Abstract

We report a simple fiber sensor for measurement of high temperature with high sensitivity. The sensing head is a multimode-single mode-multimode (MM-SM-MM) fiber configuration formed by splicing a section of uncoated single mode fiber (SMF) with two short sections of multimode fibers (MMF) whose core is composed of pure silica. Because of the mode-field mismatch at the splicing points of the SMF with 2 sections of MMFs, as well as index matching between the core of the MMF and the cladding of the SMF, optical power from the lead-in fiber can be partly coupled to the cladding modes of the SMF through the MMF. The cladding modes of the SMF then re-coupled to the lead-out fiber, in the same fashion. Due to the effective index difference between the core and cladding modes, an interference pattern in the transmission spectrum of the proposed device was obtained. The interference pattern was found to shift to the longer wavelength region with respect to temperature variation. The temperature sensor can measure temperature stably up to more than 900 °C with sensitivity of 0.088 nm/°C.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.
  2. K. P. Koo and A. D. Kersey, "Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol. 13, 1243-1249 (1995).
    [CrossRef]
  3. G. A. Ball, W. W. Morey, and P. K. Cheo, "Single- and multipoint fiber-laser sensors," IEEE Photon. Technol. Lett. 5, 267-270 (1993).
    [CrossRef]
  4. V. Bhatia and A. M. Vengsarkar, "Optical fiber long-period grating sensors," Opt. Lett. 21, 692-694 (1996).
    [CrossRef] [PubMed]
  5. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, "High-birefringence fiber loop mirrors and their applications as sensors," Appl. Opt. 44, 2382-2390 (2005).
    [CrossRef] [PubMed]
  6. A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeL. Rosa, "Fiber Sagnac interferometer temperature sensor," Appl. Phys. Lett. 70, 19-21 (1997).
    [CrossRef]
  7. L. Dong and W. F. Liu, "Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber," Appl. Opt. 36, 8222-8226 (1997).
    [CrossRef]
  8. R. M. Atkins, V. Mirzahi and T. Erdogan, "248-nm induced vacuum uv spectral changes in optical fibre preform cores: Support for a colour centre model of photosensitivity," Eletron. Lett. 29, 385-387 (1993).
    [CrossRef]
  9. T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief Fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
    [CrossRef]
  10. E. Li and X. Wang, C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," Appl. Phys. Lett. 89, 091119 (2006).
    [CrossRef]
  11. Y. Liu, L. Wei, "Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers," Appl. Opt. 46, 2516-2519 (2007).
    [CrossRef] [PubMed]
  12. J. Villatoro and D. M. Hernández, "Low-cost Optical Fiber Refractive-Index Sensor based on Core diameter mismatch," J. Lightwave Technol. 24, 1409-1413 (2006).
    [CrossRef]
  13. J. Canning and A. L. G. Carter, "Modal interferometer for in situ measurements of induced core index change in optical fibers," Opt. Lett. 22, 561-563 (1997).
    [CrossRef] [PubMed]
  14. H. Y. Choi, M. J. Kim, and B. H. Lee, "All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber," Opt. Express 15, 5711-5720 (2007).
    [CrossRef] [PubMed]
  15. WaleedS. Mohammed, A  Mehta, and E. G. Johnson, "Wavelength tunable filter lens based on multimode interference," J. Lightwave Technol. 22, 469-477 (2004).
    [CrossRef]
  16. T. Erdogan, "Cladding-mode resonances in short- and long-period fiber grating filters," J. Opt. Soc. Am. A 14, 1760-1773 (1997).
    [CrossRef]
  17. T. Erdogan, "Cladding-mode resonances in short- and long-period fiber grating filters: Errata," J. Opt. Soc. Am. A 17, 2113-2113 (2000).
    [CrossRef]
  18. O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, "Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror," Photon. Technol. Lett. 18, 2407-2409 (2006).
    [CrossRef]

2007

2006

J. Villatoro and D. M. Hernández, "Low-cost Optical Fiber Refractive-Index Sensor based on Core diameter mismatch," J. Lightwave Technol. 24, 1409-1413 (2006).
[CrossRef]

E. Li and X. Wang, C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, "Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror," Photon. Technol. Lett. 18, 2407-2409 (2006).
[CrossRef]

2005

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, "High-birefringence fiber loop mirrors and their applications as sensors," Appl. Opt. 44, 2382-2390 (2005).
[CrossRef] [PubMed]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief Fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

2004

2000

1997

1996

1995

K. P. Koo and A. D. Kersey, "Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol. 13, 1243-1249 (1995).
[CrossRef]

1993

G. A. Ball, W. W. Morey, and P. K. Cheo, "Single- and multipoint fiber-laser sensors," IEEE Photon. Technol. Lett. 5, 267-270 (1993).
[CrossRef]

R. M. Atkins, V. Mirzahi and T. Erdogan, "248-nm induced vacuum uv spectral changes in optical fibre preform cores: Support for a colour centre model of photosensitivity," Eletron. Lett. 29, 385-387 (1993).
[CrossRef]

Atkins, R. M.

R. M. Atkins, V. Mirzahi and T. Erdogan, "248-nm induced vacuum uv spectral changes in optical fibre preform cores: Support for a colour centre model of photosensitivity," Eletron. Lett. 29, 385-387 (1993).
[CrossRef]

Ball, G. A.

G. A. Ball, W. W. Morey, and P. K. Cheo, "Single- and multipoint fiber-laser sensors," IEEE Photon. Technol. Lett. 5, 267-270 (1993).
[CrossRef]

Baptista, J. M.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, "Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror," Photon. Technol. Lett. 18, 2407-2409 (2006).
[CrossRef]

Bhatia, V.

Canning, J.

Carter, A. L. G.

Cheo, P. K.

G. A. Ball, W. W. Morey, and P. K. Cheo, "Single- and multipoint fiber-laser sensors," IEEE Photon. Technol. Lett. 5, 267-270 (1993).
[CrossRef]

Choi, H. Y.

De, E.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeL. Rosa, "Fiber Sagnac interferometer temperature sensor," Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

Dong, L.

Dong, X.

Erdogan, T.

T. Erdogan, "Cladding-mode resonances in short- and long-period fiber grating filters: Errata," J. Opt. Soc. Am. A 17, 2113-2113 (2000).
[CrossRef]

T. Erdogan, "Cladding-mode resonances in short- and long-period fiber grating filters," J. Opt. Soc. Am. A 14, 1760-1773 (1997).
[CrossRef]

R. M. Atkins, V. Mirzahi and T. Erdogan, "248-nm induced vacuum uv spectral changes in optical fibre preform cores: Support for a colour centre model of photosensitivity," Eletron. Lett. 29, 385-387 (1993).
[CrossRef]

Feng, X.

Frazao, O.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, "Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror," Photon. Technol. Lett. 18, 2407-2409 (2006).
[CrossRef]

Hawkins, A. R.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief Fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

Hernández, D. M.

Ipson, B. L.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief Fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

Johnson, E. G.

Kai, G.

Kersey, A. D.

K. P. Koo and A. D. Kersey, "Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol. 13, 1243-1249 (1995).
[CrossRef]

Kim, M. J.

Koo, K. P.

K. P. Koo and A. D. Kersey, "Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing," J. Lightwave Technol. 13, 1243-1249 (1995).
[CrossRef]

Lee, B. H.

Li, E.

E. Li and X. Wang, C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Liu, B.

Liu, W. F.

Liu, Y.

Lowder, T. L.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief Fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

Marques, L. M.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, "Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror," Photon. Technol. Lett. 18, 2407-2409 (2006).
[CrossRef]

Mehta, A

Mirzahi, V.

R. M. Atkins, V. Mirzahi and T. Erdogan, "248-nm induced vacuum uv spectral changes in optical fibre preform cores: Support for a colour centre model of photosensitivity," Eletron. Lett. 29, 385-387 (1993).
[CrossRef]

Mohammed, S.

Monzon, D.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeL. Rosa, "Fiber Sagnac interferometer temperature sensor," Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

Morey, W. W.

G. A. Ball, W. W. Morey, and P. K. Cheo, "Single- and multipoint fiber-laser sensors," IEEE Photon. Technol. Lett. 5, 267-270 (1993).
[CrossRef]

Rosa, L.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeL. Rosa, "Fiber Sagnac interferometer temperature sensor," Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

Santos, J. L.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, "Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror," Photon. Technol. Lett. 18, 2407-2409 (2006).
[CrossRef]

Santos, S.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, "Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror," Photon. Technol. Lett. 18, 2407-2409 (2006).
[CrossRef]

Schultz, S. M.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief Fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

Selfridge, R. H.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief Fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

Smith, K. H.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief Fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

Starodumov, A. N.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeL. Rosa, "Fiber Sagnac interferometer temperature sensor," Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

Vengsarkar, A. M.

Villatoro, J.

Waleed,

Wang, X.

E. Li and X. Wang, C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Wei, L.

Yuan, S.

Zenteno, L. A.

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeL. Rosa, "Fiber Sagnac interferometer temperature sensor," Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

Zhang, C.

E. Li and X. Wang, C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

Zhang, W.

Zhou, G.

Appl. Opt.

Appl. Phys. Lett.

E. Li and X. Wang, C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," Appl. Phys. Lett. 89, 091119 (2006).
[CrossRef]

A. N. Starodumov, L. A. Zenteno, D. Monzon, and E. DeL. Rosa, "Fiber Sagnac interferometer temperature sensor," Appl. Phys. Lett. 70, 19-21 (1997).
[CrossRef]

Eletron. Lett.

R. M. Atkins, V. Mirzahi and T. Erdogan, "248-nm induced vacuum uv spectral changes in optical fibre preform cores: Support for a colour centre model of photosensitivity," Eletron. Lett. 29, 385-387 (1993).
[CrossRef]

IEEE Photon. Technol. Lett.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, "High-temperature sensing using surface relief Fiber Bragg gratings," IEEE Photon. Technol. Lett. 17, 1926-1928 (2005).
[CrossRef]

G. A. Ball, W. W. Morey, and P. K. Cheo, "Single- and multipoint fiber-laser sensors," IEEE Photon. Technol. Lett. 5, 267-270 (1993).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Photon. Technol. Lett.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos, "Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror," Photon. Technol. Lett. 18, 2407-2409 (2006).
[CrossRef]

Other

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram and principle of operation

Fig. 2.
Fig. 2.

Transmission spectra of the MM-SM-MM fiber configuration with different lengths of the SM fiber

Fig. 3.
Fig. 3.

Spatial spectrum of the MM-SM-MM fiber configuration measured at several lengths of the SM fiber.

Fig. 4.
Fig. 4.

Temperature sensitivity of the dip DS. Inset shows positions of the dip DS at 300, 600 and 900 °C, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ m = 2 π ( n eff core n eff clad , m ) L λ = 2 πΔ n eff m L λ
Δλ λ 2 Δ n eff m L
ξ = 1 λ 0 2 m eff L

Metrics