohkawa, T. Akasaka, and A. Watari, “Non-contact surface morphology analysis of CO2 laser-irradiated teeth by scanning electron microscope and confocal laser scanning microscope,” Mater. Trans. 45, 1033–1040 (2004).
[Crossref]

Wagner, H. D.

R. Elbaum, E. Tai, A. I. Perets, D. Oron, D. Ziskind, Y. Silberberg, and H. D. Wagner, “Dentin microarchitecture using harmonic generation microscopy,” J. Dent. 35, 150–155 (2007).
[Crossref]

Wang, D. M.

Y. C. Chiang, B. S. Lee, Y. L. Wang, Y. A. Cheng, Y. L. Chen, J. S. Shiau, D. M. Wang, and C. P. Lin,“Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser,” Lasers Med. Sci. 23, 41–48 (2008).
[Crossref]

Wang, N.

C. Zhang, X. Xiao, N. Wang, K. K. Fung, M. M. T. Loy, Z. Chen, and J. Zhou, “Defect-enhanced secondharmonic generation in (SimGen)p superlattices,” Appl. Phys. Lett. 72, 2072–2074 (1998).
[Crossref]

Wang, Y. L.

Y. C. Chiang, B. S. Lee, Y. L. Wang, Y. A. Cheng, Y. L. Chen, J. S. Shiau, D. M. Wang, and C. P. Lin,“Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser,” Lasers Med. Sci. 23, 41–48 (2008).
[Crossref]

Watari, A.

M. K. Yamada, M. Uo, S. Ohkawa, T. Akasaka, and A. Watari, “Non-contact surface morphology analysis of CO2 laser-irradiated teeth by scanning electron microscope and confocal laser scanning microscope,” Mater. Trans. 45, 1033–1040 (2004).
[Crossref]

Watari, F.

M. K. Yamada and F. Watari, “Imaging and non-contact profile analysis of Nd:YAG laser-irradiated teeth by scanning electron microscopy and confocal laser scanning microscopy,” Dent. Mater. 22, 556–568 (2003).
[Crossref]

Watson, T. F.

T. F. Watson, A. Azzopardi, M. Etman, P. C. Cheng, and S. K. Sidhu, “Confocal and multi-photon microscopy of dental hard tissues and biomaterials,” Am. J. Dent. 13, 19D–24D, (2000).

Wenzel, A.

A. Wenzel , “Digital radiography and caries diagnosis,” Dentomaxillofacial Radiol. 27, 3–11 (1998).
[Crossref]

Westerling, H.

E. D. J. Dejong, F. Sundstrom, H. Westerling, S. Transeus, J. J. Tenbosch, and B. Angmarmansson, “A new method for in-vivo quantification of changes in initial enamel caries with laser fluorescence,” Caries Res. 29, 2–7 (1995).
[Crossref]

White, D. J.

D. J. White, K. M. Kozak, J. R. Zoladz, H. J. Duschner, and H. Gotz, “Effects of Crest whitestrips bleaching on subsurface microhardness and ultrastructure of tooth enamel and coronal dentin,” Am. J. Dent. 17, 5–11 (2004).
[PubMed]

White, S. N.

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[Crossref]

Whitters, C. J.

A. Ribeiro, C. Rousseau, J. Girkin, A. Hall, R. Strang, C. J. Whitters, S. Creanor, and A. S. L. Gomes, “A preliminary technique for investigation of a spectroscopic the diagnosis of natural caries lesions, ” J. Dent. 33, 73–78 (2005).
[Crossref] [PubMed]

Willersinn, U.

R. J. Radlanski, H. Renz, U. Willersinn, C. A. Cordis, and H. Duschner, “Outline and arrangement of enamel rods in human deciduous and permanent enamel. 3D-reconstructions obtained from CLSM and SEM images based on serial ground sections,” Oral Sci. 109, 409–414 (2001).
[Crossref]

Xiao, X.

C. Zhang, X. Xiao, N. Wang, K. K. Fung, M. M. T. Loy, Z. Chen, and J. Zhou, “Defect-enhanced secondharmonic generation in (SimGen)p superlattices,” Appl. Phys. Lett. 72, 2072–2074 (1998).
[Crossref]

Yamada, M. K.

M. K. Yamada, M. Uo, S. Ohkawa, T. Akasaka, and A. Watari, “Non-contact surface morphology analysis of CO2 laser-irradiated teeth by scanning electron microscope and confocal laser scanning microscope,” Mater. Trans. 45, 1033–1040 (2004).
[Crossref]

M. K. Yamada and F. Watari, “Imaging and non-contact profile analysis of Nd:YAG laser-irradiated teeth by scanning electron microscopy and confocal laser scanning microscopy,” Dent. Mater. 22, 556–568 (2003).
[Crossref]

Yang, G.

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

Yoon, D. C.

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[Crossref]

Zhang, C.

C. Zhang, X. Xiao, N. Wang, K. K. Fung, M. M. T. Loy, Z. Chen, and J. Zhou, “Defect-enhanced secondharmonic generation in (SimGen)p superlattices,” Appl. Phys. Lett. 72, 2072–2074 (1998).
[Crossref]

Zhao, T.

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

Zhou, J.

C. Zhang, X. Xiao, N. Wang, K. K. Fung, M. M. T. Loy, Z. Chen, and J. Zhou, “Defect-enhanced secondharmonic generation in (SimGen)p superlattices,” Appl. Phys. Lett. 72, 2072–2074 (1998).
[Crossref]

Ziskind, D.

R. Elbaum, E. Tai, A. I. Perets, D. Oron, D. Ziskind, Y. Silberberg, and H. D. Wagner, “Dentin microarchitecture using harmonic generation microscopy,” J. Dent. 35, 150–155 (2007).
[Crossref]

Zoladz, J. R.

D. J. White, K. M. Kozak, J. R. Zoladz, H. J. Duschner, and H. Gotz, “Effects of Crest whitestrips bleaching on subsurface microhardness and ultrastructure of tooth enamel and coronal dentin,” Am. J. Dent. 17, 5–11 (2004).
[PubMed]

Acta Cryst. (1)

E. F. Bres, “Space-group determination of human tooth-enamel crystals,” Acta Cryst. B 49, 56–62 (1993).
[Crossref]

Adv. Biochem. Engin./Biotechnol. (1)

C. K. Sun, “Higher harmonic generation microscopy,” Adv. Biochem. Engin./Biotechnol. 95, 17–56 (2005).

Am. J. Dent. (2)

D. J. White, K. M. Kozak, J. R. Zoladz, H. J. Duschner, and H. Gotz, “Effects of Crest whitestrips bleaching on subsurface microhardness and ultrastructure of tooth enamel and coronal dentin,” Am. J. Dent. 17, 5–11 (2004).
[PubMed]

T. F. Watson, A. Azzopardi, M. Etman, P. C. Cheng, and S. K. Sidhu, “Confocal and multi-photon microscopy of dental hard tissues and biomaterials,” Am. J. Dent. 13, 19D–24D, (2000).

Appl. Phys. Lett. (3)

Y. Barad, H. Eisenberg, M. Horowitz, and Y. Silberberg, “Nonlinear scanning laser microscopy by third harmonic generation,” Appl. Phys. Lett. 70, 922–924 (1996).
[Crossref]

I. L. Lyubchanskii, N. N. Dadoenkova, M. I. Lyubchanskii, Th. Rasing, J. W. Jeong, and S. C. Shin, “Secondharmonic generation from realistic film-substrate interfaces: The effects of strain,” Appl. Phys. Lett. 76, 1848–1850 (2000).
[Crossref]

C. Zhang, X. Xiao, N. Wang, K. K. Fung, M. M. T. Loy, Z. Chen, and J. Zhou, “Defect-enhanced secondharmonic generation in (SimGen)p superlattices,” Appl. Phys. Lett. 72, 2072–2074 (1998).
[Crossref]

Appl. Surf. Sci. (1)

J. Serbin, T. Bauer, C. Fallnich, A. Kasenbacher, and W. H. Arnold, “Femtosecond laser as novel tool in dental surgery,” Appl. Surf. Sci. 197, 737–740 (2002).
[Crossref]

Arch. Oral Bio. (1)

T. E. Popowics, J. M. rensberger, and S. W. Herring, “Enamel microstructure and microstrain in the fracture of human and pig molar cusps,” Arch. Oral Bio. 49, 595–605 (2004).
[Crossref]

Arch. Oral Biol. (2)

A. H. Meckel, W. S. Griebstein, and R. J. Neal, “Structure of mature human dental enamel as observed by electron microscopy,” Arch. Oral Biol. 10, 775–783 (1965).
[Crossref] [PubMed]

H. N. Newman and D. F. G. Poole, “Observations with scanning and transmission electron-microscopy on structure of human surface enamel,” Arch. Oral Biol. 19, 1135& (1974).
[Crossref] [PubMed]

Biomaterials (2)

I. Ichim, Q. Li, W. Li, M. V. Swain, and J. Kieser, “Modelling of fracture behaviour in biomaterials,” Biomaterials 28, 1317–1326 (2007).
[Crossref]

C. P. Lin, F. H. Lin, Y. C. Tseng, S. H. Kok, W. H. Lan, and J. D. Liao, “Treatment of tooth fracture by medium energy CO2 laser and DP-bioactive glass paste: compositional, structural and phase changes of DP-bioglass paste after irradiation by CO2 laser,” Biomaterials 21, 637–643 (2000).
[Crossref] [PubMed]

Calcif. Tissue Int. (1)

B. O. Fowler and S. Kuroda, “Changes in heated and in laser-irradiated human tooth enamel and their probable effects on solubility,” Calcif. Tissue Int. 38, 197–208 (1986).
[Crossref] [PubMed]

Caries Res. (2)

E. D. J. Dejong, F. Sundstrom, H. Westerling, S. Transeus, J. J. Tenbosch, and B. Angmarmansson, “A new method for in-vivo quantification of changes in initial enamel caries with laser fluorescence,” Caries Res. 29, 2–7 (1995).
[Crossref]

C. L. Tsai, Y. T. Lin, S. T. Huang, and H. W. Chang, “In vitro acid resistance of CO2 and Nd-YAG laser treated human tooth enamel,” Caries Res. 36, 423–427 (2002).
[Crossref] [PubMed]

Caries Research (1)

M. Fontana, Y. Li, A. J. dunipace, T. W. Noblitt, G. Fischer, B. P. Katz, and G. K Stookey, “Measurement of enamel demineralization using microradiography and confocal microscopy-a correlational study,” Caries Research 30, 317–325 (1996).
[Crossref] [PubMed]

Dent. Mater. (1)

M. K. Yamada and F. Watari, “Imaging and non-contact profile analysis of Nd:YAG laser-irradiated teeth by scanning electron microscopy and confocal laser scanning microscopy,” Dent. Mater. 22, 556–568 (2003).
[Crossref]

Dentomaxillofacial Radiol. (2)

A. Wenzel , “Digital radiography and caries diagnosis,” Dentomaxillofacial Radiol. 27, 3–11 (1998).
[Crossref]

M. O. Culjat, R. S. Singh, E. R. Brown, R. R. Neurgaonkar, D. C. Yoon, and S. N. White, “Ultrasound crack detection in a simulated human tooth,” Dentomaxillofacial Radiol. 34, 80–85 (2005).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

W. H. Jiang and W. W. Cao, “Second harmonic generation of shear waves in crystals,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51, 153–162 (2004).
[Crossref] [PubMed]

J. Appl. Phys. (1)

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

J. Biome. Opt. (2)

M. H. Chen, W. L. Chen, Y. Sun, P. T. Fwu, and C. Y. Dong, “Multiphoton autofluorescence and second-harmonic generation imaging of the tooth,” J. Biome. Opt. 12, 064018 (2007).
[Crossref]

C. L. Darling, G. D. Huynh, and D. Fried, “Light scattering properties of natural and artificially demineralized dental enamel at 1310 nm,” J. Biome. Opt. 11, 034023 (2006).
[Crossref]

J. Dent. (3)

R. Elbaum, E. Tai, A. I. Perets, D. Oron, D. Ziskind, Y. Silberberg, and H. D. Wagner, “Dentin microarchitecture using harmonic generation microscopy,” J. Dent. 35, 150–155 (2007).
[Crossref]

T. T. Y. Huang, A. S. Jones, L H He, M. A Darendeliler, and M. V. Swain, “Characterization of enamel white spot lesions using X-ray micro-tomography,” J. Dent. 35, 737–743 (2007).
[Crossref] [PubMed]

A. Ribeiro, C. Rousseau, J. Girkin, A. Hall, R. Strang, C. J. Whitters, S. Creanor, and A. S. L. Gomes, “A preliminary technique for investigation of a spectroscopic the diagnosis of natural caries lesions, ” J. Dent. 33, 73–78 (2005).
[Crossref] [PubMed]

J. Dent. Res. (3)

Z. Amjad, P. G. Koutsoukos, and G. H. Nancollas, “The mineralization of enamel surfaces. A constant composition kinetics study,” J. Dent. Res. 60, 1783–1792 (1981).
[Crossref] [PubMed]

A. Lussi, R. Hibst, and R. Paulus, “DIAGNOdent: an optical method for caries detection,” J. Dent. Res. 83, C80–C83 (2004).
[Crossref] [PubMed]

L. Aponte and F. F. Feagin, “Effects of F- on recrystallization-remineralization and acid resistance of enamel,” J. Dent. Res. 57, 87 (1978).

J. Eur. Ceram. Soc. (1)

H. C. Kim, K. S. Lee, O. S. Kweon, C. G. Aneziris, and I. J. Kim, “Crack healing, reopening and thermal expansion behavior of Al2TiO5 ceramics at high temperature,” J. Eur. Ceram. Soc. 27, 1431–1434 (2007).
[Crossref]

J. Struct.Bio. (1)

C. K. Sun, S. W. Chu, S. Y. Chen, T. H. Tsai, T. M. Liu, C. Y. Lin, and H. J. Tsai, “Higher harmonic generation microscopy for developmental biology,” J. Struct.Bio. 147, 19–30 (2004).
[Crossref]

Lasers Med. Sci. (1)

Y. C. Chiang, B. S. Lee, Y. L. Wang, Y. A. Cheng, Y. L. Chen, J. S. Shiau, D. M. Wang, and C. P. Lin,“Microstructural changes of enamel, dentin-enamel junction, and dentin induced by irradiating outer enamel surfaces with CO2 laser,” Lasers Med. Sci. 23, 41–48 (2008).
[Crossref]

Lasers Surg.Med. (1)

M. A. Pogrel, D. F. Muff, and G. W. Marshall, “Structural changes in dental enamel induced by high energy continuous wave carbon dioxide laser,” Lasers Surg.Med. 13, 89–96 (1993).
[Crossref] [PubMed]

Mater. Trans. (1)

M. K. Yamada, M. Uo, S. Ohkawa, T. Akasaka, and A. Watari, “Non-contact surface morphology analysis of CO2 laser-irradiated teeth by scanning electron microscope and confocal laser scanning microscope,” Mater. Trans. 45, 1033–1040 (2004).
[Crossref]

Microsc. Res. Tech. (1)

F. J. Kao“The use of optical parametric oscillator for harmonic generation and two-photon UV fluorescence microscopy,” Microsc. Res. Tech. 64, 175–181 (2004).
[Crossref]

Opt. Express (1)

Oral Sci. (1)

R. J. Radlanski, H. Renz, U. Willersinn, C. A. Cordis, and H. Duschner, “Outline and arrangement of enamel rods in human deciduous and permanent enamel. 3D-reconstructions obtained from CLSM and SEM images based on serial ground sections,” Oral Sci. 109, 409–414 (2001).
[Crossref]

Revista Mexicana De Fisica (1)

E. Sanchez-Pastenes and J. Reyes-Gasga, “Determination of the point and space groups for hydroxyapatite by computer simulation of CBED electron diffraction patterns,” Revista Mexicana De Fisica 51, 525–529 (2005).

Other (3)

R. W. BoydNonlinear Optics (Academic Press, 1992).

R. W. Fearnhead, Tooth enamel (Florence, 1989).

C. J. Lin and F. J. Kao, “Harmonic generation microscopy of dental sections,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, Technical Digest (Optical Society of America, 2003), paper CMG6, http://www.opticsinfobase.org/abstract.cfm?URI-CLEO-2003-CMG6

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematics showing (a) the experimental setup of the epi-harmonic generation microscope and (b) the detailed arrangement between the water-immersion objective and a studied intact human tooth, which was extracted but not sectioned.

Fig. 2.
Fig. 2.

Fig. 2. Laterally-sectioned epi-THG images taken inside the enamel of an intact human tooth obtained at a depth of (a) 10μm, (b) 60μm, (c) 120μm, (d) 180μm, (e) 240μm, and (f) 300μm. (g) shows an axially-sectioned epi-THG image of the enamel, with a total depth of 200 μm and the prism orientation in the axial direction was successfully revealed. Due to the signal attenuation in deeper regions, the voltage of the PMT was adjusted at the depth of 100μm. Epi- THG signals are represented by yellow pseudo-color. Scale bar: 20μm.

Fig. 3.
Fig. 3.

(a) Epi-THG, (b) epi-SHG, and (c) combined images of the natural white spot lesion on a human tooth block beneath the natural tooth surface. THG signals generated inside prisms indicate the inhomogeneous arrangements of crystallites in the prisms. The THG image contained some hollow structures (arrow-1) but also some half-filled (arrow-2) and completely filled (arrow-3) prism structures, due to different degrees of mineral loss and subsequent optical inhomogeneity. (d), (e), and (f) shows the epi-THG, epi-SHG, and the combined images of another region with white spot lesion. THG and SHG signals are represented by yellow and green pseudo-colors, respectively. Scale bar: 50μm.

Fig. 4.
Fig. 4.

(a) Epi-THG and (b) epi-SHG images of the crack in a human tooth block beneath the natural tooth surface. THG signals revealed both the crack and the enamel prisms beside, while SHG revealed the strain status around the crack (arrows). (c) Combined image. THG and SHG signals are represented by yellow and green pseudo-colors, respectively. Scale bar: 50μm.

Fig. 5.
Fig. 5.

The laterally sectioned (a) epi-THG and (b) epi-SHG images of a lased human tooth block taken at a depth of 10μm beneath the lased enamel surface, and (c) is the combined image. (d) and (e) show the laterally-sectioned epi-THG and epi-SHG images obtained at a depth of 55μm beneath the same lased surface, and (f) is the combined image. In the epi-THG images, both the heat-induced cracks (arrow) and the prism structures were observed, while the strong SHG signals arising from the heat-induced cracks indicate the strained status around the cracks. Epi-THG and epi-SHG images are represented by yellow and green pseudo-colors, respectively. Scale bar: 20μm.

Metrics