Abstract

Tapered micron-sized optical fibers may be important in the future for development of microscale integrated photonic devices. Complex photonic circuits require many devices and a robust technique for interconnection. We demonstrate splicing of four micron diameter step-index air-clad silica microfibers using a CO2 laser. We obtain splice losses lower than 0.3%. Compared with evanescent coupling of microfibers, our splices are more mechanically stable and efficient.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Tong, J. Lou, R. R. Gattass, S. Ye, X. Chen, L. Liu, and E. Mazur, "Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices," Nano Lett. 5, 259-262 (2005).
    [CrossRef] [PubMed]
  2. M. Sumetsky Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment and Application," J. Lightwave Technol. 24, 242-250 (2006).
    [CrossRef]
  3. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
    [CrossRef] [PubMed]
  4. T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
    [CrossRef]
  5. T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, "Carbon Dioxide Laser Fabrication of Fused-Fiber Couplers and Tapers," Appl. Opt. 38, 6845-6848 (1999).
    [CrossRef]
  6. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, "Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects," Opt. Express 15, 11934-11941 (2007).
    [CrossRef] [PubMed]
  7. P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, "Compact resonant integrated microfluidic refractometer," Appl. Phys. Lett. 88, 093513 (2006).
    [CrossRef]
  8. J. A. Kitchener and A. P. Prosser, "Direct Measurement of the Long-Range van der Waal???s Forces," Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 242, 403-409 (1957).
    [CrossRef]
  9. M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004).
    [CrossRef] [PubMed]
  10. G. Kakarantzas, T. E. Dimmick, T. A. Birks, R. Le Roux, and P. St. J. Russell, "Miniature all-fiber devices based on CO2 laser microstructuring of tapered fibers," Opt. Lett. 26, 1137-1139 (2001).
    [CrossRef]
  11. A. J. C. Grellier, N. K. Zayer, and C. N. Panell, "Heat transfer modeling in CO2 laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998).
    [CrossRef]
  12. F. Lu and W. H. Knox, "Generation, characterization, and application of broadband coherent, femtosecond visible pulses in dispersion micromanaged holey fibers," J. Opt. Soc. Am. B 23,1221-1227 (2006).
    [CrossRef]
  13. D. W. Schaefer, and K. D. Keefer, "Structure of Random Porous Materials: Silica Aerogel," Phys. Rev. Lett. 56, 2199-2202 (1986).
    [CrossRef] [PubMed]
  14. B. M. Foley, P. Melman, and K. T. Vo, "Novel loss measurement technique for optical waveguides by imaging of scattered light," Electron. Lett. 28, 584-585 (1992).
    [CrossRef]
  15. G. Brambilla, Fei Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterization," Electron. Lett. 42, 2006.
    [CrossRef]
  16. C. Gettliffe, The Institute of Optics, University of Rochester, Rochester, NY 14620 (personal communication, 2007).
  17. A. D. Yablon, Optical Fiber Fusion Splicing (Springer-Verlag Berlin Heidelberg 2005).
  18. J. Hin Chong and M. K. Rao, "Development of a system for laser splicing photonic crystal fiber," Opt. Express 12, 1365-1370 (2003).
    [CrossRef]
  19. A. E. Barnes, R. G. May, S. Gollapudi, and R. O. Claus, "Sapphire fibres: optical attenuation and splicing techniques," Appl. Opt. 34, 6855-6858 (1995).
    [CrossRef] [PubMed]
  20. L. Tong and E. Mazur, "Glass nanofibers for micro- and nano-scale photonic devices," J. Non-Cryst. Solids 354, 1240-1244 (2008).
    [CrossRef]

2008 (1)

L. Tong and E. Mazur, "Glass nanofibers for micro- and nano-scale photonic devices," J. Non-Cryst. Solids 354, 1240-1244 (2008).
[CrossRef]

2007 (1)

2006 (4)

M. Sumetsky Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, "The Microfiber Loop Resonator: Theory, Experiment and Application," J. Lightwave Technol. 24, 242-250 (2006).
[CrossRef]

F. Lu and W. H. Knox, "Generation, characterization, and application of broadband coherent, femtosecond visible pulses in dispersion micromanaged holey fibers," J. Opt. Soc. Am. B 23,1221-1227 (2006).
[CrossRef]

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, "Compact resonant integrated microfluidic refractometer," Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

G. Brambilla, Fei Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterization," Electron. Lett. 42, 2006.
[CrossRef]

2005 (1)

L. Tong, J. Lou, R. R. Gattass, S. Ye, X. Chen, L. Liu, and E. Mazur, "Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (2)

J. Hin Chong and M. K. Rao, "Development of a system for laser splicing photonic crystal fiber," Opt. Express 12, 1365-1370 (2003).
[CrossRef]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

2001 (1)

1999 (1)

1998 (1)

A. J. C. Grellier, N. K. Zayer, and C. N. Panell, "Heat transfer modeling in CO2 laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998).
[CrossRef]

1995 (1)

1992 (2)

B. M. Foley, P. Melman, and K. T. Vo, "Novel loss measurement technique for optical waveguides by imaging of scattered light," Electron. Lett. 28, 584-585 (1992).
[CrossRef]

T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

1986 (1)

D. W. Schaefer, and K. D. Keefer, "Structure of Random Porous Materials: Silica Aerogel," Phys. Rev. Lett. 56, 2199-2202 (1986).
[CrossRef] [PubMed]

1957 (1)

J. A. Kitchener and A. P. Prosser, "Direct Measurement of the Long-Range van der Waal???s Forces," Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 242, 403-409 (1957).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Barnes, A. E.

Birks, T. A.

Brambilla, G.

G. Brambilla, Fei Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterization," Electron. Lett. 42, 2006.
[CrossRef]

Chen, X.

L. Tong, J. Lou, R. R. Gattass, S. Ye, X. Chen, L. Liu, and E. Mazur, "Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

Claus, R. O.

Cronin-Golomb, M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, "Compact resonant integrated microfluidic refractometer," Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Dimmick, T. E.

Domachuk, P.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, "Compact resonant integrated microfluidic refractometer," Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Dulashko, Y.

Eggleton, B. J.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, "Compact resonant integrated microfluidic refractometer," Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Foley, B. M.

B. M. Foley, P. Melman, and K. T. Vo, "Novel loss measurement technique for optical waveguides by imaging of scattered light," Electron. Lett. 28, 584-585 (1992).
[CrossRef]

Gattass, R. R.

L. Tong, J. Lou, R. R. Gattass, S. Ye, X. Chen, L. Liu, and E. Mazur, "Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Gollapudi, S.

Grellier, A. J. C.

A. J. C. Grellier, N. K. Zayer, and C. N. Panell, "Heat transfer modeling in CO2 laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998).
[CrossRef]

Hale, A.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Hin Chong, J.

J. Hin Chong and M. K. Rao, "Development of a system for laser splicing photonic crystal fiber," Opt. Express 12, 1365-1370 (2003).
[CrossRef]

Kakarantzas, G.

Keefer, K. D.

D. W. Schaefer, and K. D. Keefer, "Structure of Random Porous Materials: Silica Aerogel," Phys. Rev. Lett. 56, 2199-2202 (1986).
[CrossRef] [PubMed]

Kitchener, J. A.

J. A. Kitchener and A. P. Prosser, "Direct Measurement of the Long-Range van der Waal???s Forces," Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 242, 403-409 (1957).
[CrossRef]

Knox, W. H.

Le Roux, R.

Li, Y. W.

T. A. Birks and Y. W. Li, "The shape of fiber tapers," J. Lightwave Technol. 10, 432-438 (1992).
[CrossRef]

Littler, I. C. M.

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, "Compact resonant integrated microfluidic refractometer," Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Liu, L.

L. Tong, J. Lou, R. R. Gattass, S. Ye, X. Chen, L. Liu, and E. Mazur, "Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

Lou, J.

L. Tong, J. Lou, R. R. Gattass, S. Ye, X. Chen, L. Liu, and E. Mazur, "Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Lu, F.

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

May, R. G.

Mazur, E.

L. Tong and E. Mazur, "Glass nanofibers for micro- and nano-scale photonic devices," J. Non-Cryst. Solids 354, 1240-1244 (2008).
[CrossRef]

L. Tong, J. Lou, R. R. Gattass, S. Ye, X. Chen, L. Liu, and E. Mazur, "Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Melman, P.

B. M. Foley, P. Melman, and K. T. Vo, "Novel loss measurement technique for optical waveguides by imaging of scattered light," Electron. Lett. 28, 584-585 (1992).
[CrossRef]

Panell, C. N.

A. J. C. Grellier, N. K. Zayer, and C. N. Panell, "Heat transfer modeling in CO2 laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998).
[CrossRef]

Prosser, A. P.

J. A. Kitchener and A. P. Prosser, "Direct Measurement of the Long-Range van der Waal???s Forces," Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 242, 403-409 (1957).
[CrossRef]

Rao, M. K.

J. Hin Chong and M. K. Rao, "Development of a system for laser splicing photonic crystal fiber," Opt. Express 12, 1365-1370 (2003).
[CrossRef]

Rooks, M.

Russell, P. S. J.

Russell, P. St. J.

Schaefer, D. W.

D. W. Schaefer, and K. D. Keefer, "Structure of Random Porous Materials: Silica Aerogel," Phys. Rev. Lett. 56, 2199-2202 (1986).
[CrossRef] [PubMed]

Sekaric, L.

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Sumetsky, M.

Tong, L.

L. Tong and E. Mazur, "Glass nanofibers for micro- and nano-scale photonic devices," J. Non-Cryst. Solids 354, 1240-1244 (2008).
[CrossRef]

L. Tong, J. Lou, R. R. Gattass, S. Ye, X. Chen, L. Liu, and E. Mazur, "Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Vlasov, Y.

Vo, K. T.

B. M. Foley, P. Melman, and K. T. Vo, "Novel loss measurement technique for optical waveguides by imaging of scattered light," Electron. Lett. 28, 584-585 (1992).
[CrossRef]

Xia, F.

Ye, S.

L. Tong, J. Lou, R. R. Gattass, S. Ye, X. Chen, L. Liu, and E. Mazur, "Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

Zayer, N. K.

A. J. C. Grellier, N. K. Zayer, and C. N. Panell, "Heat transfer modeling in CO2 laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

P. Domachuk, I. C. M. Littler, M. Cronin-Golomb, and B. J. Eggleton, "Compact resonant integrated microfluidic refractometer," Appl. Phys. Lett. 88, 093513 (2006).
[CrossRef]

Electron. Lett. (2)

B. M. Foley, P. Melman, and K. T. Vo, "Novel loss measurement technique for optical waveguides by imaging of scattered light," Electron. Lett. 28, 584-585 (1992).
[CrossRef]

G. Brambilla, Fei Xu, and X. Feng, "Fabrication of optical fibre nanowires and their optical and mechanical characterization," Electron. Lett. 42, 2006.
[CrossRef]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (1)

L. Tong and E. Mazur, "Glass nanofibers for micro- and nano-scale photonic devices," J. Non-Cryst. Solids 354, 1240-1244 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nano Lett. (1)

L. Tong, J. Lou, R. R. Gattass, S. Ye, X. Chen, L. Liu, and E. Mazur, "Assembly of Silica Nanowires on Silica Aerogels for Microphotonic Devices," Nano Lett. 5, 259-262 (2005).
[CrossRef] [PubMed]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature 426, 816-819 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. J. C. Grellier, N. K. Zayer, and C. N. Panell, "Heat transfer modeling in CO2 laser processing of optical fibres," Opt. Commun. 152, 324-328 (1998).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

D. W. Schaefer, and K. D. Keefer, "Structure of Random Porous Materials: Silica Aerogel," Phys. Rev. Lett. 56, 2199-2202 (1986).
[CrossRef] [PubMed]

Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences (1)

J. A. Kitchener and A. P. Prosser, "Direct Measurement of the Long-Range van der Waal???s Forces," Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences 242, 403-409 (1957).
[CrossRef]

Other (2)

C. Gettliffe, The Institute of Optics, University of Rochester, Rochester, NY 14620 (personal communication, 2007).

A. D. Yablon, Optical Fiber Fusion Splicing (Springer-Verlag Berlin Heidelberg 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Graphical representation of the cutback measurements.

Fig. 2.
Fig. 2.

Log plot of the right-angled scattered light intensity as a function of length for two spliced microfibers. The red line represents a least squares fit of slope 0.19 dB/cm. Inset shows an image of the microfiber(s) guiding light at 633nm.

Fig. 3.
Fig. 3.

Simulated 3D-FDTD propagation results for two successfully spliced microfibers with a bent segment at the joint (black arrow indicates its location). The power contained in the fundamental mode as well as the total power has been plotted along the propagation length. The picture on the left is a microscope image of the successfully spliced microfibers.

Fig. 4.
Fig. 4.

Simulated 3D-FDTD propagation results for two improperly spliced microfibers with a ‘globule’ junction (black arrows indicate splice location). The pictures on the left are bright-field and dark-field images of the spliced microfiber(s) guiding light at 633 nm. The power contained in the fundamental mode as well as the total power has been plotted along the propagation length.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = ( 1 Δ L ) 10 log 10 [ P cut back P initial ]

Metrics