Abstract

Magnetic nanoparticles (MNPs) are increasingly important in magnetic resonance and biomedical optical imaging. We describe a method for imaging MNPs by detecting nanoscale displacements using a phase-resolved spectral-domain optical coherence tomography (OCT) system. Biological tissues and phantoms are exposed to ∼800 G magnetic fields modulated at 56 and 100 Hz to mechanically actuate embedded iron oxide MNPs (∼20 nm diameter). Sensitivity to 27 μg/g (∼2 nM) MNPs within tissue phantoms is achieved by filtering paramagnetic from diamagnetic vibrations. We demonstrate biological feasibility by imaging topically applied MNPs during their diffusion into an excised rat tumor over a 2 hour time period.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Schenck, "Physical interactions of static magnetic fields with living tissues," Prog. Biophys. Mol. Biol. 87, 185-204 (2005).
    [CrossRef]
  2. H. Watarai and M. Namba, "Capillary magnetophoresis of human blood cells and their magnetophoretic trapping in a flow system," J. Chromatogr. A 961, 3-8 (2002).
    [CrossRef] [PubMed]
  3. M. Arruebo, R. Fernandez-Pachaco, M. R. Ibarra, and J. Santamaria, "Magnetic nanoparticles for drug delivery," Nano Today 2, 22-32 (2007).
    [CrossRef]
  4. A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, "Medical application of functionalized magnetic nanoparticles," J. Biosci. Bioeng. 100, 1-11 (2005).
    [CrossRef] [PubMed]
  5. Q2. J. Dobson, "Magnetic nanoparticles for drug delivery," Drug Dev. Res. 67, 66-60 (2006).
    [CrossRef]
  6. J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
    [CrossRef]
  7. D. E. Sosnovik and R. Weissleder, "Emerging concepts in molecular MRI," Curr. Opin. Biotechnol. 18, 4-10 (2007).
    [CrossRef]
  8. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  9. S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, "Optical probes and techniques for molecular contrast enhancement in coherence imaging," J. Biomed. Opt. 10, 041208 (2005).
    [CrossRef]
  10. B. E. Applegate and J. A. Izatt, "Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography," Opt. Express 14, 9142-9155 (2006).
    [CrossRef] [PubMed]
  11. H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, "Gold nanocages as contrast agents for spectroscopic optical coherence tomography," Opt. Lett. 30, 3048-3050 (2005).
    [CrossRef] [PubMed]
  12. A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
    [CrossRef] [PubMed]
  13. A. L. Oldenburg, M. H. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006).
    [CrossRef] [PubMed]
  14. D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, "Photothermal detection of gold nanoparticles using phase-sentivie optical coherence tomography," Opt. Express 16, 4376-4393 (2008).
    [CrossRef] [PubMed]
  15. J. N. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. Phys. Lett. 82, 1102-1104 (2003).
    [CrossRef]
  16. J. S. Aaron, J. Oh, T. A. Larson, S. Kumar, T. E. Milner, and K. V. Sokolov, "Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles," Opt. Express 14, 12930-12943 (2006).
    [CrossRef] [PubMed]
  17. A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, "Imaging magnetically labeled cells with magnetomotive optical coherence tomography," Opt. Lett. 30, 747-749 (2005).
    [CrossRef] [PubMed]
  18. A. L. Oldenburg, F. Jean-Jacques Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, "Magnetomotive contrast for in vivo optical coherence tomography," Opt. Express 13, 6597-6614 (2005).
    [CrossRef] [PubMed]
  19. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
    [CrossRef] [PubMed]
  20. J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Lasers Surg. Med. 39, 266-272 (2007).
    [CrossRef] [PubMed]
  21. M. M. Chan, W. Lu, F. M. Merchant, J. D. Iglehart, and P. L. Miron, "Gene expression profiling of NMU-induced rat mammary tumors: cross species comparison with human breast cancer," Carcinogenesis 26, 1343-1353 (2005).
    [CrossRef] [PubMed]
  22. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. deBoer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 11, 3931-3944 (2005).
    [CrossRef]
  23. A. L. Oldenburg, W. Luo, and S. A. Boppart, "High-resolution in vivo nanoparticle imaging using magnetomotive optical coherence tomography," Proc. SPIE 6097, doi 10.1117/12.643609 (2006).
    [CrossRef]
  24. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 3, 129-134 (2007).
    [CrossRef]
  25. A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
    [CrossRef] [PubMed]
  26. J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
    [CrossRef] [PubMed]
  27. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
    [CrossRef] [PubMed]

2008 (1)

2007 (5)

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Lasers Surg. Med. 39, 266-272 (2007).
[CrossRef] [PubMed]

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 3, 129-134 (2007).
[CrossRef]

M. Arruebo, R. Fernandez-Pachaco, M. R. Ibarra, and J. Santamaria, "Magnetic nanoparticles for drug delivery," Nano Today 2, 22-32 (2007).
[CrossRef]

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

D. E. Sosnovik and R. Weissleder, "Emerging concepts in molecular MRI," Curr. Opin. Biotechnol. 18, 4-10 (2007).
[CrossRef]

2006 (8)

Q2. J. Dobson, "Magnetic nanoparticles for drug delivery," Drug Dev. Res. 67, 66-60 (2006).
[CrossRef]

B. E. Applegate and J. A. Izatt, "Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography," Opt. Express 14, 9142-9155 (2006).
[CrossRef] [PubMed]

A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

A. L. Oldenburg, M. H. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006).
[CrossRef] [PubMed]

J. S. Aaron, J. Oh, T. A. Larson, S. Kumar, T. E. Milner, and K. V. Sokolov, "Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles," Opt. Express 14, 12930-12943 (2006).
[CrossRef] [PubMed]

A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

A. L. Oldenburg, W. Luo, and S. A. Boppart, "High-resolution in vivo nanoparticle imaging using magnetomotive optical coherence tomography," Proc. SPIE 6097, doi 10.1117/12.643609 (2006).
[CrossRef]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef] [PubMed]

2005 (10)

J. Zhang, J. S. Nelson, and Z. Chen, "Removal of a mirror image and enhancement of the signal-to-noise ratio in Fourier-domain optical coherence tomography using an electro-optic phase modulator," Opt. Lett. 30, 147-149 (2005).
[CrossRef] [PubMed]

M. M. Chan, W. Lu, F. M. Merchant, J. D. Iglehart, and P. L. Miron, "Gene expression profiling of NMU-induced rat mammary tumors: cross species comparison with human breast cancer," Carcinogenesis 26, 1343-1353 (2005).
[CrossRef] [PubMed]

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. deBoer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 11, 3931-3944 (2005).
[CrossRef]

A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, "Imaging magnetically labeled cells with magnetomotive optical coherence tomography," Opt. Lett. 30, 747-749 (2005).
[CrossRef] [PubMed]

A. L. Oldenburg, F. Jean-Jacques Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, "Magnetomotive contrast for in vivo optical coherence tomography," Opt. Express 13, 6597-6614 (2005).
[CrossRef] [PubMed]

M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, J. A. Izatt, "Spectral-domain phase microscopy," Opt. Lett. 30, 1162-1164 (2005).
[CrossRef] [PubMed]

H. Cang, T. Sun, Z.-Y. Li, J. Chen, B. J. Wiley, Y. Xia, and X. Li, "Gold nanocages as contrast agents for spectroscopic optical coherence tomography," Opt. Lett. 30, 3048-3050 (2005).
[CrossRef] [PubMed]

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, "Optical probes and techniques for molecular contrast enhancement in coherence imaging," J. Biomed. Opt. 10, 041208 (2005).
[CrossRef]

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, "Medical application of functionalized magnetic nanoparticles," J. Biosci. Bioeng. 100, 1-11 (2005).
[CrossRef] [PubMed]

J. F. Schenck, "Physical interactions of static magnetic fields with living tissues," Prog. Biophys. Mol. Biol. 87, 185-204 (2005).
[CrossRef]

2003 (1)

J. N. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. Phys. Lett. 82, 1102-1104 (2003).
[CrossRef]

2002 (1)

H. Watarai and M. Namba, "Capillary magnetophoresis of human blood cells and their magnetophoretic trapping in a flow system," J. Chromatogr. A 961, 3-8 (2002).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Aaron, J. S.

Adler, D. C.

Agrawal, A.

A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Anker, J. N.

J. N. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. Phys. Lett. 82, 1102-1104 (2003).
[CrossRef]

Applegate, B. E.

Arruebo, M.

M. Arruebo, R. Fernandez-Pachaco, M. R. Ibarra, and J. Santamaria, "Magnetic nanoparticles for drug delivery," Nano Today 2, 22-32 (2007).
[CrossRef]

Barton, J. K.

A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 3, 129-134 (2007).
[CrossRef]

A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

A. L. Oldenburg, M. H. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006).
[CrossRef] [PubMed]

A. L. Oldenburg, W. Luo, and S. A. Boppart, "High-resolution in vivo nanoparticle imaging using magnetomotive optical coherence tomography," Proc. SPIE 6097, doi 10.1117/12.643609 (2006).
[CrossRef]

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, "Optical probes and techniques for molecular contrast enhancement in coherence imaging," J. Biomed. Opt. 10, 041208 (2005).
[CrossRef]

A. L. Oldenburg, F. Jean-Jacques Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, "Magnetomotive contrast for in vivo optical coherence tomography," Opt. Express 13, 6597-6614 (2005).
[CrossRef] [PubMed]

A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, "Imaging magnetically labeled cells with magnetomotive optical coherence tomography," Opt. Lett. 30, 747-749 (2005).
[CrossRef] [PubMed]

Bouma, B. E.

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. deBoer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 11, 3931-3944 (2005).
[CrossRef]

Cang, H.

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 3, 129-134 (2007).
[CrossRef]

Cense, B.

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. deBoer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 11, 3931-3944 (2005).
[CrossRef]

Chan, M. M.

M. M. Chan, W. Lu, F. M. Merchant, J. D. Iglehart, and P. L. Miron, "Gene expression profiling of NMU-induced rat mammary tumors: cross species comparison with human breast cancer," Carcinogenesis 26, 1343-1353 (2005).
[CrossRef] [PubMed]

Chaney, E. J.

A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Chen, J.

Chen, Z.

Cheon, J.

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

Cho, E.-J.

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

Choma, M. A.

Creazzo, T. L.

deBoer, J. F.

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. deBoer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 11, 3931-3944 (2005).
[CrossRef]

Dobson, J.

Q2. J. Dobson, "Magnetic nanoparticles for drug delivery," Drug Dev. Res. 67, 66-60 (2006).
[CrossRef]

Drezek, R. A.

A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Ellerbee, A. K.

Feldman, M. D.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Lasers Surg. Med. 39, 266-272 (2007).
[CrossRef] [PubMed]

Fernandez-Pachaco, R.

M. Arruebo, R. Fernandez-Pachaco, M. R. Ibarra, and J. Santamaria, "Magnetic nanoparticles for drug delivery," Nano Today 2, 22-32 (2007).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, "Photothermal detection of gold nanoparticles using phase-sentivie optical coherence tomography," Opt. Express 16, 4376-4393 (2008).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Gunther, J. R.

Hansen, M. H.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Honda, H.

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, "Medical application of functionalized magnetic nanoparticles," J. Biosci. Bioeng. 100, 1-11 (2005).
[CrossRef] [PubMed]

Hong, Y.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Huang, S.

A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Huang, S.-W.

Huber, R.

Huh, Y.-M.

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

Ibarra, M. R.

M. Arruebo, R. Fernandez-Pachaco, M. R. Ibarra, and J. Santamaria, "Magnetic nanoparticles for drug delivery," Nano Today 2, 22-32 (2007).
[CrossRef]

Iglehart, J. D.

M. M. Chan, W. Lu, F. M. Merchant, J. D. Iglehart, and P. L. Miron, "Gene expression profiling of NMU-induced rat mammary tumors: cross species comparison with human breast cancer," Carcinogenesis 26, 1343-1353 (2005).
[CrossRef] [PubMed]

Ito, A.

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, "Medical application of functionalized magnetic nanoparticles," J. Biosci. Bioeng. 100, 1-11 (2005).
[CrossRef] [PubMed]

Izatt, J. A.

Jang, J.-T.

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

Jean-Jacques Toublan, F.

Jun, Y.-W.

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

Kang, H. W.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Lasers Surg. Med. 39, 266-272 (2007).
[CrossRef] [PubMed]

Kim, J.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Lasers Surg. Med. 39, 266-272 (2007).
[CrossRef] [PubMed]

Kim, S.

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

Kobayashi, T.

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, "Medical application of functionalized magnetic nanoparticles," J. Biosci. Bioeng. 100, 1-11 (2005).
[CrossRef] [PubMed]

Kopelman, R.

J. N. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. Phys. Lett. 82, 1102-1104 (2003).
[CrossRef]

Kumar, S.

Larson, T. A.

Lee, J.-H.

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

Lee, M.-H.

A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Li, X.

Li, Z.-Y.

Lin, A. W. H.

A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Lu, W.

M. M. Chan, W. Lu, F. M. Merchant, J. D. Iglehart, and P. L. Miron, "Gene expression profiling of NMU-induced rat mammary tumors: cross species comparison with human breast cancer," Carcinogenesis 26, 1343-1353 (2005).
[CrossRef] [PubMed]

Luo, W.

A. L. Oldenburg, W. Luo, and S. A. Boppart, "High-resolution in vivo nanoparticle imaging using magnetomotive optical coherence tomography," Proc. SPIE 6097, doi 10.1117/12.643609 (2006).
[CrossRef]

Makita, S.

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 3, 129-134 (2007).
[CrossRef]

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, "Optical probes and techniques for molecular contrast enhancement in coherence imaging," J. Biomed. Opt. 10, 041208 (2005).
[CrossRef]

Merchant, F. M.

M. M. Chan, W. Lu, F. M. Merchant, J. D. Iglehart, and P. L. Miron, "Gene expression profiling of NMU-induced rat mammary tumors: cross species comparison with human breast cancer," Carcinogenesis 26, 1343-1353 (2005).
[CrossRef] [PubMed]

Milner, T. E.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Lasers Surg. Med. 39, 266-272 (2007).
[CrossRef] [PubMed]

J. S. Aaron, J. Oh, T. A. Larson, S. Kumar, T. E. Milner, and K. V. Sokolov, "Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles," Opt. Express 14, 12930-12943 (2006).
[CrossRef] [PubMed]

Miron, P. L.

M. M. Chan, W. Lu, F. M. Merchant, J. D. Iglehart, and P. L. Miron, "Gene expression profiling of NMU-induced rat mammary tumors: cross species comparison with human breast cancer," Carcinogenesis 26, 1343-1353 (2005).
[CrossRef] [PubMed]

Mujat, M.

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. deBoer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 11, 3931-3944 (2005).
[CrossRef]

Namba, M.

H. Watarai and M. Namba, "Capillary magnetophoresis of human blood cells and their magnetophoretic trapping in a flow system," J. Chromatogr. A 961, 3-8 (2002).
[CrossRef] [PubMed]

Nelson, J. S.

Oh, J.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Lasers Surg. Med. 39, 266-272 (2007).
[CrossRef] [PubMed]

J. S. Aaron, J. Oh, T. A. Larson, S. Kumar, T. E. Milner, and K. V. Sokolov, "Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles," Opt. Express 14, 12930-12943 (2006).
[CrossRef] [PubMed]

Oldenburg, A. L.

Park, B. H.

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. deBoer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 11, 3931-3944 (2005).
[CrossRef]

Pfefer, T. J.

A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

Pierce, M. C.

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. deBoer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 11, 3931-3944 (2005).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 3, 129-134 (2007).
[CrossRef]

Sanghi, P.

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Lasers Surg. Med. 39, 266-272 (2007).
[CrossRef] [PubMed]

Santamaria, J.

M. Arruebo, R. Fernandez-Pachaco, M. R. Ibarra, and J. Santamaria, "Magnetic nanoparticles for drug delivery," Nano Today 2, 22-32 (2007).
[CrossRef]

Schenck, J. F.

J. F. Schenck, "Physical interactions of static magnetic fields with living tissues," Prog. Biophys. Mol. Biol. 87, 185-204 (2005).
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Seo, J.-W.

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

Shinkai, M.

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, "Medical application of functionalized magnetic nanoparticles," J. Biosci. Bioeng. 100, 1-11 (2005).
[CrossRef] [PubMed]

Sokolov, K. V.

Song, H.-T.

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

Sosnovik, D. E.

D. E. Sosnovik and R. Weissleder, "Emerging concepts in molecular MRI," Curr. Opin. Biotechnol. 18, 4-10 (2007).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Suh, J.-S.

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

Sun, T.

Suslick, K. S.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. deBoer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 11, 3931-3944 (2005).
[CrossRef]

Watarai, H.

H. Watarai and M. Namba, "Capillary magnetophoresis of human blood cells and their magnetophoretic trapping in a flow system," J. Chromatogr. A 961, 3-8 (2002).
[CrossRef] [PubMed]

Wei, A.

Weissleder, R.

D. E. Sosnovik and R. Weissleder, "Emerging concepts in molecular MRI," Curr. Opin. Biotechnol. 18, 4-10 (2007).
[CrossRef]

Wiley, B. J.

Xia, Y.

Xu, C.

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, "Optical probes and techniques for molecular contrast enhancement in coherence imaging," J. Biomed. Opt. 10, 041208 (2005).
[CrossRef]

Yamanari, M.

Yang, C.

Yasuno, Y.

Yatagai, T.

Yoon, H.-G.

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

Yun, S.-H.

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. deBoer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 11, 3931-3944 (2005).
[CrossRef]

Zhang, J.

Zweifel, D. A.

Zysk, A. M.

A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

J. N. Anker and R. Kopelman, "Magnetically modulated optical nanoprobes," Appl. Phys. Lett. 82, 1102-1104 (2003).
[CrossRef]

Carcinogenesis (1)

M. M. Chan, W. Lu, F. M. Merchant, J. D. Iglehart, and P. L. Miron, "Gene expression profiling of NMU-induced rat mammary tumors: cross species comparison with human breast cancer," Carcinogenesis 26, 1343-1353 (2005).
[CrossRef] [PubMed]

Curr. Opin. Biotechnol. (1)

D. E. Sosnovik and R. Weissleder, "Emerging concepts in molecular MRI," Curr. Opin. Biotechnol. 18, 4-10 (2007).
[CrossRef]

Drug Dev. Res. (1)

Q2. J. Dobson, "Magnetic nanoparticles for drug delivery," Drug Dev. Res. 67, 66-60 (2006).
[CrossRef]

J. Biomed. Opt. (2)

S. A. Boppart, A. L. Oldenburg, C. Xu, and D. L. Marks, "Optical probes and techniques for molecular contrast enhancement in coherence imaging," J. Biomed. Opt. 10, 041208 (2005).
[CrossRef]

A. Agrawal, S. Huang, A. W. H. Lin, M.-H. Lee, J. K. Barton, R. A. Drezek, and T. J. Pfefer, "Quantitative evaluation of optical coherence tomography signal enhancement with gold nanoshells," J. Biomed. Opt. 11, 041121 (2006).
[CrossRef] [PubMed]

J. Biosci. Bioeng. (1)

A. Ito, M. Shinkai, H. Honda, and T. Kobayashi, "Medical application of functionalized magnetic nanoparticles," J. Biosci. Bioeng. 100, 1-11 (2005).
[CrossRef] [PubMed]

J. Chromatogr. A (1)

H. Watarai and M. Namba, "Capillary magnetophoresis of human blood cells and their magnetophoretic trapping in a flow system," J. Chromatogr. A 961, 3-8 (2002).
[CrossRef] [PubMed]

Lasers Surg. Med. (1)

J. Oh, M. D. Feldman, J. Kim, H. W. Kang, P. Sanghi, and T. E. Milner, "Magneto-motive detection of tissue-based macrophages by differential phase optical coherence tomography," Lasers Surg. Med. 39, 266-272 (2007).
[CrossRef] [PubMed]

Nano Today (1)

M. Arruebo, R. Fernandez-Pachaco, M. R. Ibarra, and J. Santamaria, "Magnetic nanoparticles for drug delivery," Nano Today 2, 22-32 (2007).
[CrossRef]

Nat. Med. (1)

J.-H. Lee, Y.-M. Huh, Y.-W. Jun, J.-W. Seo, J.-T. Jang, H.-T. Song, S. Kim, E.-J. Cho, H.-G. Yoon, J.-S. Suh and J. Cheon, "Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging," Nat. Med. 13, 95-99 (2007).
[CrossRef]

Nat. Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nat. Phys. 3, 129-134 (2007).
[CrossRef]

Opt. Express (7)

B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. J. Tearney, B. E. Bouma, and J. F. deBoer, "Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 µm," Opt. Express 11, 3931-3944 (2005).
[CrossRef]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821-7840 (2006).
[CrossRef] [PubMed]

A. L. Oldenburg, M. H. Hansen, D. A. Zweifel, A. Wei, and S. A. Boppart, "Plasmon-resonant gold nanorods as low backscattering albedo contrast agents for optical coherence tomography," Opt. Express 14, 6724-6738 (2006).
[CrossRef] [PubMed]

D. C. Adler, S.-W. Huang, R. Huber, and J. G. Fujimoto, "Photothermal detection of gold nanoparticles using phase-sentivie optical coherence tomography," Opt. Express 16, 4376-4393 (2008).
[CrossRef] [PubMed]

B. E. Applegate and J. A. Izatt, "Molecular imaging of endogenous and exogenous chromophores using ground state recovery pump-probe optical coherence tomography," Opt. Express 14, 9142-9155 (2006).
[CrossRef] [PubMed]

J. S. Aaron, J. Oh, T. A. Larson, S. Kumar, T. E. Milner, and K. V. Sokolov, "Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles," Opt. Express 14, 12930-12943 (2006).
[CrossRef] [PubMed]

A. L. Oldenburg, F. Jean-Jacques Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, "Magnetomotive contrast for in vivo optical coherence tomography," Opt. Express 13, 6597-6614 (2005).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Med. Biol. (1)

A. M. Zysk, E. J. Chaney, and S. A. Boppart, "Refractive index of carcinogen-induced rat mammary tumours," Phys. Med. Biol. 51, 2165-2177 (2006).
[CrossRef] [PubMed]

Proc. SPIE (1)

A. L. Oldenburg, W. Luo, and S. A. Boppart, "High-resolution in vivo nanoparticle imaging using magnetomotive optical coherence tomography," Proc. SPIE 6097, doi 10.1117/12.643609 (2006).
[CrossRef]

Prog. Biophys. Mol. Biol. (1)

J. F. Schenck, "Physical interactions of static magnetic fields with living tissues," Prog. Biophys. Mol. Biol. 87, 185-204 (2005).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Theoretical MNP densities ρcrit , ρnoise , and ρmin according to Eqs. (3) and (7). SQUID magnetometry measurements of the MNPs and tissue phantom silicone medium were used to generate the curves. The unknown scaling factor for ρnoise was estimated from the experimental results.

Fig. 2.
Fig. 2.

Representative transverse Fourier spectra with and without magnetic field modulation at 100 Hz for B-mode imaging of a tissue phantom with 100 μg/g MNPs. Spectral amplitudes were averaged over all rows of the image. As indicated, the low frequency peak contains the usual structural OCT data, and a peak at 100 Hz is specific to magnetomotion. Other peaks are attributed to background noise (including 60Hz and its harmonics).

Fig. 3.
Fig. 3.

Transmission electron micrographs of MNPs. (a) 20-30nm bare MNPs. (b) 20nm COOH-terminated MNPs.

Fig. 4.
Fig. 4.

Plots of MMOCT signals in silicone tissue phantoms vs. MNP concentration. Top panel: Magnetomotive signal Smm is shown with and without the mechanical phase lag filter [Eq. (13)]. Top inset: Data near zero concentration is shown on a linear scale. Bottom panel: Mechanical phase lag φ is plotted. Bottom inset: Data near zero concentration is shown on a linear scale.

Fig. 5.
Fig. 5.

Representative OCT and MMOCT images of tissue phantoms with varying concentrations of magnetic nanoparticles (1 ppm = 1 μg/g), corresponding to the data of Fig. 4. Within each box, the upper panel is the OCT image in red, and the lower panel is the corresponding MMOCT image in green.

Fig. 6.
Fig. 6.

Plots of MMOCT signals in an excised rat tumor vs. diffusion time of MNPs. Top panel: Magnetomotive signal Smm computed according to Eq. (13). Bottom panel: Mechanical phase lag φ.

Fig. 7.
Fig. 7.

Representative MMOCT images of MNP diffusion in tumors versus time. Red and green display the structural (OCT) and magnetomotive (MMOCT) image channels, respectively, as indicated by the colored scale bars.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

F p ( z ) = V p M p ( B ( z ) ) B ( z ) z
F tot = [ ( N p V ) V p M p ( B ) + V M m ( B ) ] B z ,
ρ crit ( B ) = N p V p = M m ( B ) M p ( B ) .
V ( t ) = V 0 sin ( 2 π f B t ) + 1 2 ,
Δ z ( t ) = A ( sin ( 2 π f B t + φ ) + 1 2 ) ,
f ̂ ( r ) = ( cos ( φ ( r ) ) + 1 2 ) .
ρ min ( B ) = ρ crit ( B ) + c V p A min E m F p ( B ) ,
= ρ crit ( B ) + ρ noise ( B )
S ˜ ( τ ) = { S ( ω ) E R ( ω ) 2 } ,
S ˜ x z = S env x z exp ( x z ) .
f z > 2 f B > 2 ν Δ x ,
S ˜ x z ; t = S env x z ; t exp ( x z ; t )
S env x z exp ( x z ) exp ( 2 ik Δ z x z ; t ) for Δ z l c
D x z ; t = t { arg ( S ˜ x z ; t ) } = t { 2 k Δ z x z ; t + ϕ x z } .
= 2 π f B kA x z cos ( 2 π f B t + φ x z ) + t ϕ x z
S mm x z = 10 log ( f ̂ on x z BPF { D on x z ; t } f ̂ off x z BPF { D off x z ; t } ) ,
2 k t Δ z > π f z .

Metrics