Abstract

Since there is an increasing demand for fast networks and switches, the electronic data processing imposes a severe bottleneck and all-optical processing techniques will be required in the future. All-optical flip-flops are one of the key components because they can act as temporary memory elements. Several designs have already been demonstrated but they are often relatively slow or complex to fabricate. We demonstrate experimentally fast flip-flop operation in a single DFB laser diode which is one of the standard elements in today’s telecommunication industry. Injecting continuous wave light in the laser diode, a bistability is obtained due to the spatial hole burning effect. We can switch between the two states by using pulses with energies below 200 fJ resulting in flip-flop operation with switching times below 75 ps and repetition rates of up to 2 GHz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Van Caenegem, J. A. Martinez, D. Colle, M. Pickavet, P. Demeester, F. Ramos, and J. Marti, "From IP over WDM to all-optical packet switching: Economical view," J. Lightwave Technol. 24, 1638-1645 (2006).
    [CrossRef]
  2. H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, "Optical packet switching and buffering by using all-optical signal processing methods," J. Lightwave Technol. 21, 2-12 (2003).
    [CrossRef]
  3. M. Takenaka, K. Takeda, Y. Kanema, and Y. Nakano, "All-optical switching of 40 Gb/s packets by MMI-BLD optical label memory," Opt. Express 14, 10785-10789 (2006).
    [CrossRef] [PubMed]
  4. M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "All-optical flip-flop based on coupled laser diodes," J. Quantum Electron. 37, 405-413 (2001).
    [CrossRef]
  5. M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
    [CrossRef] [PubMed]
  6. M. Takenaka, M. Raburn, and Y. Nakano, "All-optical flip-flop multimode interference bistable laser diode," Photon. Technol. Lett. 17, 968-970 (2005).
    [CrossRef]
  7. R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, "All-optical flip-flop based on a single SOA-MZI," Photon. Technol. Lett. 17, 843-845 (2005).
    [CrossRef]
  8. J. Y. Zhou, M. Cada, and T. Makino, "All-optical bistable switching dynamics in 1.55-?m two-segment strained multiquantum-well distributed-feedback lasers," J. Lightwave Technol. 15, 342-355 (1997).
    [CrossRef]
  9. D. N. Maywar, G. P. Agrawal, and Y. Nakano, "All-optical hysteresis control by means of cross-phase modulation in semiconductor optical amplifiers," J. Opt. Soc. Am. B. 18, 1003-1013 (2001).
    [CrossRef]
  10. K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, "Proposal for an all-optical flip-flop using a single distributed feedback laser diode," Photon. Technol. Lett. 20, 18-20 (2008).
    [CrossRef]
  11. VPItransmissionmaker, http://www.vpisystems.com.

2008 (1)

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, "Proposal for an all-optical flip-flop using a single distributed feedback laser diode," Photon. Technol. Lett. 20, 18-20 (2008).
[CrossRef]

2006 (2)

2005 (2)

M. Takenaka, M. Raburn, and Y. Nakano, "All-optical flip-flop multimode interference bistable laser diode," Photon. Technol. Lett. 17, 968-970 (2005).
[CrossRef]

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, "All-optical flip-flop based on a single SOA-MZI," Photon. Technol. Lett. 17, 843-845 (2005).
[CrossRef]

2004 (1)

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

2003 (1)

2001 (2)

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "All-optical flip-flop based on coupled laser diodes," J. Quantum Electron. 37, 405-413 (2001).
[CrossRef]

D. N. Maywar, G. P. Agrawal, and Y. Nakano, "All-optical hysteresis control by means of cross-phase modulation in semiconductor optical amplifiers," J. Opt. Soc. Am. B. 18, 1003-1013 (2001).
[CrossRef]

1997 (1)

J. Y. Zhou, M. Cada, and T. Makino, "All-optical bistable switching dynamics in 1.55-?m two-segment strained multiquantum-well distributed-feedback lasers," J. Lightwave Technol. 15, 342-355 (1997).
[CrossRef]

Agrawal, G. P.

D. N. Maywar, G. P. Agrawal, and Y. Nakano, "All-optical hysteresis control by means of cross-phase modulation in semiconductor optical amplifiers," J. Opt. Soc. Am. B. 18, 1003-1013 (2001).
[CrossRef]

Baets, R.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, "Proposal for an all-optical flip-flop using a single distributed feedback laser diode," Photon. Technol. Lett. 20, 18-20 (2008).
[CrossRef]

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Cada, M.

J. Y. Zhou, M. Cada, and T. Makino, "All-optical bistable switching dynamics in 1.55-?m two-segment strained multiquantum-well distributed-feedback lasers," J. Lightwave Technol. 15, 342-355 (1997).
[CrossRef]

Calabretta, N.

Clavero, R.

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, "All-optical flip-flop based on a single SOA-MZI," Photon. Technol. Lett. 17, 843-845 (2005).
[CrossRef]

Colle, D.

de Vries, T.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

de Waardt, H.

Demeester, P.

den Besten, J. H.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

D'Oosterlinck, W.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, "Proposal for an all-optical flip-flop using a single distributed feedback laser diode," Photon. Technol. Lett. 20, 18-20 (2008).
[CrossRef]

Dorren, H. J. S.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, "Optical packet switching and buffering by using all-optical signal processing methods," J. Lightwave Technol. 21, 2-12 (2003).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "All-optical flip-flop based on coupled laser diodes," J. Quantum Electron. 37, 405-413 (2001).
[CrossRef]

Hill, M. T.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, "Optical packet switching and buffering by using all-optical signal processing methods," J. Lightwave Technol. 21, 2-12 (2003).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "All-optical flip-flop based on coupled laser diodes," J. Quantum Electron. 37, 405-413 (2001).
[CrossRef]

Huijskens, F. M.

Huybrechts, K.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, "Proposal for an all-optical flip-flop using a single distributed feedback laser diode," Photon. Technol. Lett. 20, 18-20 (2008).
[CrossRef]

Kanema, Y.

Khoe, G. D.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. de Waardt, and G. D. Khoe, "Optical packet switching and buffering by using all-optical signal processing methods," J. Lightwave Technol. 21, 2-12 (2003).
[CrossRef]

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "All-optical flip-flop based on coupled laser diodes," J. Quantum Electron. 37, 405-413 (2001).
[CrossRef]

Leijtens, X. J. M.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Liu, Y.

Makino, T.

J. Y. Zhou, M. Cada, and T. Makino, "All-optical bistable switching dynamics in 1.55-?m two-segment strained multiquantum-well distributed-feedback lasers," J. Lightwave Technol. 15, 342-355 (1997).
[CrossRef]

Marti, J.

Martinez, J. A.

Martinez, J. M.

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, "All-optical flip-flop based on a single SOA-MZI," Photon. Technol. Lett. 17, 843-845 (2005).
[CrossRef]

Maywar, D. N.

D. N. Maywar, G. P. Agrawal, and Y. Nakano, "All-optical hysteresis control by means of cross-phase modulation in semiconductor optical amplifiers," J. Opt. Soc. Am. B. 18, 1003-1013 (2001).
[CrossRef]

Morthier, G.

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, "Proposal for an all-optical flip-flop using a single distributed feedback laser diode," Photon. Technol. Lett. 20, 18-20 (2008).
[CrossRef]

Nakano, Y.

M. Takenaka, K. Takeda, Y. Kanema, and Y. Nakano, "All-optical switching of 40 Gb/s packets by MMI-BLD optical label memory," Opt. Express 14, 10785-10789 (2006).
[CrossRef] [PubMed]

M. Takenaka, M. Raburn, and Y. Nakano, "All-optical flip-flop multimode interference bistable laser diode," Photon. Technol. Lett. 17, 968-970 (2005).
[CrossRef]

D. N. Maywar, G. P. Agrawal, and Y. Nakano, "All-optical hysteresis control by means of cross-phase modulation in semiconductor optical amplifiers," J. Opt. Soc. Am. B. 18, 1003-1013 (2001).
[CrossRef]

Oei, Y. S.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Pickavet, M.

Raburn, M.

M. Takenaka, M. Raburn, and Y. Nakano, "All-optical flip-flop multimode interference bistable laser diode," Photon. Technol. Lett. 17, 968-970 (2005).
[CrossRef]

Ramos, F.

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Smit, M. K.

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Srivatsa, A.

Takeda, K.

Takenaka, M.

M. Takenaka, K. Takeda, Y. Kanema, and Y. Nakano, "All-optical switching of 40 Gb/s packets by MMI-BLD optical label memory," Opt. Express 14, 10785-10789 (2006).
[CrossRef] [PubMed]

M. Takenaka, M. Raburn, and Y. Nakano, "All-optical flip-flop multimode interference bistable laser diode," Photon. Technol. Lett. 17, 968-970 (2005).
[CrossRef]

Van Caenegem, R.

Zhou, J. Y.

J. Y. Zhou, M. Cada, and T. Makino, "All-optical bistable switching dynamics in 1.55-?m two-segment strained multiquantum-well distributed-feedback lasers," J. Lightwave Technol. 15, 342-355 (1997).
[CrossRef]

J. Lightwave Technol. (3)

J. Quantum Electron. (1)

M. T. Hill, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "All-optical flip-flop based on coupled laser diodes," J. Quantum Electron. 37, 405-413 (2001).
[CrossRef]

Nature (1)

M. T. Hill, H. J. S. Dorren, T. de Vries, X. J. M. Leijtens, J. H. den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers," Nature 432, 206-209 (2004).
[CrossRef] [PubMed]

Opt. Express (1)

Photon. Technol. Lett. (3)

M. Takenaka, M. Raburn, and Y. Nakano, "All-optical flip-flop multimode interference bistable laser diode," Photon. Technol. Lett. 17, 968-970 (2005).
[CrossRef]

R. Clavero, F. Ramos, J. M. Martinez, and J. Marti, "All-optical flip-flop based on a single SOA-MZI," Photon. Technol. Lett. 17, 843-845 (2005).
[CrossRef]

K. Huybrechts, W. D'Oosterlinck, G. Morthier, and R. Baets, "Proposal for an all-optical flip-flop using a single distributed feedback laser diode," Photon. Technol. Lett. 20, 18-20 (2008).
[CrossRef]

Phys. (1)

D. N. Maywar, G. P. Agrawal, and Y. Nakano, "All-optical hysteresis control by means of cross-phase modulation in semiconductor optical amplifiers," J. Opt. Soc. Am. B. 18, 1003-1013 (2001).
[CrossRef]

Other (1)

VPItransmissionmaker, http://www.vpisystems.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) The longitudinal distribution of the carriers for the two different states in a λ/4-shifted DFB laser with length 400 μm, AR-coatings and ΚL-value of 1.2; (b) Simulation of the laser power as a function of the injected light.

Fig. 2.
Fig. 2.

Illustration of the concept for all-optical flip-flop operation.

Fig. 3.
Fig. 3.

The measured hysteresis for different injection currents.

Fig. 4.
Fig. 4.

Schematic of the experimental set-up for flip-flop experiments.

Fig. 5.
Fig. 5.

Experimental results for flip-flop operation using pulses with a length of 100 ps and repetition rates of 1.25 GHz.

Fig. 6.
Fig. 6.

Experimental results for flip-flop operation using pulses with a length of approximately 7 ps and repetition rates of 1.25 GHz.

Fig. 7.
Fig. 7.

Experimental result for flip-flop operation using pulses with a length of 7 ps and repetition rates of 2 GHz.

Metrics