Abstract

We design an intersection for crossing waveguides in triangular lattice photonic crystals with cross-talk smaller than 10−5. The cross-talk to the transverse waveguides is suppressed by symmetry mismatch between the cavity mode and the waveguide mode or by the mode-gap effect induced by air hole radius modulation of the waveguides. The transmission behavior of the crossing waveguides are illustrated by numerical simulations through finite difference time domain method.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
    [CrossRef] [PubMed]
  2. H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, "Electrically driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
    [CrossRef] [PubMed]
  3. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
    [CrossRef]
  4. M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
    [CrossRef]
  5. A. Sugitatsu, T. Asano, and S. Noda, "Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs," Appl. Phys. Lett. 84, 5395-5397 (2004).
    [CrossRef]
  6. S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
    [CrossRef]
  7. Z. Zhang and M. Qiu, "Compact in-plane channel drop filter design using a single cavity with two degenerate modes in 2D photonic crystal slab," Opt. Express 13, 2596-2604 (2005).
    [CrossRef] [PubMed]
  8. B. K. Min, J. E. Kim, and H. Y. Park, "High-efficiency surface-emitting channel drop filters in two dimensional photonic crystal slab," Appl. Phys. Lett. 86, 111106 (2006).
  9. A. Shinya, S. Mitsugi, E. Kuramochi, and M. Notomi, "Ultrasmall multi-channel resonant-tunneling filter using mode gap of width-tuned photonic crystal waveguide," Opt. Express 13, 4202-4209 (2005).
    [CrossRef] [PubMed]
  10. H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal," Opt. Express 14, 3491-3496 (2006).
    [CrossRef] [PubMed]
  11. M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
    [CrossRef]
  12. Q1. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonicbandgap microcavity," Nat. Photonics 2, 185-189 (2008).
    [CrossRef]
  13. S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneouve, J. D. Joannopoulos, and H. A. Haus, "Elimination of cross-talk in waveguide intersections," Opt. Lett. 23, 1855-1857 (1998).
    [CrossRef]
  14. S. H. Kim, and Y. H. Lee, "Symmetry relations of Two-Dimensional Photonic Crystal Cavity Modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003).
    [CrossRef]
  15. G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004).
    [CrossRef] [PubMed]
  16. S. K. Kim, G. H. Kim, S. H. Kim, Y. H. Lee, S. B. Kim, and I. Kim, "Loss management using parity-selective barriers for single-mode, single-cell photonic crystal resonators," Appl. Phys. Lett. 88, 161119 (2006).
    [CrossRef]
  17. S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, "Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide," Opt. Express 16, 4605-4614 (2008).
    [CrossRef] [PubMed]

2008 (2)

Q1. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonicbandgap microcavity," Nat. Photonics 2, 185-189 (2008).
[CrossRef]

S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, "Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide," Opt. Express 16, 4605-4614 (2008).
[CrossRef] [PubMed]

2006 (3)

S. K. Kim, G. H. Kim, S. H. Kim, Y. H. Lee, S. B. Kim, and I. Kim, "Loss management using parity-selective barriers for single-mode, single-cell photonic crystal resonators," Appl. Phys. Lett. 88, 161119 (2006).
[CrossRef]

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal," Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

B. K. Min, J. E. Kim, and H. Y. Park, "High-efficiency surface-emitting channel drop filters in two dimensional photonic crystal slab," Appl. Phys. Lett. 86, 111106 (2006).

2005 (3)

2004 (3)

G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004).
[CrossRef] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, "Electrically driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

A. Sugitatsu, T. Asano, and S. Noda, "Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs," Appl. Phys. Lett. 84, 5395-5397 (2004).
[CrossRef]

2003 (2)

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

S. H. Kim, and Y. H. Lee, "Symmetry relations of Two-Dimensional Photonic Crystal Cavity Modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003).
[CrossRef]

2002 (1)

M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
[CrossRef]

1999 (1)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

1998 (2)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneouve, J. D. Joannopoulos, and H. A. Haus, "Elimination of cross-talk in waveguide intersections," Opt. Lett. 23, 1855-1857 (1998).
[CrossRef]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Asano, T.

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal," Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

A. Sugitatsu, T. Asano, and S. Noda, "Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs," Appl. Phys. Lett. 84, 5395-5397 (2004).
[CrossRef]

Baek, J. H.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, "Electrically driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Ding, C.

Q1. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonicbandgap microcavity," Nat. Photonics 2, 185-189 (2008).
[CrossRef]

Fan, S.

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneouve, J. D. Joannopoulos, and H. A. Haus, "Elimination of cross-talk in waveguide intersections," Opt. Lett. 23, 1855-1857 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Forchel, A.

Gong, Q.

Q1. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonicbandgap microcavity," Nat. Photonics 2, 185-189 (2008).
[CrossRef]

Haus, H. A.

Hu, X.

Q1. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonicbandgap microcavity," Nat. Photonics 2, 185-189 (2008).
[CrossRef]

Jiang, P.

Q1. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonicbandgap microcavity," Nat. Photonics 2, 185-189 (2008).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, C. Manolatou, S. Fan, P. R. Villeneouve, J. D. Joannopoulos, and H. A. Haus, "Elimination of cross-talk in waveguide intersections," Opt. Lett. 23, 1855-1857 (1998).
[CrossRef]

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Johnson, S. G.

Ju, Y. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, "Electrically driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Kamp, M.

Kim, G. H.

S. K. Kim, G. H. Kim, S. H. Kim, Y. H. Lee, S. B. Kim, and I. Kim, "Loss management using parity-selective barriers for single-mode, single-cell photonic crystal resonators," Appl. Phys. Lett. 88, 161119 (2006).
[CrossRef]

G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004).
[CrossRef] [PubMed]

Kim, I.

S. K. Kim, G. H. Kim, S. H. Kim, Y. H. Lee, S. B. Kim, and I. Kim, "Loss management using parity-selective barriers for single-mode, single-cell photonic crystal resonators," Appl. Phys. Lett. 88, 161119 (2006).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Kim, J. E.

B. K. Min, J. E. Kim, and H. Y. Park, "High-efficiency surface-emitting channel drop filters in two dimensional photonic crystal slab," Appl. Phys. Lett. 86, 111106 (2006).

Kim, S. B.

S. K. Kim, G. H. Kim, S. H. Kim, Y. H. Lee, S. B. Kim, and I. Kim, "Loss management using parity-selective barriers for single-mode, single-cell photonic crystal resonators," Appl. Phys. Lett. 88, 161119 (2006).
[CrossRef]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, "Electrically driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Kim, S. H.

S. K. Kim, G. H. Kim, S. H. Kim, Y. H. Lee, S. B. Kim, and I. Kim, "Loss management using parity-selective barriers for single-mode, single-cell photonic crystal resonators," Appl. Phys. Lett. 88, 161119 (2006).
[CrossRef]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, "Electrically driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

S. H. Kim, and Y. H. Lee, "Symmetry relations of Two-Dimensional Photonic Crystal Cavity Modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003).
[CrossRef]

Kim, S. K.

S. K. Kim, G. H. Kim, S. H. Kim, Y. H. Lee, S. B. Kim, and I. Kim, "Loss management using parity-selective barriers for single-mode, single-cell photonic crystal resonators," Appl. Phys. Lett. 88, 161119 (2006).
[CrossRef]

Kuramochi, E.

Kwon, S. H.

S. H. Kwon, T. Sünner, M. Kamp, and A. Forchel, "Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide," Opt. Express 16, 4605-4614 (2008).
[CrossRef] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, "Electrically driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Lee, Y. H.

S. K. Kim, G. H. Kim, S. H. Kim, Y. H. Lee, S. B. Kim, and I. Kim, "Loss management using parity-selective barriers for single-mode, single-cell photonic crystal resonators," Appl. Phys. Lett. 88, 161119 (2006).
[CrossRef]

G. H. Kim, Y. H. Lee, A. Shinya, and M. Notomi, "Coupling of small, low-loss hexapole mode with photonic crystal slab waveguide mode," Opt. Express 12, 6624-6631 (2004).
[CrossRef] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, "Electrically driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

S. H. Kim, and Y. H. Lee, "Symmetry relations of Two-Dimensional Photonic Crystal Cavity Modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003).
[CrossRef]

Manolatou, C.

Min, B. K.

B. K. Min, J. E. Kim, and H. Y. Park, "High-efficiency surface-emitting channel drop filters in two dimensional photonic crystal slab," Appl. Phys. Lett. 86, 111106 (2006).

Mitsugi, S.

Noda, S.

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal," Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

A. Sugitatsu, T. Asano, and S. Noda, "Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs," Appl. Phys. Lett. 84, 5395-5397 (2004).
[CrossRef]

Notomi, M.

O??Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Park, H. G.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, "Electrically driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Park, H. Y.

B. K. Min, J. E. Kim, and H. Y. Park, "High-efficiency surface-emitting channel drop filters in two dimensional photonic crystal slab," Appl. Phys. Lett. 86, 111106 (2006).

Qiu, M.

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Shinya, A.

Soljacic, M.

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

Song, B. S.

H. Takano, B. S. Song, T. Asano, and S. Noda, "Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal," Opt. Express 14, 3491-3496 (2006).
[CrossRef] [PubMed]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Sugitatsu, A.

A. Sugitatsu, T. Asano, and S. Noda, "Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs," Appl. Phys. Lett. 84, 5395-5397 (2004).
[CrossRef]

Sünner, T.

Takano, H.

Tokushima, M.

M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
[CrossRef]

Villeneouve, P. R.

Villeneuve, P. R.

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Yamada, H.

M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
[CrossRef]

Yang, H.

Q1. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonicbandgap microcavity," Nat. Photonics 2, 185-189 (2008).
[CrossRef]

Yang, J. K.

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, "Electrically driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Yanik, M. F.

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

Zhang, Z.

Appl. Phys. Lett. (4)

A. Sugitatsu, T. Asano, and S. Noda, "Characterization of line-defect-waveguide lasers in two-dimensional photonic-crystal slabs," Appl. Phys. Lett. 84, 5395-5397 (2004).
[CrossRef]

B. K. Min, J. E. Kim, and H. Y. Park, "High-efficiency surface-emitting channel drop filters in two dimensional photonic crystal slab," Appl. Phys. Lett. 86, 111106 (2006).

M. F. Yanik, S. Fan, and M. Soljacic, "High-contrast all-optical bistable switching in photonic crystal microcavities," Appl. Phys. Lett. 83, 2739-2741 (2003).
[CrossRef]

S. K. Kim, G. H. Kim, S. H. Kim, Y. H. Lee, S. B. Kim, and I. Kim, "Loss management using parity-selective barriers for single-mode, single-cell photonic crystal resonators," Appl. Phys. Lett. 88, 161119 (2006).
[CrossRef]

IEEE J. Quantum Electron. (2)

S. H. Kim, and Y. H. Lee, "Symmetry relations of Two-Dimensional Photonic Crystal Cavity Modes," IEEE J. Quantum Electron. 39, 1081-1085 (2003).
[CrossRef]

M. Tokushima and H. Yamada, "Light propagation in a photonic-crystal-slab line-defect waveguide," IEEE J. Quantum Electron. 38, 753-759 (2002).
[CrossRef]

Nat. Mater. (1)

B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005).
[CrossRef]

Nat. Photonics (1)

Q1. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, "Picosecond and low-power all-optical switching based on an organic photonicbandgap microcavity," Nat. Photonics 2, 185-189 (2008).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, "Channel drop tunneling through localized states," Phys. Rev. Lett. 80, 960-963 (1998).
[CrossRef]

Science (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O??Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819 (1999).
[CrossRef] [PubMed]

H. G. Park, S. H. Kim, S. H. Kwon, Y. G. Ju, J. K. Yang, J. H. Baek, S. B. Kim, Y. H. Lee, "Electrically driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: AVI (2488 KB)     
» Media 2: AVI (2958 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a). A schematic diagram of the proposed intersection. Signals with wavelengths λ1 and λ2 cross at the intersection. (b). The propagation of the magnetic field in the normal crossing waveguides (c). Magnetic field pattern of a fundamental waveguide mode with rwg~0.28a. The radius (rPC) of the air holes in the surrounding PhC is 0.25a.

Fig. 2.
Fig. 2.

(a). Modified single cell cavity structure. rpc, rn, and cn are 0.25a, 0.18a, and 1.1a, respectively. Magnetic field patterns of (b) even quadrupole mode and (c) odd quadrupole mode.

Fig. 3.
Fig. 3.

Magnetic field patterns in a cavity with six waveguide arms of (a) even mode and (b) odd mode. The rwg of the six arms is 0.32a. Saturation color coding is used. (c) Dispersion curves of the fundamental (1st: solid lines) and the 2nd (dotted lines) waveguide modes with rwg~0.25a (black lines) and rwg~0.32a (red lines). The green line represents the frequencies of the cavity modes. (d) The intersection consisting of the modified single cell cavity and the crossing waveguides with rwg~0.32a.

Fig. 4.
Fig. 4.

Electric field intensity patterns of (a) even mode and (c) odd mode. (log scale) Gray circles indicate air holes. Air holes (indicated by red arrows) are 0.10a and the holes (indicated by yellow arrows) are 0.30a. (c) Band structures of the fundamental waveguide modes with rwg~0.32a and rwg~0.37a. The dashed lines represent the odd and the even cavity modes.

Fig. 5.
Fig. 5.

Electric field intensity patterns of (a) even mode and (b) odd mode in a cavity with six waveguide arms. (log scale). Movies of propagation patterns of electric field, in which signals are injected from the position of the red arrows and propagate along the waveguide and across the intersection for (c) (2.5MB) even mode [Media 1] and (d) (3.0MB) odd mode. (log scale). Red arrows indicate electric field source positions. [Media 2]

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

WG 1 cutoff = WG 2 cutoff < ω even = ω odd
WG 1 cutoff < ω even < WG 2 cu toff < ω odd

Metrics