Abstract

We report a simple fiber sensor for measurement of high temperature with high sensitivity. The sensing head is a multimode-single mode-multimode (MM-SM-MM) fiber configuration formed by splicing a section of uncoated single mode fiber (SMF) with two short sections of multimode fibers (MMF) whose core is composed of pure silica. Because of the mode-field mismatch at the splicing points of the SMF with 2 sections of MMFs, as well as index matching between the core of the MMF and the cladding of the SMF, optical power from the lead-in fiber can be partly coupled to the cladding modes of the SMF through the MMF. The cladding modes of the SMF then re-coupled to the lead-out fiber, in the same fashion. Due to the effective index difference between the core and cladding modes, an interference pattern in the transmission spectrum of the proposed device was obtained. The interference pattern was found to shift to the longer wavelength region with respect to temperature variation. The temperature sensor can measure temperature stably up to more than 900 °C with sensitivity of 0.088 nm/°C.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
In-fiber quasi-Michelson interferometer with a core–cladding-mode fiber end-face mirror

Qiangzhou Rong, Xueguang Qiao, Yanying Du, Dingyi Feng, Ruohui Wang, Yue Ma, Hao Sun, Manli Hu, and Zhongyao Feng
Appl. Opt. 52(7) 1441-1447 (2013)

Semi-open cavity in-fiber Mach–Zehnder interferometer for temperature measurement with ultra-high sensitivity

Ai Zhou, Yaxun Zhang, Quan Xu, Jun Yang, and Libo Yuan
Appl. Opt. 53(12) 2696-2701 (2014)

Highly sensitive curvature sensor based on a multicladding fiber sandwiched dual no-core fibers structure

Yanhui Qi, Lin Ma, Zexin Kang, Yunlong Bai, Bin Yin, and Shuisheng Jian
Appl. Opt. 53(28) 6382-6388 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.
  2. K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol 13, 1243–1249 (1995).
    [Crossref]
  3. G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett 5, 267–270 (1993).
    [Crossref]
  4. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett 21, 692–694 (1996).
    [Crossref] [PubMed]
  5. Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt 44, 2382–2390 (2005).
    [Crossref] [PubMed]
  6. A. N. Starodumov, L. A. Zenteno, D. Monzon, E. De, and L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett 70, 19–21 (1997).
    [Crossref]
  7. L. Dong and W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber,” Appl. Opt 36, 8222–8226 (1997).
    [Crossref]
  8. R. M. Atkins, V. Mirzahi, and T. Erdogan, “248-nm induced vacuum uv spectral changes in optical fibre preform cores: Support for a colour centre model of photosensitivity,” Eletron. Lett 29, 385–387 (1993).
    [Crossref]
  9. T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Hightemperature sensing using surface relief Fiber Bragg gratings,” IEEE Photon. Technol. Lett 17, 1926–1928 (2005).
    [Crossref]
  10. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett 89, 091119 (2006).
    [Crossref]
  11. Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt 46, 2516–2519 (2007).
    [Crossref] [PubMed]
  12. J. Villatoro and D. M. Hernändez, “Low-cost Optical Fiber Refractive-Index Sensor based on Core diameter mismatch,” J. Lightwave Technol 24, 1409–1413 (2006).
    [Crossref]
  13. J. Canning and A. L. G. Carter, “Modal interferometer for in situ measurements of induced core index change in optical fibers,” Opt. Lett 22, 561–563 (1997).
    [Crossref] [PubMed]
  14. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
    [Crossref] [PubMed]
  15. Waleed S. Mohammed, A Mehta, and E. G. Johnson, “Wavelength tunable filter lens based on multimode interference,” J. Lightwave Technol 22, 469–477 (2004).
    [Crossref]
  16. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am A  14, 1760–1773 (1997).
    [Crossref]
  17. T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters: Errata,” J. Opt. Soc. Am A  17, 2113–2113 (2000).
    [Crossref]
  18. O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos,“Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” Photon. Technol. Lett 18, 2407–2409 (2006).
    [Crossref]

2007 (2)

Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt 46, 2516–2519 (2007).
[Crossref] [PubMed]

H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15, 5711–5720 (2007).
[Crossref] [PubMed]

2006 (3)

J. Villatoro and D. M. Hernändez, “Low-cost Optical Fiber Refractive-Index Sensor based on Core diameter mismatch,” J. Lightwave Technol 24, 1409–1413 (2006).
[Crossref]

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett 89, 091119 (2006).
[Crossref]

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos,“Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” Photon. Technol. Lett 18, 2407–2409 (2006).
[Crossref]

2005 (2)

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt 44, 2382–2390 (2005).
[Crossref] [PubMed]

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Hightemperature sensing using surface relief Fiber Bragg gratings,” IEEE Photon. Technol. Lett 17, 1926–1928 (2005).
[Crossref]

2004 (1)

Waleed S. Mohammed, A Mehta, and E. G. Johnson, “Wavelength tunable filter lens based on multimode interference,” J. Lightwave Technol 22, 469–477 (2004).
[Crossref]

2000 (1)

T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters: Errata,” J. Opt. Soc. Am A  17, 2113–2113 (2000).
[Crossref]

1997 (4)

T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am A  14, 1760–1773 (1997).
[Crossref]

J. Canning and A. L. G. Carter, “Modal interferometer for in situ measurements of induced core index change in optical fibers,” Opt. Lett 22, 561–563 (1997).
[Crossref] [PubMed]

A. N. Starodumov, L. A. Zenteno, D. Monzon, E. De, and L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett 70, 19–21 (1997).
[Crossref]

L. Dong and W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber,” Appl. Opt 36, 8222–8226 (1997).
[Crossref]

1996 (1)

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett 21, 692–694 (1996).
[Crossref] [PubMed]

1995 (1)

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol 13, 1243–1249 (1995).
[Crossref]

1993 (2)

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett 5, 267–270 (1993).
[Crossref]

R. M. Atkins, V. Mirzahi, and T. Erdogan, “248-nm induced vacuum uv spectral changes in optical fibre preform cores: Support for a colour centre model of photosensitivity,” Eletron. Lett 29, 385–387 (1993).
[Crossref]

Atkins, R. M.

R. M. Atkins, V. Mirzahi, and T. Erdogan, “248-nm induced vacuum uv spectral changes in optical fibre preform cores: Support for a colour centre model of photosensitivity,” Eletron. Lett 29, 385–387 (1993).
[Crossref]

Ball, G. A.

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett 5, 267–270 (1993).
[Crossref]

Baptista, J. M.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos,“Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” Photon. Technol. Lett 18, 2407–2409 (2006).
[Crossref]

Bhatia, V.

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett 21, 692–694 (1996).
[Crossref] [PubMed]

Canning, J.

J. Canning and A. L. G. Carter, “Modal interferometer for in situ measurements of induced core index change in optical fibers,” Opt. Lett 22, 561–563 (1997).
[Crossref] [PubMed]

Carter, A. L. G.

J. Canning and A. L. G. Carter, “Modal interferometer for in situ measurements of induced core index change in optical fibers,” Opt. Lett 22, 561–563 (1997).
[Crossref] [PubMed]

Cheo, P. K.

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett 5, 267–270 (1993).
[Crossref]

Choi, H. Y.

De, E.

A. N. Starodumov, L. A. Zenteno, D. Monzon, E. De, and L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett 70, 19–21 (1997).
[Crossref]

Dong, L.

L. Dong and W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber,” Appl. Opt 36, 8222–8226 (1997).
[Crossref]

Dong, X.

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt 44, 2382–2390 (2005).
[Crossref] [PubMed]

Erdogan, T.

T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters: Errata,” J. Opt. Soc. Am A  17, 2113–2113 (2000).
[Crossref]

T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am A  14, 1760–1773 (1997).
[Crossref]

R. M. Atkins, V. Mirzahi, and T. Erdogan, “248-nm induced vacuum uv spectral changes in optical fibre preform cores: Support for a colour centre model of photosensitivity,” Eletron. Lett 29, 385–387 (1993).
[Crossref]

Feng, X.

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt 44, 2382–2390 (2005).
[Crossref] [PubMed]

Frazao, O.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos,“Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” Photon. Technol. Lett 18, 2407–2409 (2006).
[Crossref]

Hawkins, A. R.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Hightemperature sensing using surface relief Fiber Bragg gratings,” IEEE Photon. Technol. Lett 17, 1926–1928 (2005).
[Crossref]

Hernändez, D. M.

J. Villatoro and D. M. Hernändez, “Low-cost Optical Fiber Refractive-Index Sensor based on Core diameter mismatch,” J. Lightwave Technol 24, 1409–1413 (2006).
[Crossref]

Ipson, B. L.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Hightemperature sensing using surface relief Fiber Bragg gratings,” IEEE Photon. Technol. Lett 17, 1926–1928 (2005).
[Crossref]

Johnson, E. G.

Waleed S. Mohammed, A Mehta, and E. G. Johnson, “Wavelength tunable filter lens based on multimode interference,” J. Lightwave Technol 22, 469–477 (2004).
[Crossref]

Kai, G.

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt 44, 2382–2390 (2005).
[Crossref] [PubMed]

Kalli, K.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.

Kersey, A. D.

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol 13, 1243–1249 (1995).
[Crossref]

Kim, M. J.

Koo, K. P.

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol 13, 1243–1249 (1995).
[Crossref]

Lee, B. H.

Li, E.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett 89, 091119 (2006).
[Crossref]

Liu, B.

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt 44, 2382–2390 (2005).
[Crossref] [PubMed]

Liu, W. F.

L. Dong and W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber,” Appl. Opt 36, 8222–8226 (1997).
[Crossref]

Liu, Y.

Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt 46, 2516–2519 (2007).
[Crossref] [PubMed]

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt 44, 2382–2390 (2005).
[Crossref] [PubMed]

Lowder, T. L.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Hightemperature sensing using surface relief Fiber Bragg gratings,” IEEE Photon. Technol. Lett 17, 1926–1928 (2005).
[Crossref]

Marques, L. M.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos,“Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” Photon. Technol. Lett 18, 2407–2409 (2006).
[Crossref]

Mehta, A

Waleed S. Mohammed, A Mehta, and E. G. Johnson, “Wavelength tunable filter lens based on multimode interference,” J. Lightwave Technol 22, 469–477 (2004).
[Crossref]

Mirzahi, V.

R. M. Atkins, V. Mirzahi, and T. Erdogan, “248-nm induced vacuum uv spectral changes in optical fibre preform cores: Support for a colour centre model of photosensitivity,” Eletron. Lett 29, 385–387 (1993).
[Crossref]

Mohammed, Waleed S.

Waleed S. Mohammed, A Mehta, and E. G. Johnson, “Wavelength tunable filter lens based on multimode interference,” J. Lightwave Technol 22, 469–477 (2004).
[Crossref]

Monzon, D.

A. N. Starodumov, L. A. Zenteno, D. Monzon, E. De, and L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett 70, 19–21 (1997).
[Crossref]

Morey, W. W.

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett 5, 267–270 (1993).
[Crossref]

Othonos, A.

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.

Rosa, L.

A. N. Starodumov, L. A. Zenteno, D. Monzon, E. De, and L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett 70, 19–21 (1997).
[Crossref]

Santos, J. L.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos,“Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” Photon. Technol. Lett 18, 2407–2409 (2006).
[Crossref]

Santos, S.

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos,“Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” Photon. Technol. Lett 18, 2407–2409 (2006).
[Crossref]

Schultz, S. M.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Hightemperature sensing using surface relief Fiber Bragg gratings,” IEEE Photon. Technol. Lett 17, 1926–1928 (2005).
[Crossref]

Selfridge, R. H.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Hightemperature sensing using surface relief Fiber Bragg gratings,” IEEE Photon. Technol. Lett 17, 1926–1928 (2005).
[Crossref]

Smith, K. H.

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Hightemperature sensing using surface relief Fiber Bragg gratings,” IEEE Photon. Technol. Lett 17, 1926–1928 (2005).
[Crossref]

Starodumov, A. N.

A. N. Starodumov, L. A. Zenteno, D. Monzon, E. De, and L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett 70, 19–21 (1997).
[Crossref]

Vengsarkar, A. M.

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett 21, 692–694 (1996).
[Crossref] [PubMed]

Villatoro, J.

J. Villatoro and D. M. Hernändez, “Low-cost Optical Fiber Refractive-Index Sensor based on Core diameter mismatch,” J. Lightwave Technol 24, 1409–1413 (2006).
[Crossref]

Wang, X.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett 89, 091119 (2006).
[Crossref]

Wei, L.

Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt 46, 2516–2519 (2007).
[Crossref] [PubMed]

Yuan, S.

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt 44, 2382–2390 (2005).
[Crossref] [PubMed]

Zenteno, L. A.

A. N. Starodumov, L. A. Zenteno, D. Monzon, E. De, and L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett 70, 19–21 (1997).
[Crossref]

Zhang, C.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett 89, 091119 (2006).
[Crossref]

Zhang, W.

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt 44, 2382–2390 (2005).
[Crossref] [PubMed]

Zhou, G.

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt 44, 2382–2390 (2005).
[Crossref] [PubMed]

Appl. Opt (3)

Y. Liu, B. Liu, X. Feng, W. Zhang, G. Zhou, S. Yuan, G. Kai, and X. Dong, “High-birefringence fiber loop mirrors and their applications as sensors,” Appl. Opt 44, 2382–2390 (2005).
[Crossref] [PubMed]

L. Dong and W. F. Liu, “Thermal decay of fiber Bragg gratings of positive and negative index changes formed at 193 nm in a boron-codoped germanosilicate fiber,” Appl. Opt 36, 8222–8226 (1997).
[Crossref]

Y. Liu and L. Wei, “Low-cost high-sensitivity strain and temperature sensing using graded-index multimode fibers,” Appl. Opt 46, 2516–2519 (2007).
[Crossref] [PubMed]

Appl. Phys. Lett (2)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett 89, 091119 (2006).
[Crossref]

A. N. Starodumov, L. A. Zenteno, D. Monzon, E. De, and L. Rosa, “Fiber Sagnac interferometer temperature sensor,” Appl. Phys. Lett 70, 19–21 (1997).
[Crossref]

Eletron. Lett (1)

R. M. Atkins, V. Mirzahi, and T. Erdogan, “248-nm induced vacuum uv spectral changes in optical fibre preform cores: Support for a colour centre model of photosensitivity,” Eletron. Lett 29, 385–387 (1993).
[Crossref]

IEEE Photon. Technol. Lett (2)

T. L. Lowder, K. H. Smith, B. L. Ipson, A. R. Hawkins, R. H. Selfridge, and S. M. Schultz, “Hightemperature sensing using surface relief Fiber Bragg gratings,” IEEE Photon. Technol. Lett 17, 1926–1928 (2005).
[Crossref]

G. A. Ball, W. W. Morey, and P. K. Cheo, “Single- and multipoint fiber-laser sensors,” IEEE Photon. Technol. Lett 5, 267–270 (1993).
[Crossref]

J. Lightwave Technol (3)

K. P. Koo and A. D. Kersey, “Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing,” J. Lightwave Technol 13, 1243–1249 (1995).
[Crossref]

J. Villatoro and D. M. Hernändez, “Low-cost Optical Fiber Refractive-Index Sensor based on Core diameter mismatch,” J. Lightwave Technol 24, 1409–1413 (2006).
[Crossref]

Waleed S. Mohammed, A Mehta, and E. G. Johnson, “Wavelength tunable filter lens based on multimode interference,” J. Lightwave Technol 22, 469–477 (2004).
[Crossref]

J. Opt. Soc. Am (2)

T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters,” J. Opt. Soc. Am A  14, 1760–1773 (1997).
[Crossref]

T. Erdogan, “Cladding-mode resonances in short- and long-period fiber grating filters: Errata,” J. Opt. Soc. Am A  17, 2113–2113 (2000).
[Crossref]

Opt. Express (1)

Opt. Lett (2)

J. Canning and A. L. G. Carter, “Modal interferometer for in situ measurements of induced core index change in optical fibers,” Opt. Lett 22, 561–563 (1997).
[Crossref] [PubMed]

V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett 21, 692–694 (1996).
[Crossref] [PubMed]

Photon. Technol. Lett (1)

O. Frazao, L. M. Marques, S. Santos, J. M. Baptista, and J. L. Santos,“Simultaneous measurement for strain and temperature based on a long-period grating combined with a high-birefringence fiber loop mirror,” Photon. Technol. Lett 18, 2407–2409 (2006).
[Crossref]

Other (1)

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram and principle of operation

Fig. 2.
Fig. 2.

Transmission spectra of the MM-SM-MM fiber configuration with different lengths of the SM fiber

Fig. 3.
Fig. 3.

Spatial spectrum of the MM-SM-MM fiber configuration measured at several lengths of the SM fiber.

Fig. 4.
Fig. 4.

Temperature sensitivity of the dip DS. Inset shows positions of the dip DS at 300, 600 and 900 °C, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Φ m = 2 π ( n eff core n eff clad , m ) L λ = 2 πΔ n eff m L λ
Δλ λ 2 Δ n eff m L
ξ = 1 λ 0 2 m eff L

Metrics