Abstract

Optical micro-angiography (OMAG), based on Fourier domain optical coherence tomography (OCT), is a recently developed imaging modality that provides dynamic blood flow imaging within microcirculation tissue beds in vivo. This paper presents its first application in imaging the blood circulations in posterior chamber of human eye. To eliminate/minimize the motion artifacts in OMAG flow image caused by the inevitable subject movement, we describe a method to compensate the bulk tissue motion by use of phase changes in sequential OCT A scan signals. By use of a fast OMAG/OCT imaging system at ~840nm wavelength band, we show that OMAG is capable of providing volumetric vasculatural images in retina and choroids, down to capillary level imaging resolution, within ~10 s. The depth-resolved volumetric views of the separate retina and choroid vasculatures are also presented. In the end of this paper, we provide a comparison of the OMAG results with those from Doppler OCT and optical coherence angiography.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical Coherence Tomography - Principles and Applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  2. P. H. Tomolins and R. K. Wang, "Theory, development and applications of optical coherence tomography"J Phys. D: Appl. Phys. 38, 2519-2535 (2005).
    [CrossRef]
  3. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
    [CrossRef] [PubMed]
  4. Z. P. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121(1997).
    [CrossRef] [PubMed]
  5. Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. Ren, and J. S. Nelson, "Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation," Opt. Lett. 25, 98-100 (2002).
    [CrossRef]
  6. H.W. Ren, Z. H. Ding, Y. H. Zhao, J. Miao, J. S. Nelson, and Z. P. Chen, "Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin," Opt. Lett. 27, 1702-1704 (2002).
    [CrossRef]
  7. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
    [CrossRef] [PubMed]
  8. J. Zhang and Z. P. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7459 (2005).
    [CrossRef] [PubMed]
  9. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5492 (2005).
    [CrossRef] [PubMed]
  10. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2005).
    [CrossRef]
  11. R. K. Wang and Z. H. Ma, "Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography," Opt. Lett. 31, 3001-3003 (2006).
    [CrossRef] [PubMed]
  12. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
    [CrossRef] [PubMed]
  13. B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
    [CrossRef] [PubMed]
  14. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
    [CrossRef] [PubMed]
  15. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
    [CrossRef] [PubMed]
  16. R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29,171-3 (2004).
    [CrossRef] [PubMed]
  17. S. Makita, Y. Hong, M. Y. T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821 (2006).
    [CrossRef] [PubMed]
  18. Y. Hong, S. Makita, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538 (2007).
    [CrossRef] [PubMed]
  19. R. K Wang, "In vivo full rang complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007).
  20. R. K. Wang, "Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning," Phys. Med. Biol. 52, 5897-5907 (2007).
    [CrossRef] [PubMed]
  21. R. K. Wang, S. L. Jacques, Z. H. Ma, S. Hanson, and A. Gruber, "Three Dimensional Optical Angiography," Opt. Express 15, 4083 (2007).
    [CrossRef] [PubMed]
  22. R. K. Wang and S. Hurst "Mapping of cerebrovascular blood perfusion in mice with skin and cranium intact by Optical Micro-AngioGraphy at 1300nm wavelength," Opt. Express 15, 11402-11412 (2007).
    [CrossRef] [PubMed]
  23. R. K. Wang, "Three dimensional optical angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo," Phys. Med. Biol. 52, N531-N537 (2007).
    [CrossRef] [PubMed]
  24. American National Standards Institute, American National Standard for Safe Use of Lasers: ANSI Z136.1 (Laser Institute of America, Orlando, Florida, 2000).
  25. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  26. L. An and R. K. Wang, "Use of scanner to modulate spatial interferogram for in vivo full range Fourier domain optical coherence tomography," Opt. Lett. 32, 3423-25 (2007).
    [CrossRef] [PubMed]
  27. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375 (2007)
    [CrossRef] [PubMed]
  28. R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453 (2007).
    [CrossRef] [PubMed]
  29. E. A. Bedrosian, "Product theorem for Hilbert transforms," Proc. IEEE 51, 868-869 (1963).
    [CrossRef]
  30. S. L. Hahn, "Hilbert Transformation" in The Transforms and Applications Handbook, A.D. Poularikas, ed., (CRC, 1996), pp 463.
  31. V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-222 (2002).
    [CrossRef]
  32. M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005).
    [CrossRef] [PubMed]
  33. S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
    [CrossRef] [PubMed]
  34. R. K. Wang, "Directional blood flow imaging in volumetric optical micro-angiography achieved by digital frequency modulation," Accepted for publication in Opt. Lett.
  35. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography," Opt. Express 16, 6008-6025 (2008).
    [CrossRef] [PubMed]

2008 (1)

2007 (9)

Y. Hong, S. Makita, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538 (2007).
[CrossRef] [PubMed]

R. K Wang, "In vivo full rang complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007).

R. K. Wang, "Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning," Phys. Med. Biol. 52, 5897-5907 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. H. Ma, S. Hanson, and A. Gruber, "Three Dimensional Optical Angiography," Opt. Express 15, 4083 (2007).
[CrossRef] [PubMed]

R. K. Wang and S. Hurst "Mapping of cerebrovascular blood perfusion in mice with skin and cranium intact by Optical Micro-AngioGraphy at 1300nm wavelength," Opt. Express 15, 11402-11412 (2007).
[CrossRef] [PubMed]

R. K. Wang, "Three dimensional optical angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo," Phys. Med. Biol. 52, N531-N537 (2007).
[CrossRef] [PubMed]

L. An and R. K. Wang, "Use of scanner to modulate spatial interferogram for in vivo full range Fourier domain optical coherence tomography," Opt. Lett. 32, 3423-25 (2007).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375 (2007)
[CrossRef] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453 (2007).
[CrossRef] [PubMed]

2006 (2)

2005 (7)

2004 (3)

2003 (4)

2002 (3)

Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. Ren, and J. S. Nelson, "Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation," Opt. Lett. 25, 98-100 (2002).
[CrossRef]

H.W. Ren, Z. H. Ding, Y. H. Zhao, J. Miao, J. S. Nelson, and Z. P. Chen, "Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin," Opt. Lett. 27, 1702-1704 (2002).
[CrossRef]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-222 (2002).
[CrossRef]

1997 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

1963 (1)

E. A. Bedrosian, "Product theorem for Hilbert transforms," Proc. IEEE 51, 868-869 (1963).
[CrossRef]

Akkin, T.

An, L.

Bajraszewski, T.

Baumann, B.

Bedrosian, E. A.

E. A. Bedrosian, "Product theorem for Hilbert transforms," Proc. IEEE 51, 868-869 (1963).
[CrossRef]

Berisha, F.

Bouma, B. E.

Cense, B.

Chan, R. C.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T. C.

Chen, Z.

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2005).
[CrossRef]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-222 (2002).
[CrossRef]

Chen, Z. P.

Cobbold, R. S. C.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-222 (2002).
[CrossRef]

de Boer, J. F.

Ding, Z. H.

Drexler, W.

Duker, J.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Gordon, M. L.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-222 (2002).
[CrossRef]

Götzinger, E.

Gregori, G.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Gruber, A.

Hanson, S.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hong, Y.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Huang, X.

Hurst, S.

Jacques, S. L.

Jiao, S.

Joo, C.

Knighton, R.

Ko, T.

Kowalczyk, A.

Lasser, T.

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453 (2007).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical Coherence Tomography - Principles and Applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Ma, Z. H.

Makita, S.

Malekafzali, A.

Miao, J.

Michaely, R.

Milner, T. E.

Mok, A.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-222 (2002).
[CrossRef]

Mujat, M.

Nassif, N.

Nelson, J. S.

Park, B. H.

Pierce, M. C.

Pircher, M.

Puliafito, C. A.

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Ren, H.

Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. Ren, and J. S. Nelson, "Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation," Opt. Lett. 25, 98-100 (2002).
[CrossRef]

Ren, H.W.

Saxer, C.

Schmetterer, L.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Sekhar, S. C.

Srinivas, S.

Srinivasan, V.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Szkulmowska, A.

Szkulmowski, M.

Tearney, G. J.

Tomolins, P. H.

P. H. Tomolins and R. K. Wang, "Theory, development and applications of optical coherence tomography"J Phys. D: Appl. Phys. 38, 2519-2535 (2005).
[CrossRef]

Vakoc, B. J.

van Gemert, M. J. C.

Vitkin, I. A.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-222 (2002).
[CrossRef]

Wang, R. K

R. K Wang, "In vivo full rang complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007).

Wang, R. K.

R. K. Wang, "Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning," Phys. Med. Biol. 52, 5897-5907 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. H. Ma, S. Hanson, and A. Gruber, "Three Dimensional Optical Angiography," Opt. Express 15, 4083 (2007).
[CrossRef] [PubMed]

R. K. Wang, "Three dimensional optical angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo," Phys. Med. Biol. 52, N531-N537 (2007).
[CrossRef] [PubMed]

R. K. Wang and S. Hurst "Mapping of cerebrovascular blood perfusion in mice with skin and cranium intact by Optical Micro-AngioGraphy at 1300nm wavelength," Opt. Express 15, 11402-11412 (2007).
[CrossRef] [PubMed]

L. An and R. K. Wang, "Use of scanner to modulate spatial interferogram for in vivo full range Fourier domain optical coherence tomography," Opt. Lett. 32, 3423-25 (2007).
[CrossRef] [PubMed]

R. K. Wang and Z. H. Ma, "Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography," Opt. Lett. 31, 3001-3003 (2006).
[CrossRef] [PubMed]

P. H. Tomolins and R. K. Wang, "Theory, development and applications of optical coherence tomography"J Phys. D: Appl. Phys. 38, 2519-2535 (2005).
[CrossRef]

R. K. Wang, "Directional blood flow imaging in volumetric optical micro-angiography achieved by digital frequency modulation," Accepted for publication in Opt. Lett.

Wang, X.

White, B. R.

Wilson, B. C.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-222 (2002).
[CrossRef]

Wojtkowski, M.

Xiang, S.

Yang, V. X. D.

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-222 (2002).
[CrossRef]

Yasuno, Y.

Yatagai, M. Y. T.

Yun, S. H.

Zawadzki, R. J.

Zhang, J.

Zhao, Y.

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2005).
[CrossRef]

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-222 (2002).
[CrossRef]

Zhao, Y. H.

Appl. Phys. Lett. (1)

R. K Wang, "In vivo full rang complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90, 054103 (2007).

J Phys. D: Appl. Phys. (1)

P. H. Tomolins and R. K. Wang, "Theory, development and applications of optical coherence tomography"J Phys. D: Appl. Phys. 38, 2519-2535 (2005).
[CrossRef]

Opt. Commun. (1)

V. X. D. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. C. Cobbold, B. C. Wilson, and I. A. Vitkin, "Improved phase-resolved optical Doppler tomography using the Kasai velocity estimator and histogram segmentation," Opt. Commun. 208, 209-222 (2002).
[CrossRef]

Opt. Express (15)

M. Mujat, R. C. Chan, B. Cense, B. H. Park, C. Joo, T. Akkin, T. C. Chen, and J. F. de Boer, "Retinal nerve fiber layer thickness map determined from optical coherence tomography images," Opt. Express 13, 9480-9491 (2005).
[CrossRef] [PubMed]

S. Jiao, R. Knighton, X. Huang, G. Gregori, and C. A. Puliafito, "Simultaneous acquisition of sectional and fundus ophthalmic images with spectral-domain optical coherence tomography," Opt. Express 13, 444-452 (2005).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375 (2007)
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

R. K. Wang, S. L. Jacques, Z. H. Ma, S. Hanson, and A. Gruber, "Three Dimensional Optical Angiography," Opt. Express 15, 4083 (2007).
[CrossRef] [PubMed]

R. K. Wang and S. Hurst "Mapping of cerebrovascular blood perfusion in mice with skin and cranium intact by Optical Micro-AngioGraphy at 1300nm wavelength," Opt. Express 15, 11402-11412 (2007).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Y. T. Yatagai, and Y. Yasuno, "Optical coherence angiography," Opt. Express 14, 7821 (2006).
[CrossRef] [PubMed]

Y. Hong, S. Makita, and Y. Yasuno, "Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography," Opt. Express 15, 7538 (2007).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
[CrossRef] [PubMed]

B. R. White, M. C. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, "In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography," Opt. Express 11, 3490-3497 (2003).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, "Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography," Opt. Express 11, 3116-3121 (2003).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5493 (2005).
[CrossRef] [PubMed]

J. Zhang and Z. P. Chen, "In vivo blood flow imaging by a swept laser source based Fourier domain optical Doppler tomography," Opt. Express 13, 7449-7459 (2005).
[CrossRef] [PubMed]

B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13, 5483-5492 (2005).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography," Opt. Express 16, 6008-6025 (2008).
[CrossRef] [PubMed]

Opt. Lett. (10)

Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, "Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity," Opt. Lett. 25, 114-116 (2005).
[CrossRef]

R. K. Wang and Z. H. Ma, "Real-time flow imaging by removing texture pattern artifacts in spectral-domain optical Doppler tomography," Opt. Lett. 31, 3001-3003 (2006).
[CrossRef] [PubMed]

Z. P. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. van Gemert, and J. S. Nelson, "Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography," Opt. Lett. 22, 1119-1121(1997).
[CrossRef] [PubMed]

Y. H. Zhao, Z. P. Chen, Z. H. Ding, H. Ren, and J. S. Nelson, "Real-time phase-resolved functional optical coherence tomography by use of optical Hilbert transformation," Opt. Lett. 25, 98-100 (2002).
[CrossRef]

H.W. Ren, Z. H. Ding, Y. H. Zhao, J. Miao, J. S. Nelson, and Z. P. Chen, "Phase-resolved functional optical coherence tomography: simultaneous imaging of in situ tissue structure, blood flow velocity, standard deviation, birefringence, and Stokes vectors in human skin," Opt. Lett. 27, 1702-1704 (2002).
[CrossRef]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier domain color Doppler optical coherence tomography," Opt. Lett. 29, 171-173 (2004).
[CrossRef] [PubMed]

R. A. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29,171-3 (2004).
[CrossRef] [PubMed]

L. An and R. K. Wang, "Use of scanner to modulate spatial interferogram for in vivo full range Fourier domain optical coherence tomography," Opt. Lett. 32, 3423-25 (2007).
[CrossRef] [PubMed]

R. A. Leitgeb, R. Michaely, T. Lasser, and S. C. Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32, 3453 (2007).
[CrossRef] [PubMed]

R. K. Wang, "Directional blood flow imaging in volumetric optical micro-angiography achieved by digital frequency modulation," Accepted for publication in Opt. Lett.

Phys. Med. Biol. (2)

R. K. Wang, "Fourier domain optical coherence tomography achieves full range complex imaging in vivo by introducing a carrier frequency during scanning," Phys. Med. Biol. 52, 5897-5907 (2007).
[CrossRef] [PubMed]

R. K. Wang, "Three dimensional optical angiography maps directional blood perfusion deep within microcirculation tissue beds in vivo," Phys. Med. Biol. 52, N531-N537 (2007).
[CrossRef] [PubMed]

Proc. IEEE (1)

E. A. Bedrosian, "Product theorem for Hilbert transforms," Proc. IEEE 51, 868-869 (1963).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical Coherence Tomography - Principles and Applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254,1178-1181 (1991).
[CrossRef] [PubMed]

Other (2)

S. L. Hahn, "Hilbert Transformation" in The Transforms and Applications Handbook, A.D. Poularikas, ed., (CRC, 1996), pp 463.

American National Standards Institute, American National Standard for Safe Use of Lasers: ANSI Z136.1 (Laser Institute of America, Orlando, Florida, 2000).

Supplementary Material (3)

» Media 1: AVI (2889 KB)     
» Media 2: AVI (1187 KB)     
» Media 3: AVI (782 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the OMAG system used to collect the 3-D spectral interferogram data cube to perform the 3-D angiogram of retina in vivo. CCD: the charge coupled device, PC: the polarization controller. The reference mirror is stationary during imaging. The sample was sliced with priority in the lateral direction, x, by raster-scanning the focused beam spot using a pair of X-Y galvanometer scanners to build a 3-D volume data set.

Fig. 2.
Fig. 2.

Typical in vivo B scan of posterior part of a human eye. (A) Conventional OCT/OMAG structural image, where the retina and choroidal layers are demarcated; and the corresponding (B) OMAG flow image, (C) PRODT image with gray levels coded from -π (black) to π(white) and (D) Power Doppler OCT image. Scale bar = 500μm.

Fig. 3.
Fig. 3.

Flow chart detailing the steps to computationally compensate the bulk tissue motion artifacts in OMAG imaging of blood perfusion in retina and choroids.

Fig. 4.
Fig. 4.

Final results after applying the motion compensation method to digitally stabilize the B scan as detailed in Fig.3. (A) Accumulated changes along the B scan from Eq. (11). (B) The resulted OMAG blood flow image after motion compensation. Also shown are (C) PRODT blood flow image and (D) Power Doppler blood flow image after motion compensation for comparison. Scale bar = 500μm.

Fig. 5.
Fig. 5.

In vivo volumetric imaging of posterior chamber of an eye from a volunteer. (A) OCT fundus image of the scanned volume as described in [33]. (B) OCT cross-sectional image at the position marked yellow in (A), in which four lines as shown are resulted from the segmentation method that are used to separate the blood flows in retina and choroids. (C) Flying through movie that represents the 2D OMAG flow images within the scanned volume (Fig5C.avi, 2.8Mbytes) [Media 1]. (D) Volumetric rendering of the merged structural and flow images with a cut through in the center of structural image (Fig5D.avi, 1.2Mbytes) [Media 2]. (E) Volumetric rending of the blood flow image where flows in retina are coded with green and those in choroids with red (Fig5E.avi, 0.8Mbytes). Scale bar = 500μm. [Media 3]

Fig. 6.
Fig. 6.

x-y projection images from 3D OMAG blood flow images. (A) Projection image from the whole scanned volume with the blood vessels in retina are coded with green color, and those in choroids with red color. (B) x-y projection image from the blood vessels within retina only. (C) x-y projection image from the blood vessels within choroids only. Scale bar = 500μm.

Fig. 7.
Fig. 7.

Comparison between OMAG and OCA imaging of the blood vessel networks within retina and choroids. (A) and (B) are the OMAG imaging of blood vessels in retina and choroidal layers, respectively while (C) and (D) are those from OCA. Scale bar = 500μm.

Fig. 8.
Fig. 8.

Comparison between OMAG and S-OCA imaging of blood vessel netrworks within choroidal layer. (A) OMAG, (B) S-OCA, and (C) image that was directly resulted from the projection of structural image.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

B ( t 1 , t 2 ) = cos ( 2 π f 0 t 1 + 2 π ( f M f D ) t 2 + φ )
H ˜ t 1 t 2 = cos ( 2 π ( f M f D ) t 2 + 2 π f 0 t 1 + φ ) + j sin ( 2 π ( f M f D ) t 2 + 2 π f 0 t 1 + φ )
H ˜ t 1 t 2 = cos ( 2 π ( f M f D ) t 2 + 2 π f 0 t 1 + φ ) j sin ( 2 π ( f M f D ) t 2 + 2 π f 0 t 1 + φ )
B ˜ OCT t z = A t z exp [ i ϕ t z ]
ϕ t z = ϕ P t z + ϕ B t z ) + ϕ M t z
Δϕ i t z = Δ ϕ P i t z + Δ ϕ B i t z + Δ ϕ M i t z
Δϕ M i t z = 2 πf M T
Δ ϕ m i t z = Δ ϕ P i t z + Δ ϕ B i t z
Δϕ m i x z = Δ ϕ P i x z + Δ ϕ B i x z
Δϕ m i ( x ) 1 z Δ ϕ m i x z dz
ϕ m 1 ( 0 ) = 0 , ϕ m i ( x ) = ϕ m i 1 ( x ) + Δ ϕ m i ( x ) , i = 2,3 , , N
B ˜ OCT ´ x z = A x z exp [ i ( ϕ P x z + ϕ M x z ) ]
b x λ = FFT 1 [ B ˜ ´ x z ]
Δϕ m i x 1 z Δϕ m i x z dz Z R x z
I n < I' x y) μ σ 2

Metrics