Abstract

Phase effect of the optical duobinary (ODB) modulation on the chromatic dispersion (CD) tolerance is more important than the ODB modulation-induced bandwidth effect. To show this, we evaluate, respectively, the filter bandwidth effect and the phase effect of the partial bit delay correlative modulation (PBDCM) on the CD tolerance. Due to the cancellation between the CD-induced and the PBDCM-induced phase effects, the PBDCM method can increase the CD-limited transmission to 2 ~ 3 times of that using standard 1-bit delay modulation, while the optimized filter bandwidth method can increase the transmission by 50% or less, depending on the input signal format. The PBDCM can be physically realized by adjusting the delay time of the delay-and-add circuit in the conventional duobinary transmitter (without lower-pass filter). These conclusions are also valid for systems having non-negligible polarization-mode dispersion (PMD) and polarization dependent loss (PDL).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Forestieri, "Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre-and postdetection filtering," J. Lightwave Technol. 18, 1493-1503 (2000).
    [CrossRef]
  2. J. Wang and J. M. Kahn, "Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection," J. Lightwave Technol. 22, 362-371 (2004).
    [CrossRef]
  3. M. Shtaif and A. H. Gnauck, "The relation between optical duobinary modulation and spectral efficiency in WDM systems," IEEE Photon. Technol. Lett. 11, 712-714 (1999).
    [CrossRef]
  4. C. Chien and I. Lyubomirsky, "Comparison of RZ Versus NRZ Pulse Shapes for Optical Duobinary Transmission," J. Lightwave Technol. 25, 2953-2958 (2007).
    [CrossRef]
  5. E. Forestieri and G. Prati, "Novel optical line codes tolerant to fiber chromatic dispersion," J. Lightwave Technol. 19, 1675-1684 (2001).
    [CrossRef]
  6. S. Walklin and J. Conradi, "On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems," IEEE Photon. Technol. Lett. 9, 1005-1007 (1997).
    [CrossRef]
  7. J. Lee, H. Jang, Y. Kim, S. Choi; S. G. Park, and J. Jeong, "Chromatic dispersion tolerance of new duobinary transmitters based on two intensity modulators without using electrical low-pass filters," J. Lightwave Technol. 22, 2264-2270 (2004).
    [CrossRef]
  8. E. Forestieri and G. Prati, "Narrow filtered DPSK implements order-1 CAPS optical line coding," IEEE Photon. Technol. Lett. 16, 662-664 (2004).
    [CrossRef]
  9. Y. Kim, H. Jang, J. Lee, I. Lee, M. Kim, and J. Jeong, "Improvement of SPM tolerance for phase-modulated duobinary transmissions using phase modulator with postfiltering technique," IEEE Photon. Technol. Lett. 15, 1785-1787 (2003).
    [CrossRef]
  10. B. Kim, J. Jeong, J. Lee, H. Lee, H. Kim, S. K. Kim, Y. Kim, S. Hwang, Y. Oh, and C. Shim, "Improvement of dispersion tolerance for electrical-binary-signal-based duobinary transmitters," Opt. Express 13, 5100-5105 (2005).
    [CrossRef] [PubMed]
  11. J. Yu, "Generation of modified duobinary RZ signals by using one single dual-arm LiNbO/sub 3/ modulator," IEEE Photon. Technol. Lett. 15, 1455-1457 (2003).
    [CrossRef]
  12. Z. Zhang, L. Chen, and X. Bao, "Accurate BER evaluation for lumped DPSK and OOK systems with PMD and PDL," Opt. Express 15, 9418-9433 (2007).
    [CrossRef] [PubMed]
  13. K. Yonenaga and S. Kuwano, "Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver," J. Lightwave Technol. 15, 1530-1537 (1997).
    [CrossRef]
  14. T. Ono, Y. Yano, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, "Characteristics of optical duobinary signals in terabit/s capacity, high-spectral efficiency WDM systems," J. Lightwave Technol. 16, 788-797 (1998).
    [CrossRef]
  15. I. Lyubomirsky and C.-C. Chien, "Tailoring the duobinary pulse shape for optimum performance," J. Lightwave Technol. 23, 3732-3736 (2005).
    [CrossRef]
  16. C. Xie, L. Moller, and R. Ryf, "Improvement of optical NRZ- and RZ-duobinary transmission systems with narrow bandwidth optical filters," IEEE Photon. Technol. Lett. 16, 2162-2164 (2004).
    [CrossRef]
  17. H. Shankar, "Duobinary modulation for optical systems," White Paper, Inphi Corporation, (2004).
  18. L. Chen, Z. Zhang, and X. Bao, "Combined PMD-PDL effects on BERs in simplified optical systems: an analytical approach," Opt. Express 15, 2106-2119 (2007).
    [CrossRef] [PubMed]

2007 (3)

2005 (2)

2004 (4)

J. Lee, H. Jang, Y. Kim, S. Choi; S. G. Park, and J. Jeong, "Chromatic dispersion tolerance of new duobinary transmitters based on two intensity modulators without using electrical low-pass filters," J. Lightwave Technol. 22, 2264-2270 (2004).
[CrossRef]

E. Forestieri and G. Prati, "Narrow filtered DPSK implements order-1 CAPS optical line coding," IEEE Photon. Technol. Lett. 16, 662-664 (2004).
[CrossRef]

J. Wang and J. M. Kahn, "Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection," J. Lightwave Technol. 22, 362-371 (2004).
[CrossRef]

C. Xie, L. Moller, and R. Ryf, "Improvement of optical NRZ- and RZ-duobinary transmission systems with narrow bandwidth optical filters," IEEE Photon. Technol. Lett. 16, 2162-2164 (2004).
[CrossRef]

2003 (2)

Y. Kim, H. Jang, J. Lee, I. Lee, M. Kim, and J. Jeong, "Improvement of SPM tolerance for phase-modulated duobinary transmissions using phase modulator with postfiltering technique," IEEE Photon. Technol. Lett. 15, 1785-1787 (2003).
[CrossRef]

J. Yu, "Generation of modified duobinary RZ signals by using one single dual-arm LiNbO/sub 3/ modulator," IEEE Photon. Technol. Lett. 15, 1455-1457 (2003).
[CrossRef]

2001 (1)

2000 (1)

1999 (1)

M. Shtaif and A. H. Gnauck, "The relation between optical duobinary modulation and spectral efficiency in WDM systems," IEEE Photon. Technol. Lett. 11, 712-714 (1999).
[CrossRef]

1998 (1)

1997 (2)

K. Yonenaga and S. Kuwano, "Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver," J. Lightwave Technol. 15, 1530-1537 (1997).
[CrossRef]

S. Walklin and J. Conradi, "On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems," IEEE Photon. Technol. Lett. 9, 1005-1007 (1997).
[CrossRef]

Bao, X.

Chen, L.

Chien, C.

Chien, C.-C

Choi, S.

Conradi, J.

S. Walklin and J. Conradi, "On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems," IEEE Photon. Technol. Lett. 9, 1005-1007 (1997).
[CrossRef]

Emura, K.

Forestieri, E.

Fukuchi, K.

Gnauck, A. H.

M. Shtaif and A. H. Gnauck, "The relation between optical duobinary modulation and spectral efficiency in WDM systems," IEEE Photon. Technol. Lett. 11, 712-714 (1999).
[CrossRef]

Hwang, S.

Ito, T.

Jang, H.

J. Lee, H. Jang, Y. Kim, S. Choi; S. G. Park, and J. Jeong, "Chromatic dispersion tolerance of new duobinary transmitters based on two intensity modulators without using electrical low-pass filters," J. Lightwave Technol. 22, 2264-2270 (2004).
[CrossRef]

Y. Kim, H. Jang, J. Lee, I. Lee, M. Kim, and J. Jeong, "Improvement of SPM tolerance for phase-modulated duobinary transmissions using phase modulator with postfiltering technique," IEEE Photon. Technol. Lett. 15, 1785-1787 (2003).
[CrossRef]

Jeong, J.

Kahn, J. M.

Kim, B.

Kim, H.

Kim, M.

Y. Kim, H. Jang, J. Lee, I. Lee, M. Kim, and J. Jeong, "Improvement of SPM tolerance for phase-modulated duobinary transmissions using phase modulator with postfiltering technique," IEEE Photon. Technol. Lett. 15, 1785-1787 (2003).
[CrossRef]

Kim, S. K.

Kim, Y.

Kuwano, S.

K. Yonenaga and S. Kuwano, "Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver," J. Lightwave Technol. 15, 1530-1537 (1997).
[CrossRef]

Lee, H.

Lee, I.

Y. Kim, H. Jang, J. Lee, I. Lee, M. Kim, and J. Jeong, "Improvement of SPM tolerance for phase-modulated duobinary transmissions using phase modulator with postfiltering technique," IEEE Photon. Technol. Lett. 15, 1785-1787 (2003).
[CrossRef]

Lee, J.

Lyubomirsky, I.

Moller, L.

C. Xie, L. Moller, and R. Ryf, "Improvement of optical NRZ- and RZ-duobinary transmission systems with narrow bandwidth optical filters," IEEE Photon. Technol. Lett. 16, 2162-2164 (2004).
[CrossRef]

Oh, Y.

Ono, T.

Park, S. G.

Prati, G.

E. Forestieri and G. Prati, "Narrow filtered DPSK implements order-1 CAPS optical line coding," IEEE Photon. Technol. Lett. 16, 662-664 (2004).
[CrossRef]

E. Forestieri and G. Prati, "Novel optical line codes tolerant to fiber chromatic dispersion," J. Lightwave Technol. 19, 1675-1684 (2001).
[CrossRef]

Ryf, R.

C. Xie, L. Moller, and R. Ryf, "Improvement of optical NRZ- and RZ-duobinary transmission systems with narrow bandwidth optical filters," IEEE Photon. Technol. Lett. 16, 2162-2164 (2004).
[CrossRef]

Shim, C.

Shtaif, M.

M. Shtaif and A. H. Gnauck, "The relation between optical duobinary modulation and spectral efficiency in WDM systems," IEEE Photon. Technol. Lett. 11, 712-714 (1999).
[CrossRef]

Walklin, S.

S. Walklin and J. Conradi, "On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems," IEEE Photon. Technol. Lett. 9, 1005-1007 (1997).
[CrossRef]

Wang, J.

Xie, C.

C. Xie, L. Moller, and R. Ryf, "Improvement of optical NRZ- and RZ-duobinary transmission systems with narrow bandwidth optical filters," IEEE Photon. Technol. Lett. 16, 2162-2164 (2004).
[CrossRef]

Yamaguchi, M.

Yamazaki, H.

Yano, Y.

Yonenaga, K.

K. Yonenaga and S. Kuwano, "Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver," J. Lightwave Technol. 15, 1530-1537 (1997).
[CrossRef]

Yu, J.

J. Yu, "Generation of modified duobinary RZ signals by using one single dual-arm LiNbO/sub 3/ modulator," IEEE Photon. Technol. Lett. 15, 1455-1457 (2003).
[CrossRef]

Zhang, Z.

IEEE Photon. Technol. Lett. (6)

M. Shtaif and A. H. Gnauck, "The relation between optical duobinary modulation and spectral efficiency in WDM systems," IEEE Photon. Technol. Lett. 11, 712-714 (1999).
[CrossRef]

S. Walklin and J. Conradi, "On the relationship between chromatic dispersion and transmitter filter response in duobinary optical communication systems," IEEE Photon. Technol. Lett. 9, 1005-1007 (1997).
[CrossRef]

E. Forestieri and G. Prati, "Narrow filtered DPSK implements order-1 CAPS optical line coding," IEEE Photon. Technol. Lett. 16, 662-664 (2004).
[CrossRef]

Y. Kim, H. Jang, J. Lee, I. Lee, M. Kim, and J. Jeong, "Improvement of SPM tolerance for phase-modulated duobinary transmissions using phase modulator with postfiltering technique," IEEE Photon. Technol. Lett. 15, 1785-1787 (2003).
[CrossRef]

J. Yu, "Generation of modified duobinary RZ signals by using one single dual-arm LiNbO/sub 3/ modulator," IEEE Photon. Technol. Lett. 15, 1455-1457 (2003).
[CrossRef]

C. Xie, L. Moller, and R. Ryf, "Improvement of optical NRZ- and RZ-duobinary transmission systems with narrow bandwidth optical filters," IEEE Photon. Technol. Lett. 16, 2162-2164 (2004).
[CrossRef]

J. Lightwave Technol. (8)

K. Yonenaga and S. Kuwano, "Dispersion-tolerant optical transmission system using duobinary transmitter and binary receiver," J. Lightwave Technol. 15, 1530-1537 (1997).
[CrossRef]

T. Ono, Y. Yano, K. Fukuchi, T. Ito, H. Yamazaki, M. Yamaguchi, and K. Emura, "Characteristics of optical duobinary signals in terabit/s capacity, high-spectral efficiency WDM systems," J. Lightwave Technol. 16, 788-797 (1998).
[CrossRef]

I. Lyubomirsky and C.-C. Chien, "Tailoring the duobinary pulse shape for optimum performance," J. Lightwave Technol. 23, 3732-3736 (2005).
[CrossRef]

J. Lee, H. Jang, Y. Kim, S. Choi; S. G. Park, and J. Jeong, "Chromatic dispersion tolerance of new duobinary transmitters based on two intensity modulators without using electrical low-pass filters," J. Lightwave Technol. 22, 2264-2270 (2004).
[CrossRef]

C. Chien and I. Lyubomirsky, "Comparison of RZ Versus NRZ Pulse Shapes for Optical Duobinary Transmission," J. Lightwave Technol. 25, 2953-2958 (2007).
[CrossRef]

E. Forestieri and G. Prati, "Novel optical line codes tolerant to fiber chromatic dispersion," J. Lightwave Technol. 19, 1675-1684 (2001).
[CrossRef]

E. Forestieri, "Evaluating the error probability in lightwave systems with chromatic dispersion, arbitrary pulse shape and pre-and postdetection filtering," J. Lightwave Technol. 18, 1493-1503 (2000).
[CrossRef]

J. Wang and J. M. Kahn, "Impact of chromatic and polarization-mode dispersions on DPSK systems using interferometric demodulation and direct detection," J. Lightwave Technol. 22, 362-371 (2004).
[CrossRef]

Opt. Express (3)

Other (1)

H. Shankar, "Duobinary modulation for optical systems," White Paper, Inphi Corporation, (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) The low-pass equivalent optical model used to study the performance of an optical duobinary (ODB) system with partially polarized ASE noise. The correlative modulation can be realized either by a duobinary encoder (i.e., a delay-and-add circuit) in (b) or by a Mach-Zehnder (1-bit) delay-interferometer (DI) in (c). Low-pass filter (LPF) in conventional ODB transmitter is used to further improve the CD tolerance. Without the LPF, Tx (b) and (c) are equivalent. Details of dODB (t) and dDPSK (t) in (d) are given in Appendix.

Fig. 2.
Fig. 2.

CD-induced power penalty at BER=10-9 with negligible PMD (DGDτ=0) and PDL (α=0) [(a), (b)], and non-negligible PMD and PDL [(c), (d)]. The CD penalties of the NRZ- and RZ-OOK systems, with their filter bandwidths {Bo , Br } being {1.6/Tb ,0.60/Tb } (NRZ) and {1.8/Tb ,0.65/Tb } (RZ) [2], are plotted for comparison. The filter bandwidths of the NRZ and RZ ODB systems, optimized at different values of ξ and τ, are given in Table 1. Insets: the required OSNRs vs ξ at BER=10-9 with negligible PMD and PDL (a)–(b), τ/Tb =0.2 (c), and τ/Tb =0.4 (d). CD index ξ=17.5 [104(Gb/s)2ps/nm] corresponds to a SMF of ~100km long, when R=10Gb/s and λ=1550nm.

Fig. 3.
Fig. 3.

Numerically calculated input signal spectrum amplitude as a function of frequency fl =1/(NTb ) in NRZ-DuoB (dashed) and RZ-DuoB (dash-dotted). The NRZ-OOK curve (thick solid) is plotted for comparison. To show clearly the NRZ-DuoB spectrum is compressed by two, compared with the NRZ-OOK one, the x-axis is scaled differently for DuoB and OOK. Notice that, near fl =1.0, the RZ-DuoB spectrum amplitude is obviously larger than the NRZ-DuoB one.

Fig. 4.
Fig. 4.

Required OSNR vs ξ curves (at BER=10-9) with different bit delay time T. The CD-limited transmission distance with T=0.6Tb is 2~3 times of that with T=Tb .

Fig. 5.
Fig. 5.

Received signal-signal beating as a function of time in the NRZ-DuoB* system with (a) 1-bit delay modulation and (b) PBDCM of T=0.6Tb . To show the phase effects of these two modulations, the CD-induced phase deviations of the received s-s beating spectrum Yss l (ξ , T) in NRZ-DuoB*, obtained using Eq. (6), are plotted as a function of frequency fl =l/(NTb ) with (c) ξ=15 and (d) ξ=30 [104(Gb/s)2ps/nm]. As shown in (c) and (d), within fl <0.5 the phase deviation with T=0.6Tb is obviously smaller than that with T=Tb .

Tables (1)

Tables Icon

Table 1. Bandwidths of five ODB systems

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

H f ( f ) = exp ( j 2 π 2 β 2 L f 2 ) , [ β 2 D ( λ ) λ 2 ( 2 πc ) ]
s ODB ( t ) = [ s DPSK ( t ) + s DPSK ( t T b ) ] 2 ,
s l ODB = s l DPSK [ 1 + e j 2 πlT N T b ] 2 = P ( l N T b ) A l ODB ( N T b )
s PBDCM ( t ) = [ s DPSK ( t ) + s DPSK ( t T ) ] 2
= k c k DPSK E b T b [ rect ( t k T b T b ) + rect ( t k T b T T b ) ] 2 .
s CAPS ( t ) = k c k CAPS [ rect ( t k T b T b ) + 1 2 rect ( t k T b 2 T b ) ] ,
Δ θ ( ξ , T ) = θ ( ξ , T ) θ ( ξ = 0 , T ) ,
d DPSK ( t ) = m = 0 N 1 a m DPSK p ( t m T b )
s DPSK ( t ) = n = d DPSK ( t nN T b ) l = s l DPSK e j 2 π lt ( N T b ) ,
s l DPSK = P ( f l ) N T b A l DPSK , A l DPSK = m = 0 N 1 a m DPSK e j 2 πml N
d ODB ( t ) = m = 0 N 1 a m DOB p ( t m T b )

Metrics