Abstract

We demonstrated ultra fast BB84 quantum key distribution (QKD) transmission at 625 MHz clock rate through a 97 km field-installed fiber using practical clock synchronization based on wavelength-division multiplexing (WDM). We succeeded in over-one-hour stable key generation at a high sifted key rate of 2.4 kbps and a low quantum bit error rate (QBER) of 2.9%. The asymptotic secure key rate was estimated to be 0.78–0.82 kbps from the transmission data with the decoy method of average photon numbers 0, 0.15, and 0.4 photons/pulse.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Brassard, "Quantum cryotography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), 175-179.
  2. H. Inamori, N. Lütkenhaus, and D. Mayers, "Unconditional Security of Practical Quantum Key Distribution," eprint arXiv:0107017 (2001).
  3. D. Gottesman, H. -K. Lo, N. Lütkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quant. Inf. Comput. 4, 325-360 (2004).
  4. W. -Y. Hwang, "Quantum Key Distribution with High Loss: Toward Global Secure Communication," Phys. Rev. Lett. 91, 057901 (2003).
    [CrossRef] [PubMed]
  5. X. -B. Wang. "Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography," Phys. Rev. Lett. 94, 230503 (2005).
    [CrossRef] [PubMed]
  6. H. -K. Lo, X. Ma, and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94, 230504 (2005).
    [CrossRef] [PubMed]
  7. Y. Zhao, B. Qi, X. Ma, H. -K. Lo, and L. Qian, "Experimental Quantum Key Distribution with Decoy States," Phys. Rev. Lett. 96, 070502 (2006).
    [CrossRef] [PubMed]
  8. Y. Zhao, R. Adve, and T. J. Lim, "Improving Amplify-and Forward Relay Networks: Optimal Power Allocation versus Selection," in Proceedings of IEEE International Symposium on Information Theory, Seattle, USA, 2006 (IEEE, New York, 2006), 2094-2098
  9. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007).
    [CrossRef] [PubMed]
  10. C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
    [CrossRef] [PubMed]
  11. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).
    [CrossRef]
  12. D. Stucki, N. Gisin, G. Guinnard, G. Ribordy, and H. Zbinden, "Quantum Key Distribution over 67 km with a plug & play system," New J. Phys. 4, 41 (2002).
    [CrossRef]
  13. T. Hasegawa, T. Nishioka, H. Ishizuka, J. Abe, K. Shimizu, and M. Matsui, "Field experiments of quantum cryptosystem in 96km installed fibers," in European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2005, EH3-4.
  14. A. Tanaka, W. Maeda, A. Tajima, and S. Takahashi, "Fortnight quantum key generation field trial using QBER monitoring," in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Sidney, Australia, 2005 (IEEE, New York, 2005), 557-558.
  15. X. -F. Mo, B. Zhu, Z. -F. Han, Y. -Z. Gui, and G. -C. Guo, "Faraday-Michelson system for quantum cryptography," Opt. Lett. 30, 2632-2634 (2005).
    [CrossRef] [PubMed]
  16. H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, "Interferometry with Faraday mirrors for quantum cryptography," Electron. Let. 33, 586-588 (1997).
    [CrossRef]
  17. T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, "Single-photon Interference over 150km Transmission Using Silica-based Integrated-optic Interferometers for Quantum Cryptography," Jpn. J. Appl. Phys. 43, 1217-1219 (2004).
    [CrossRef]
  18. Y. Nambu, K. Yoshino, and A. Tomita, "One-Way Quantum Key Distribution System Based on Planar Lightwave Circuits," Jpn. J. Appl. Phys. 45, 5344-5348 (2006).
    [CrossRef]
  19. G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
    [CrossRef]
  20. R. H. Hadfield, A. J. Miller, S. W. Nam, R. L. Kautz, and R. E. Schwall, "Low-frequency phase locking in high-inductance superconducting nanowires," Appl. Phys. Lett. 87, 203505 (2005).
    [CrossRef]
  21. S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN Superconducting Single-Photon Detectors Prepared on Single-Crystal MgO Substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
    [CrossRef]
  22. A. Poppe, H. Huebel, F. Karinou, B. Blauensteiner, B. Schrenk, T. Lorünser, M. Mayenburg, E. Querasser, and A. Zeilinger, "Quantum key distribution over WDMs and optical switches to combine the quantum channel with synchronization channels," in 33rd European Conference on Optical Communication (ECOC), Berlin, Germany, 2007, 9.4.7.
  23. P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing," Electron. Lett. 33, 188-190 (1997).
    [CrossRef]
  24. C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
    [CrossRef]
  25. W. Maeda, A. Tajima, A. Tanaka, S. Takahashi, and T. Takeuchi, "High-speed QKD system synchronized by automatic phase-alignment mechanism," in Optical Fiber Communication Conference and Exposition (OFC), Anaheim, USA, 2005,OWI4.
  26. T. J. Xia, D. Z. Chen, G. A. Wellbrock, A. Zavriyev, A. C. Beal, and K. M. Lee, "In-Band Quantum Key Distribution (QKD) on Fiber Populated by High-Speed Classical Data Channels," in Optical Fiber Communication Conference and Exposition (OFC), Anaheim, USA, 2006, OTuJ7.
  27. J. Auyeung and A. Yariv. "Spontaneous and Stimulated Raman Scattering in Long Low Loss Fibers," IEEE J. Quant. Electron. QE- 14, 347-351 (1978).
    [CrossRef]
  28. P. L. Voss and P. Kumar, "Raman-noise-induced noise-figure limit for ?????3) parametric amplifiers," Opt. Lett. 29, 445-447 (2004).
    [CrossRef] [PubMed]
  29. H. -K. Lo and J. Preskill, "Security of quantum key distribution using weak coherent states with nonrandom phases," Quant. Inf. Comput. 8, 431-458 (2007).
  30. K. Yoshino, A. Tanaka, Y. Nambu, A. Tajima, and A. Tomita, in 33rd European Conference on Optical Communication (ECOC), Berlin, Germany, 2007, 9.4.6.
  31. M. Hayashi, "Upper bounds of eavesdropper???s performances in finite-length code with decoy method," Phys. Rev. A 76, 012329 (2007)
    [CrossRef]
  32. M. Hayashi, "General theory for decoy-state quantum key distribution with an arbitrary number of intensities," New J. Phys. 9, 284 (2007).
    [CrossRef]
  33. A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, and A. Tomita, "Practical Quantum Cryptosystem for Metro Area Applications," IEEE J. Sel. Top. Quantum Electron. 13, 1031-1038 (2007).
    [CrossRef]
  34. Y. Nambu, K. Yoshino, and A. Tomita, "Quantum Encoder and Decoder for Practical Quantum Key Distribution Using a Planar Lightwave Circuit," J. Mod. Opt. (to be published)
  35. N. Namekata, G , Fujii, S . Inoue, T . Honjo, and H . Takesue, "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett. 91, 011112 (2007)
    [CrossRef]
  36. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett. 91, 041114 (2007).
    [CrossRef]
  37. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92, 201104 (2008).
    [CrossRef]
  38. J. Hasegawa, M. Hayashi, T. Hiroshima, A. Tanaka, and A. Tomita, "Experimental Decoy State Quantum Key Distribution with Unconditional Security Incorporating Finite Statistics," eprint arXiv:0705.3081 (2007).
  39. V. Scarani and R. Renner, "Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way post-processing," eprint arXiv:0708.0709 (2007).

2008

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92, 201104 (2008).
[CrossRef]

2007

H. -K. Lo and J. Preskill, "Security of quantum key distribution using weak coherent states with nonrandom phases," Quant. Inf. Comput. 8, 431-458 (2007).

M. Hayashi, "Upper bounds of eavesdropper???s performances in finite-length code with decoy method," Phys. Rev. A 76, 012329 (2007)
[CrossRef]

M. Hayashi, "General theory for decoy-state quantum key distribution with an arbitrary number of intensities," New J. Phys. 9, 284 (2007).
[CrossRef]

A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, and A. Tomita, "Practical Quantum Cryptosystem for Metro Area Applications," IEEE J. Sel. Top. Quantum Electron. 13, 1031-1038 (2007).
[CrossRef]

N. Namekata, G , Fujii, S . Inoue, T . Honjo, and H . Takesue, "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett. 91, 011112 (2007)
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett. 91, 041114 (2007).
[CrossRef]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).
[CrossRef]

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN Superconducting Single-Photon Detectors Prepared on Single-Crystal MgO Substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
[CrossRef]

2006

Y. Nambu, K. Yoshino, and A. Tomita, "One-Way Quantum Key Distribution System Based on Planar Lightwave Circuits," Jpn. J. Appl. Phys. 45, 5344-5348 (2006).
[CrossRef]

Y. Zhao, B. Qi, X. Ma, H. -K. Lo, and L. Qian, "Experimental Quantum Key Distribution with Decoy States," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

2005

X. -F. Mo, B. Zhu, Z. -F. Han, Y. -Z. Gui, and G. -C. Guo, "Faraday-Michelson system for quantum cryptography," Opt. Lett. 30, 2632-2634 (2005).
[CrossRef] [PubMed]

X. -B. Wang. "Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography," Phys. Rev. Lett. 94, 230503 (2005).
[CrossRef] [PubMed]

H. -K. Lo, X. Ma, and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

R. H. Hadfield, A. J. Miller, S. W. Nam, R. L. Kautz, and R. E. Schwall, "Low-frequency phase locking in high-inductance superconducting nanowires," Appl. Phys. Lett. 87, 203505 (2005).
[CrossRef]

2004

P. L. Voss and P. Kumar, "Raman-noise-induced noise-figure limit for ?????3) parametric amplifiers," Opt. Lett. 29, 445-447 (2004).
[CrossRef] [PubMed]

C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
[CrossRef]

D. Gottesman, H. -K. Lo, N. Lütkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quant. Inf. Comput. 4, 325-360 (2004).

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, "Single-photon Interference over 150km Transmission Using Silica-based Integrated-optic Interferometers for Quantum Cryptography," Jpn. J. Appl. Phys. 43, 1217-1219 (2004).
[CrossRef]

2003

W. -Y. Hwang, "Quantum Key Distribution with High Loss: Toward Global Secure Communication," Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

2002

D. Stucki, N. Gisin, G. Guinnard, G. Ribordy, and H. Zbinden, "Quantum Key Distribution over 67 km with a plug & play system," New J. Phys. 4, 41 (2002).
[CrossRef]

2001

G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

1997

P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing," Electron. Lett. 33, 188-190 (1997).
[CrossRef]

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, "Interferometry with Faraday mirrors for quantum cryptography," Electron. Let. 33, 586-588 (1997).
[CrossRef]

1978

J. Auyeung and A. Yariv. "Spontaneous and Stimulated Raman Scattering in Long Low Loss Fibers," IEEE J. Quant. Electron. QE- 14, 347-351 (1978).
[CrossRef]

Auyeung, J.

J. Auyeung and A. Yariv. "Spontaneous and Stimulated Raman Scattering in Long Low Loss Fibers," IEEE J. Quant. Electron. QE- 14, 347-351 (1978).
[CrossRef]

Chen, K.

H. -K. Lo, X. Ma, and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

Chulkova, G.

G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Dixon, A. R.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92, 201104 (2008).
[CrossRef]

Dynes, J. F.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92, 201104 (2008).
[CrossRef]

Dzardanov, A.

G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Fujii, G

N. Namekata, G , Fujii, S . Inoue, T . Honjo, and H . Takesue, "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett. 91, 011112 (2007)
[CrossRef]

Fujiwara, M.

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN Superconducting Single-Photon Detectors Prepared on Single-Crystal MgO Substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
[CrossRef]

Gao, W. -B.

C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Gautier, J. D.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, "Interferometry with Faraday mirrors for quantum cryptography," Electron. Let. 33, 586-588 (1997).
[CrossRef]

Gisin, N.

D. Stucki, N. Gisin, G. Guinnard, G. Ribordy, and H. Zbinden, "Quantum Key Distribution over 67 km with a plug & play system," New J. Phys. 4, 41 (2002).
[CrossRef]

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, "Interferometry with Faraday mirrors for quantum cryptography," Electron. Let. 33, 586-588 (1997).
[CrossRef]

Gobby, C.

C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
[CrossRef]

Gol???tsman, G. N.

G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Gottesman, D.

D. Gottesman, H. -K. Lo, N. Lütkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quant. Inf. Comput. 4, 325-360 (2004).

Gui, Y. -Z.

Guinnard, G.

D. Stucki, N. Gisin, G. Guinnard, G. Ribordy, and H. Zbinden, "Quantum Key Distribution over 67 km with a plug & play system," New J. Phys. 4, 41 (2002).
[CrossRef]

Guo, G. -C.

Hadfield, R. H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).
[CrossRef]

R. H. Hadfield, A. J. Miller, S. W. Nam, R. L. Kautz, and R. E. Schwall, "Low-frequency phase locking in high-inductance superconducting nanowires," Appl. Phys. Lett. 87, 203505 (2005).
[CrossRef]

Han, Z. -F.

Harrington, J. W.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

Hatanaka, T.

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, "Single-photon Interference over 150km Transmission Using Silica-based Integrated-optic Interferometers for Quantum Cryptography," Jpn. J. Appl. Phys. 43, 1217-1219 (2004).
[CrossRef]

Hayashi, M.

M. Hayashi, "General theory for decoy-state quantum key distribution with an arbitrary number of intensities," New J. Phys. 9, 284 (2007).
[CrossRef]

M. Hayashi, "Upper bounds of eavesdropper???s performances in finite-length code with decoy method," Phys. Rev. A 76, 012329 (2007)
[CrossRef]

Hiskett, P. A.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

Honjo, T

N. Namekata, G , Fujii, S . Inoue, T . Honjo, and H . Takesue, "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett. 91, 011112 (2007)
[CrossRef]

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).
[CrossRef]

Hughes, R. J.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

Huttner, B.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, "Interferometry with Faraday mirrors for quantum cryptography," Electron. Let. 33, 586-588 (1997).
[CrossRef]

Hwang, W. -Y.

W. -Y. Hwang, "Quantum Key Distribution with High Loss: Toward Global Secure Communication," Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

Inoue, S

N. Namekata, G , Fujii, S . Inoue, T . Honjo, and H . Takesue, "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett. 91, 011112 (2007)
[CrossRef]

Kardynal, B. E.

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett. 91, 041114 (2007).
[CrossRef]

Kautz, R. L.

R. H. Hadfield, A. J. Miller, S. W. Nam, R. L. Kautz, and R. E. Schwall, "Low-frequency phase locking in high-inductance superconducting nanowires," Appl. Phys. Lett. 87, 203505 (2005).
[CrossRef]

Kimura, T.

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, "Single-photon Interference over 150km Transmission Using Silica-based Integrated-optic Interferometers for Quantum Cryptography," Jpn. J. Appl. Phys. 43, 1217-1219 (2004).
[CrossRef]

Kosaka, H.

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, "Single-photon Interference over 150km Transmission Using Silica-based Integrated-optic Interferometers for Quantum Cryptography," Jpn. J. Appl. Phys. 43, 1217-1219 (2004).
[CrossRef]

Kumar, P.

Lipatov, A.

G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Lita, A. E.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

Lo, H. -K.

H. -K. Lo and J. Preskill, "Security of quantum key distribution using weak coherent states with nonrandom phases," Quant. Inf. Comput. 8, 431-458 (2007).

Y. Zhao, B. Qi, X. Ma, H. -K. Lo, and L. Qian, "Experimental Quantum Key Distribution with Decoy States," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

H. -K. Lo, X. Ma, and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

D. Gottesman, H. -K. Lo, N. Lütkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quant. Inf. Comput. 4, 325-360 (2004).

Lütkenhaus, N.

D. Gottesman, H. -K. Lo, N. Lütkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quant. Inf. Comput. 4, 325-360 (2004).

Ma, H. -X.

C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Ma, X.

Y. Zhao, B. Qi, X. Ma, H. -K. Lo, and L. Qian, "Experimental Quantum Key Distribution with Decoy States," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

H. -K. Lo, X. Ma, and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

Maeda, W.

A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, and A. Tomita, "Practical Quantum Cryptosystem for Metro Area Applications," IEEE J. Sel. Top. Quantum Electron. 13, 1031-1038 (2007).
[CrossRef]

Miki, S.

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN Superconducting Single-Photon Detectors Prepared on Single-Crystal MgO Substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
[CrossRef]

Miller, A. J.

R. H. Hadfield, A. J. Miller, S. W. Nam, R. L. Kautz, and R. E. Schwall, "Low-frequency phase locking in high-inductance superconducting nanowires," Appl. Phys. Lett. 87, 203505 (2005).
[CrossRef]

Mo, X. -F.

Muller, A.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, "Interferometry with Faraday mirrors for quantum cryptography," Electron. Let. 33, 586-588 (1997).
[CrossRef]

Nakamura, K.

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, "Single-photon Interference over 150km Transmission Using Silica-based Integrated-optic Interferometers for Quantum Cryptography," Jpn. J. Appl. Phys. 43, 1217-1219 (2004).
[CrossRef]

Nam, S. W.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).
[CrossRef]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

R. H. Hadfield, A. J. Miller, S. W. Nam, R. L. Kautz, and R. E. Schwall, "Low-frequency phase locking in high-inductance superconducting nanowires," Appl. Phys. Lett. 87, 203505 (2005).
[CrossRef]

Nambu, Y.

Y. Nambu, K. Yoshino, and A. Tomita, "One-Way Quantum Key Distribution System Based on Planar Lightwave Circuits," Jpn. J. Appl. Phys. 45, 5344-5348 (2006).
[CrossRef]

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, "Single-photon Interference over 150km Transmission Using Silica-based Integrated-optic Interferometers for Quantum Cryptography," Jpn. J. Appl. Phys. 43, 1217-1219 (2004).
[CrossRef]

Y. Nambu, K. Yoshino, and A. Tomita, "Quantum Encoder and Decoder for Practical Quantum Key Distribution Using a Planar Lightwave Circuit," J. Mod. Opt. (to be published)

Namekata, N.

N. Namekata, G , Fujii, S . Inoue, T . Honjo, and H . Takesue, "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett. 91, 011112 (2007)
[CrossRef]

Nordholt, J. E.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

Okunev, O.

G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Pan, J. -W.

C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Peng, C. -Z.

C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Peterson, C. G.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

Preskill, J.

H. -K. Lo and J. Preskill, "Security of quantum key distribution using weak coherent states with nonrandom phases," Quant. Inf. Comput. 8, 431-458 (2007).

D. Gottesman, H. -K. Lo, N. Lütkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quant. Inf. Comput. 4, 325-360 (2004).

Qi, B.

Y. Zhao, B. Qi, X. Ma, H. -K. Lo, and L. Qian, "Experimental Quantum Key Distribution with Decoy States," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

Qian, L.

Y. Zhao, B. Qi, X. Ma, H. -K. Lo, and L. Qian, "Experimental Quantum Key Distribution with Decoy States," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

Ribordy, G.

D. Stucki, N. Gisin, G. Guinnard, G. Ribordy, and H. Zbinden, "Quantum Key Distribution over 67 km with a plug & play system," New J. Phys. 4, 41 (2002).
[CrossRef]

Rice, P. R.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

Rosenberg, D.

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

Sasaki, M.

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN Superconducting Single-Photon Detectors Prepared on Single-Crystal MgO Substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
[CrossRef]

Schwall, R. E.

R. H. Hadfield, A. J. Miller, S. W. Nam, R. L. Kautz, and R. E. Schwall, "Low-frequency phase locking in high-inductance superconducting nanowires," Appl. Phys. Lett. 87, 203505 (2005).
[CrossRef]

Semenov, A.

G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Sharpe, A. W.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92, 201104 (2008).
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett. 91, 041114 (2007).
[CrossRef]

Shields, A. J.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92, 201104 (2008).
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett. 91, 041114 (2007).
[CrossRef]

C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
[CrossRef]

Smimov, K.

G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Sobolewski, R.

G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Stucki, D.

D. Stucki, N. Gisin, G. Guinnard, G. Ribordy, and H. Zbinden, "Quantum Key Distribution over 67 km with a plug & play system," New J. Phys. 4, 41 (2002).
[CrossRef]

Tajima, A.

A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, and A. Tomita, "Practical Quantum Cryptosystem for Metro Area Applications," IEEE J. Sel. Top. Quantum Electron. 13, 1031-1038 (2007).
[CrossRef]

Takahashi, S.

A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, and A. Tomita, "Practical Quantum Cryptosystem for Metro Area Applications," IEEE J. Sel. Top. Quantum Electron. 13, 1031-1038 (2007).
[CrossRef]

Takesue, H

N. Namekata, G , Fujii, S . Inoue, T . Honjo, and H . Takesue, "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett. 91, 011112 (2007)
[CrossRef]

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).
[CrossRef]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).
[CrossRef]

Tanaka, A.

A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, and A. Tomita, "Practical Quantum Cryptosystem for Metro Area Applications," IEEE J. Sel. Top. Quantum Electron. 13, 1031-1038 (2007).
[CrossRef]

Tittel, W.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, "Interferometry with Faraday mirrors for quantum cryptography," Electron. Let. 33, 586-588 (1997).
[CrossRef]

Tomita, A.

A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, and A. Tomita, "Practical Quantum Cryptosystem for Metro Area Applications," IEEE J. Sel. Top. Quantum Electron. 13, 1031-1038 (2007).
[CrossRef]

Y. Nambu, K. Yoshino, and A. Tomita, "One-Way Quantum Key Distribution System Based on Planar Lightwave Circuits," Jpn. J. Appl. Phys. 45, 5344-5348 (2006).
[CrossRef]

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, "Single-photon Interference over 150km Transmission Using Silica-based Integrated-optic Interferometers for Quantum Cryptography," Jpn. J. Appl. Phys. 43, 1217-1219 (2004).
[CrossRef]

Y. Nambu, K. Yoshino, and A. Tomita, "Quantum Encoder and Decoder for Practical Quantum Key Distribution Using a Planar Lightwave Circuit," J. Mod. Opt. (to be published)

Townsend, P. D.

P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing," Electron. Lett. 33, 188-190 (1997).
[CrossRef]

Voronov, B.

G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Voss, P. L.

Wang, X. -B.

C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

X. -B. Wang. "Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography," Phys. Rev. Lett. 94, 230503 (2005).
[CrossRef] [PubMed]

Wang, Z.

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN Superconducting Single-Photon Detectors Prepared on Single-Crystal MgO Substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
[CrossRef]

Williams, C.

G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).
[CrossRef]

Yang, D.

C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Yang, T.

C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Yariv, A.

J. Auyeung and A. Yariv. "Spontaneous and Stimulated Raman Scattering in Long Low Loss Fibers," IEEE J. Quant. Electron. QE- 14, 347-351 (1978).
[CrossRef]

Yin, H.

C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Yoshino, K.

Y. Nambu, K. Yoshino, and A. Tomita, "One-Way Quantum Key Distribution System Based on Planar Lightwave Circuits," Jpn. J. Appl. Phys. 45, 5344-5348 (2006).
[CrossRef]

Y. Nambu, K. Yoshino, and A. Tomita, "Quantum Encoder and Decoder for Practical Quantum Key Distribution Using a Planar Lightwave Circuit," J. Mod. Opt. (to be published)

Yuan, Z. L.

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92, 201104 (2008).
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett. 91, 041114 (2007).
[CrossRef]

C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
[CrossRef]

Zbinden, H.

D. Stucki, N. Gisin, G. Guinnard, G. Ribordy, and H. Zbinden, "Quantum Key Distribution over 67 km with a plug & play system," New J. Phys. 4, 41 (2002).
[CrossRef]

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, "Interferometry with Faraday mirrors for quantum cryptography," Electron. Let. 33, 586-588 (1997).
[CrossRef]

Zeng, H. -P.

C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Zhang, J.

C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).
[CrossRef]

Zhao, Y.

Y. Zhao, B. Qi, X. Ma, H. -K. Lo, and L. Qian, "Experimental Quantum Key Distribution with Decoy States," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

Zhu, B.

Appl. Phys. Lett.

G. N. Gol???tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smimov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, "Picosecond superconducting single-photon optical detector," Appl. Phys. Lett. 79, 705-707 (2001).
[CrossRef]

R. H. Hadfield, A. J. Miller, S. W. Nam, R. L. Kautz, and R. E. Schwall, "Low-frequency phase locking in high-inductance superconducting nanowires," Appl. Phys. Lett. 87, 203505 (2005).
[CrossRef]

C. Gobby, Z. L. Yuan, and A. J. Shields, "Quantum key distribution over 122 km of standard telecom fiber," Appl. Phys. Lett. 84, 3762-3764 (2004).
[CrossRef]

N. Namekata, G , Fujii, S . Inoue, T . Honjo, and H . Takesue, "Differential phase shift quantum key distribution using single-photon detectors based on a sinusoidally gated InGaAs/InP avalanche photodiode," Appl. Phys. Lett. 91, 011112 (2007)
[CrossRef]

Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, "High speed single photon detection in the near infrared," Appl. Phys. Lett. 91, 041114 (2007).
[CrossRef]

Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92, 201104 (2008).
[CrossRef]

Electron. Let.

H. Zbinden, J. D. Gautier, N. Gisin, B. Huttner, A. Muller, and W. Tittel, "Interferometry with Faraday mirrors for quantum cryptography," Electron. Let. 33, 586-588 (1997).
[CrossRef]

Electron. Lett.

P. D. Townsend, "Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing," Electron. Lett. 33, 188-190 (1997).
[CrossRef]

IEEE J. Quant. Electron. QE

J. Auyeung and A. Yariv. "Spontaneous and Stimulated Raman Scattering in Long Low Loss Fibers," IEEE J. Quant. Electron. QE- 14, 347-351 (1978).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Tajima, A. Tanaka, W. Maeda, S. Takahashi, and A. Tomita, "Practical Quantum Cryptosystem for Metro Area Applications," IEEE J. Sel. Top. Quantum Electron. 13, 1031-1038 (2007).
[CrossRef]

IEEE Trans. Appl. Supercond.

S. Miki, M. Fujiwara, M. Sasaki, and Z. Wang, "NbN Superconducting Single-Photon Detectors Prepared on Single-Crystal MgO Substrates," IEEE Trans. Appl. Supercond. 17, 285-288 (2007).
[CrossRef]

J. Mod. Opt.

Y. Nambu, K. Yoshino, and A. Tomita, "Quantum Encoder and Decoder for Practical Quantum Key Distribution Using a Planar Lightwave Circuit," J. Mod. Opt. (to be published)

Jpn. J. Appl. Phys.

T. Kimura, Y. Nambu, T. Hatanaka, A. Tomita, H. Kosaka, and K. Nakamura, "Single-photon Interference over 150km Transmission Using Silica-based Integrated-optic Interferometers for Quantum Cryptography," Jpn. J. Appl. Phys. 43, 1217-1219 (2004).
[CrossRef]

Y. Nambu, K. Yoshino, and A. Tomita, "One-Way Quantum Key Distribution System Based on Planar Lightwave Circuits," Jpn. J. Appl. Phys. 45, 5344-5348 (2006).
[CrossRef]

Nature Photon.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Photon. 1, 343-348 (2007).
[CrossRef]

New J. Phys.

D. Stucki, N. Gisin, G. Guinnard, G. Ribordy, and H. Zbinden, "Quantum Key Distribution over 67 km with a plug & play system," New J. Phys. 4, 41 (2002).
[CrossRef]

M. Hayashi, "General theory for decoy-state quantum key distribution with an arbitrary number of intensities," New J. Phys. 9, 284 (2007).
[CrossRef]

Opt. Lett.

Phys. Rev. A

M. Hayashi, "Upper bounds of eavesdropper???s performances in finite-length code with decoy method," Phys. Rev. A 76, 012329 (2007)
[CrossRef]

Phys. Rev. Lett.

W. -Y. Hwang, "Quantum Key Distribution with High Loss: Toward Global Secure Communication," Phys. Rev. Lett. 91, 057901 (2003).
[CrossRef] [PubMed]

X. -B. Wang. "Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography," Phys. Rev. Lett. 94, 230503 (2005).
[CrossRef] [PubMed]

H. -K. Lo, X. Ma, and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94, 230504 (2005).
[CrossRef] [PubMed]

Y. Zhao, B. Qi, X. Ma, H. -K. Lo, and L. Qian, "Experimental Quantum Key Distribution with Decoy States," Phys. Rev. Lett. 96, 070502 (2006).
[CrossRef] [PubMed]

D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, S. W. Nam, and J. E. Nordholt, "Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber," Phys. Rev. Lett. 98, 010503 (2007).
[CrossRef] [PubMed]

C. -Z. Peng, J. Zhang, D. Yang, W. -B. Gao, H. -X. Ma, H. Yin, H. -P. Zeng, T. Yang, X. -B. Wang, and J. -W. Pan, "Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding," Phys. Rev. Lett. 98, 010505 (2007).
[CrossRef] [PubMed]

Quant. Inf. Comput.

D. Gottesman, H. -K. Lo, N. Lütkenhaus, and J. Preskill, "Security of quantum key distribution with imperfect devices," Quant. Inf. Comput. 4, 325-360 (2004).

H. -K. Lo and J. Preskill, "Security of quantum key distribution using weak coherent states with nonrandom phases," Quant. Inf. Comput. 8, 431-458 (2007).

Other

K. Yoshino, A. Tanaka, Y. Nambu, A. Tajima, and A. Tomita, in 33rd European Conference on Optical Communication (ECOC), Berlin, Germany, 2007, 9.4.6.

W. Maeda, A. Tajima, A. Tanaka, S. Takahashi, and T. Takeuchi, "High-speed QKD system synchronized by automatic phase-alignment mechanism," in Optical Fiber Communication Conference and Exposition (OFC), Anaheim, USA, 2005,OWI4.

T. J. Xia, D. Z. Chen, G. A. Wellbrock, A. Zavriyev, A. C. Beal, and K. M. Lee, "In-Band Quantum Key Distribution (QKD) on Fiber Populated by High-Speed Classical Data Channels," in Optical Fiber Communication Conference and Exposition (OFC), Anaheim, USA, 2006, OTuJ7.

J. Hasegawa, M. Hayashi, T. Hiroshima, A. Tanaka, and A. Tomita, "Experimental Decoy State Quantum Key Distribution with Unconditional Security Incorporating Finite Statistics," eprint arXiv:0705.3081 (2007).

V. Scarani and R. Renner, "Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way post-processing," eprint arXiv:0708.0709 (2007).

C. H. Bennett and G. Brassard, "Quantum cryotography: public key distribution and coin tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, Bangalore, India, 1984 (IEEE, New York, 1984), 175-179.

H. Inamori, N. Lütkenhaus, and D. Mayers, "Unconditional Security of Practical Quantum Key Distribution," eprint arXiv:0107017 (2001).

Y. Zhao, R. Adve, and T. J. Lim, "Improving Amplify-and Forward Relay Networks: Optimal Power Allocation versus Selection," in Proceedings of IEEE International Symposium on Information Theory, Seattle, USA, 2006 (IEEE, New York, 2006), 2094-2098

T. Hasegawa, T. Nishioka, H. Ishizuka, J. Abe, K. Shimizu, and M. Matsui, "Field experiments of quantum cryptosystem in 96km installed fibers," in European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2005, EH3-4.

A. Tanaka, W. Maeda, A. Tajima, and S. Takahashi, "Fortnight quantum key generation field trial using QBER monitoring," in Proceedings of the 18th Annual Meeting of the IEEE Lasers and Electro-Optics Society, Sidney, Australia, 2005 (IEEE, New York, 2005), 557-558.

A. Poppe, H. Huebel, F. Karinou, B. Blauensteiner, B. Schrenk, T. Lorünser, M. Mayenburg, E. Querasser, and A. Zeilinger, "Quantum key distribution over WDMs and optical switches to combine the quantum channel with synchronization channels," in 33rd European Conference on Optical Communication (ECOC), Berlin, Germany, 2007, 9.4.7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

QKD field test setup. The blue, green, and black lines indicate the route of the quantum signal, the clock signal, and the electric control signal, respectively. RNG, random number generator; ATT, optical attenuator; CLK source, clock source; CLK Tx, clock transmitter; CLK Rx, clock receiver. The balloon on the upper left corner explains the four quantum states used at this experiment. Relative phase and intensity of the coherent double pulses were adequately modulated using the 2-drive MZM.

Fig. 2.
Fig. 2.

Temporal fluctuation of the key generation performance. (a) Quantum bit error rate; (b) Sifted key rate. The data points are measured values for 65 km (red circles) and 97 km transmission (blue triangles).

Fig. 3.
Fig. 3.

Key generation performance against average photon number. (a) Quantum bit error rate; (b) Sifted key rate. The data points are measured values for 65 km transmission (red circles) and 97 km transmission (blue triangles). Solid plots show the measured values obtained from the WDM synchronization and hollow plots show those obtained from the no-WDM experiments. The error bars show the standard deviation.

Metrics