Abstract

Organic nonlinear optical materials have proven to possess high and extremely fast nonlinearities compared to conventional inorganic crystals, allowing for sub-1-V driving voltages and modulation bandwidths of over 100 GHz. Compared to more widely studied poled electro-optic polymers, organic electro-optic crystals exhibit orders of magnitude better thermal and photochemical stability. The lack of available structuring techniques for organic crystals has been the major drawback for exploring their potential for photonic structures. Here we present a new approach to fabricate high-quality electrooptic single crystal waveguides and nanowires of configurationally locked polyene DAT2 (2-(3-(2-(4-dimethylaminophenyl)vinyl)-5,5- dimethylcyclohex-2-enylidene)malononitrile). The high-index-contrast waveguides (Δn = 0.54 ±0.04) are grown from the melt between two anodically bonded borosilicate glass wafers, which are structured and equipped with electrodes prior to bonding. Electro-optic phase modulation is demonstrated for the first time in the non-centrosymmetric DAT2 single crystalline channel waveguides at a wavelength of 1.55 μm. We also show that this technique in combination with DAT2 material allows for the fabrication of single-crystalline nanostructures inside large-area devices with crystal thicknesses below 30 nm and lengths of above 7 mm.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Florsheimer, P. Kaatz, and P. Günter, Organic nonlinear optical materials (Gordon and Breach, Basel, 1995).
  2. C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, "Second-Order Nonlinear Optical Organic Materials: Recent Developments," in Nonlinear Optical Effects and Materials, P. Günter, ed., Springer Series in Optical Sciences Vol. 72, chap. 3 (Springer-Verlag, Berlin, 2000).
  3. Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape," Science 288, 119-122 (2000).
    [CrossRef]
  4. M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," Science 298, 1401-1403 (2002).
    [CrossRef] [PubMed]
  5. M. Schmidt, M. Eich, U. Huebner, and R. Boucher, "Electro-optically tunable photonic crystals," Appl. Phys. Lett. 87, 121110 (2005).
    [CrossRef]
  6. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
    [CrossRef]
  7. B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic Polymer Ring Resonator Modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
    [CrossRef]
  8. L. R. Dalton, P. A. Sullivan, D. H. Bale, and B. C. Olbricht, "Theory-inspired nano-engineering of photonic and electronic materials: Noncentrosymmetric charge-transfer electro-optic materials," Solid-State Electron. 51, 1263-1277 (2007).
    [CrossRef]
  9. D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, "Electro-optic Charon polymeric microring modulators," Opt. Express 16, 613-627 (2008).
    [CrossRef] [PubMed]
  10. J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, "High-speed low-voltage electrooptic modulator with a polymer-infiltrated silicon photonic crystal waveguide," Opt. Express 16, 4177-4191 (2008).
    [CrossRef] [PubMed]
  11. D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Gunter, "Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials," J. Chem. Phys. 128, 124713 (2008).
    [CrossRef] [PubMed]
  12. S. Manetta, M. Ehrensperger, C. Bosshard, and P. Günter, "Organic thin film crystal growth for nonlinear optics: Present methods and exploratory developments," Comptes Rendus Physique 3, 449-462 (2002).
    [CrossRef]
  13. M. Thakur, J. Titus, and A. Mishra, "Single-crystal thin films of organic molecular salt may lead to a new generation of electro-optic devices," Opt. Eng. 42, 456-458 (2003).
    [CrossRef]
  14. M. Jazbinsek, L. Mutter, and P. Günter, "Photonic applications with the organic nonlinear optical crystal DAST," IEEE J. Sel. Top. Quantum Electron., doi: 10.1109/JSTQE.2008.921407 (2008).
  15. T. Kaino, B. Cai, and K. Takayama, "Fabrication of DAST channel optical waveguides," Adv. Funct. Mater. 12, 599-603 (2002).
    [CrossRef]
  16. L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4??-N??-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003).
    [CrossRef]
  17. P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, "Femtosecond laser ablation of DAST," Appl. Surface Science 220, 88-95 (2003).
    [CrossRef]
  18. L. Mutter, M. Jazbinšek, C. Herzog, and P. Günter, "Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals," Opt. Express 16, 731-739 (2008).
    [CrossRef] [PubMed]
  19. L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, "Direct electron beam writing of channel waveguides in nonlinear optical organic crystals," Opt. Express 15, 16828-16838 (2007).
    [CrossRef] [PubMed]
  20. W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
    [CrossRef]
  21. S. Gauvin and J. Zyss, "Growth of organic crystalline thin films, their optical characterization and application to non-linear optics," J. Cryst. Growth 166, 507-527 (1996).
    [CrossRef]
  22. A. Leyderman, Y. Cui, and B. G. Penn, "Electro-optical effects in thin single-crystalline organic films grown from the melt," J. Phys. D: Appl. Phys. 31, 2711-2717 (1998).
    [CrossRef]
  23. O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth," Chem. Mater. 18, 4049-4054 (2006).
    [CrossRef]
  24. A. Choubey, O.-P. Kwon, M. Jazbinsek, and P. Günter, "High-Quality Organic Single Crystalline Thin Films for Nonlinear Optical Applications by Vapor Growth," Cryst. Growth Des. 7, 402-405 (2007).
    [CrossRef]
  25. O.-P. Kwon, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, "Organic Electro-optic Single- Crystalline Thin Films Grown Directly on Modified Amorphous Substrates," Adv. Mater. 20, 543-545 (2008).
    [CrossRef]
  26. M. A. Schmidt, "Wafer-to-Wafer Bonding for Microstructure Formation," Proc. IEEE 86, 1575-1585 (1998).
    [CrossRef]
  27. Q.-Y. Tong and U. Gösele, Semiconductor wafer bonding: Science and technology (John Wiley & Sons, New York, 1999).
  28. P. Lindner, V. Dragoi, S. Farrens, T. Glinsner, and P. Hangweier, "Advanced techniques for 3D devices in waferbonding processes," Solide State Technol. 47, 55-58 (2004).
  29. A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, "Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers," Sens. Actuators, A 82, 224-228 (2000).
    [CrossRef]
  30. P. V. Vidakovic, M. Coquillay, and F. Salin, "N-(4-nitrophenyl)-N-methylamino-aceto-nitrile: A new organic material for efficient second-harmonic generation in bulk and waveguide configurations. I. Growth, crystal structure, and characterization of organic crystal-cored fibers," J. Opt. Soc. Am. B 4, 998-1012 (1987).
    [CrossRef]
  31. S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008).
    [CrossRef]
  32. OlympIOs, "Integrated Optics Software," Available at http://www.c2v.nl/fr index.shtml? /products/software/olympios-software.shtml.
  33. X. Li, T. Abe, and M. Esashi, "Deep reactive ion etching of Pyrex glass using SF6 plasma," Sens. Actuators, A 87, 139-145 (2001).
    [CrossRef]
  34. D. A. Zeze, R. D. Forrest, J. D. Carey, D. C. Cox, I. D. Robertson, B. L. Weiss, and S. R. P. Silva, "Reactive ion etching of quartz and Pyrex for microelectronic applications," J. Appl. Phys. 92, 3624-3629 (2002).
    [CrossRef]
  35. L. Li, T. Abe, and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003).
    [CrossRef]
  36. H. C. Jung, W. Lu, S. Wang, L. J. Lee, and X. Hu, "Etching of Pyrex glass substrates by inductively coupled plasma reactive ion etching for micronanofluidic devices," J. Vac. Sci. Technol. B 24, 3162-3164 (2006).
    [CrossRef]
  37. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
    [CrossRef] [PubMed]
  38. M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, "Towards a millivolt optical modulator with nano-slot waveguides," Opt. Express 15, 8401-8410 (2007).
    [CrossRef] [PubMed]
  39. C. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O.-P. Kwon, M. Jazbinsek, and P. Günter, "Configurationally locked polyene organic crystals OH1: Linear and nonlinear optical properties," (2008). (submitted).
  40. H. Figi, L. Mutter, C. Hunziker, M. Jazbinsek, P. Günter, and B. J. Coe, "Extremely large non-resonant quadratic nonlinear optical response in crystals of the stilbazolium salt DAPSH," (2008). (submitted).
  41. W. L. Bond, "Measurement of the Refractive Indices of Several Crystals," J. Appl. Phys. 36, 1674-1677 (1965).
    [CrossRef]
  42. F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4??-N??-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
    [CrossRef]

2008

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, "Electro-optic Charon polymeric microring modulators," Opt. Express 16, 613-627 (2008).
[CrossRef] [PubMed]

J.-M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, "High-speed low-voltage electrooptic modulator with a polymer-infiltrated silicon photonic crystal waveguide," Opt. Express 16, 4177-4191 (2008).
[CrossRef] [PubMed]

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Gunter, "Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials," J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

M. Jazbinsek, L. Mutter, and P. Günter, "Photonic applications with the organic nonlinear optical crystal DAST," IEEE J. Sel. Top. Quantum Electron., doi: 10.1109/JSTQE.2008.921407 (2008).

L. Mutter, M. Jazbinšek, C. Herzog, and P. Günter, "Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals," Opt. Express 16, 731-739 (2008).
[CrossRef] [PubMed]

O.-P. Kwon, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, "Organic Electro-optic Single- Crystalline Thin Films Grown Directly on Modified Amorphous Substrates," Adv. Mater. 20, 543-545 (2008).
[CrossRef]

S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008).
[CrossRef]

2007

A. Choubey, O.-P. Kwon, M. Jazbinsek, and P. Günter, "High-Quality Organic Single Crystalline Thin Films for Nonlinear Optical Applications by Vapor Growth," Cryst. Growth Des. 7, 402-405 (2007).
[CrossRef]

M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, "Towards a millivolt optical modulator with nano-slot waveguides," Opt. Express 15, 8401-8410 (2007).
[CrossRef] [PubMed]

L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, "Direct electron beam writing of channel waveguides in nonlinear optical organic crystals," Opt. Express 15, 16828-16838 (2007).
[CrossRef] [PubMed]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic Polymer Ring Resonator Modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

L. R. Dalton, P. A. Sullivan, D. H. Bale, and B. C. Olbricht, "Theory-inspired nano-engineering of photonic and electronic materials: Noncentrosymmetric charge-transfer electro-optic materials," Solid-State Electron. 51, 1263-1277 (2007).
[CrossRef]

2006

H. C. Jung, W. Lu, S. Wang, L. J. Lee, and X. Hu, "Etching of Pyrex glass substrates by inductively coupled plasma reactive ion etching for micronanofluidic devices," J. Vac. Sci. Technol. B 24, 3162-3164 (2006).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth," Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

2005

M. Schmidt, M. Eich, U. Huebner, and R. Boucher, "Electro-optically tunable photonic crystals," Appl. Phys. Lett. 87, 121110 (2005).
[CrossRef]

2004

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

P. Lindner, V. Dragoi, S. Farrens, T. Glinsner, and P. Hangweier, "Advanced techniques for 3D devices in waferbonding processes," Solide State Technol. 47, 55-58 (2004).

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29, 1209-1211 (2004).
[CrossRef] [PubMed]

2003

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4??-N??-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, "Femtosecond laser ablation of DAST," Appl. Surface Science 220, 88-95 (2003).
[CrossRef]

M. Thakur, J. Titus, and A. Mishra, "Single-crystal thin films of organic molecular salt may lead to a new generation of electro-optic devices," Opt. Eng. 42, 456-458 (2003).
[CrossRef]

L. Li, T. Abe, and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003).
[CrossRef]

2002

T. Kaino, B. Cai, and K. Takayama, "Fabrication of DAST channel optical waveguides," Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

S. Manetta, M. Ehrensperger, C. Bosshard, and P. Günter, "Organic thin film crystal growth for nonlinear optics: Present methods and exploratory developments," Comptes Rendus Physique 3, 449-462 (2002).
[CrossRef]

D. A. Zeze, R. D. Forrest, J. D. Carey, D. C. Cox, I. D. Robertson, B. L. Weiss, and S. R. P. Silva, "Reactive ion etching of quartz and Pyrex for microelectronic applications," J. Appl. Phys. 92, 3624-3629 (2002).
[CrossRef]

2001

X. Li, T. Abe, and M. Esashi, "Deep reactive ion etching of Pyrex glass using SF6 plasma," Sens. Actuators, A 87, 139-145 (2001).
[CrossRef]

2000

A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, "Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers," Sens. Actuators, A 82, 224-228 (2000).
[CrossRef]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape," Science 288, 119-122 (2000).
[CrossRef]

1998

M. A. Schmidt, "Wafer-to-Wafer Bonding for Microstructure Formation," Proc. IEEE 86, 1575-1585 (1998).
[CrossRef]

A. Leyderman, Y. Cui, and B. G. Penn, "Electro-optical effects in thin single-crystalline organic films grown from the melt," J. Phys. D: Appl. Phys. 31, 2711-2717 (1998).
[CrossRef]

1996

S. Gauvin and J. Zyss, "Growth of organic crystalline thin films, their optical characterization and application to non-linear optics," J. Cryst. Growth 166, 507-527 (1996).
[CrossRef]

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4??-N??-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

1987

1965

W. L. Bond, "Measurement of the Refractive Indices of Several Crystals," J. Appl. Phys. 36, 1674-1677 (1965).
[CrossRef]

Abe, T.

L. Li, T. Abe, and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003).
[CrossRef]

X. Li, T. Abe, and M. Esashi, "Deep reactive ion etching of Pyrex glass using SF6 plasma," Sens. Actuators, A 87, 139-145 (2001).
[CrossRef]

Almeida, V. R.

Andreani, L. C.

Baehr-Jones, T.

Bale, D. H.

L. R. Dalton, P. A. Sullivan, D. H. Bale, and B. C. Olbricht, "Theory-inspired nano-engineering of photonic and electronic materials: Noncentrosymmetric charge-transfer electro-optic materials," Solid-State Electron. 51, 1263-1277 (2007).
[CrossRef]

Barrios, C. A.

Bartlome, R.

P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, "Femtosecond laser ablation of DAST," Appl. Surface Science 220, 88-95 (2003).
[CrossRef]

Bechtel, J. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape," Science 288, 119-122 (2000).
[CrossRef]

Berthold, A.

A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, "Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers," Sens. Actuators, A 82, 224-228 (2000).
[CrossRef]

Bond, W. L.

W. L. Bond, "Measurement of the Refractive Indices of Several Crystals," J. Appl. Phys. 36, 1674-1677 (1965).
[CrossRef]

Bortnik, B.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic Polymer Ring Resonator Modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Bosshard, C.

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4??-N??-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

S. Manetta, M. Ehrensperger, C. Bosshard, and P. Günter, "Organic thin film crystal growth for nonlinear optics: Present methods and exploratory developments," Comptes Rendus Physique 3, 449-462 (2002).
[CrossRef]

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4??-N??-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Boucher, R.

M. Schmidt, M. Eich, U. Huebner, and R. Boucher, "Electro-optically tunable photonic crystals," Appl. Phys. Lett. 87, 121110 (2005).
[CrossRef]

Brosi, J.-M.

Cai, B.

T. Kaino, B. Cai, and K. Takayama, "Fabrication of DAST channel optical waveguides," Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Calawa, D. R.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Carey, J. D.

D. A. Zeze, R. D. Forrest, J. D. Carey, D. C. Cox, I. D. Robertson, B. L. Weiss, and S. R. P. Silva, "Reactive ion etching of quartz and Pyrex for microelectronic applications," J. Appl. Phys. 92, 3624-3629 (2002).
[CrossRef]

Choubey, A.

A. Choubey, O.-P. Kwon, M. Jazbinsek, and P. Günter, "High-Quality Organic Single Crystalline Thin Films for Nonlinear Optical Applications by Vapor Growth," Cryst. Growth Des. 7, 402-405 (2007).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth," Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Coquillay, M.

Cox, D. C.

D. A. Zeze, R. D. Forrest, J. D. Carey, D. C. Cox, I. D. Robertson, B. L. Weiss, and S. R. P. Silva, "Reactive ion etching of quartz and Pyrex for microelectronic applications," J. Appl. Phys. 92, 3624-3629 (2002).
[CrossRef]

Cui, Y.

A. Leyderman, Y. Cui, and B. G. Penn, "Electro-optical effects in thin single-crystalline organic films grown from the melt," J. Phys. D: Appl. Phys. 31, 2711-2717 (1998).
[CrossRef]

Dalton, L.

Dalton, L. R.

L. R. Dalton, P. A. Sullivan, D. H. Bale, and B. C. Olbricht, "Theory-inspired nano-engineering of photonic and electronic materials: Noncentrosymmetric charge-transfer electro-optic materials," Solid-State Electron. 51, 1263-1277 (2007).
[CrossRef]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape," Science 288, 119-122 (2000).
[CrossRef]

Deneault, S. J.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Derose, C. T.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

Dittrich, P.

P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, "Femtosecond laser ablation of DAST," Appl. Surface Science 220, 88-95 (2003).
[CrossRef]

Dragoi, V.

P. Lindner, V. Dragoi, S. Farrens, T. Glinsner, and P. Hangweier, "Advanced techniques for 3D devices in waferbonding processes," Solide State Technol. 47, 55-58 (2004).

Ehrensperger, M.

S. Manetta, M. Ehrensperger, C. Bosshard, and P. Günter, "Organic thin film crystal growth for nonlinear optics: Present methods and exploratory developments," Comptes Rendus Physique 3, 449-462 (2002).
[CrossRef]

Eich, M.

M. Schmidt, M. Eich, U. Huebner, and R. Boucher, "Electro-optically tunable photonic crystals," Appl. Phys. Lett. 87, 121110 (2005).
[CrossRef]

Enami, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

Erben, C.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Esashi, M.

L. Li, T. Abe, and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003).
[CrossRef]

X. Li, T. Abe, and M. Esashi, "Deep reactive ion etching of Pyrex glass using SF6 plasma," Sens. Actuators, A 87, 139-145 (2001).
[CrossRef]

Farrens, S.

P. Lindner, V. Dragoi, S. Farrens, T. Glinsner, and P. Hangweier, "Advanced techniques for 3D devices in waferbonding processes," Solide State Technol. 47, 55-58 (2004).

Fetterman, H. R.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic Polymer Ring Resonator Modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Figi, H.

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Gunter, "Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials," J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

O.-P. Kwon, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, "Organic Electro-optic Single- Crystalline Thin Films Grown Directly on Modified Amorphous Substrates," Adv. Mater. 20, 543-545 (2008).
[CrossRef]

Follonier, S.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4??-N??-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Forrest, R. D.

D. A. Zeze, R. D. Forrest, J. D. Carey, D. C. Cox, I. D. Robertson, B. L. Weiss, and S. R. P. Silva, "Reactive ion etching of quartz and Pyrex for microelectronic applications," J. Appl. Phys. 92, 3624-3629 (2002).
[CrossRef]

Freude, W.

Gauvin, S.

S. Gauvin and J. Zyss, "Growth of organic crystalline thin films, their optical characterization and application to non-linear optics," J. Cryst. Growth 166, 507-527 (1996).
[CrossRef]

Geis, W.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Gill, D. M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Glinsner, T.

P. Lindner, V. Dragoi, S. Farrens, T. Glinsner, and P. Hangweier, "Advanced techniques for 3D devices in waferbonding processes," Solide State Technol. 47, 55-58 (2004).

Gopalan, P.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Gramlich, V.

S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth," Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Greenlee, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

Guarino, A.

Gunter, P.

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Gunter, "Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials," J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

Günter, P.

M. Jazbinsek, L. Mutter, and P. Günter, "Photonic applications with the organic nonlinear optical crystal DAST," IEEE J. Sel. Top. Quantum Electron., doi: 10.1109/JSTQE.2008.921407 (2008).

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, "Electro-optic Charon polymeric microring modulators," Opt. Express 16, 613-627 (2008).
[CrossRef] [PubMed]

O.-P. Kwon, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, "Organic Electro-optic Single- Crystalline Thin Films Grown Directly on Modified Amorphous Substrates," Adv. Mater. 20, 543-545 (2008).
[CrossRef]

L. Mutter, M. Jazbinšek, C. Herzog, and P. Günter, "Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals," Opt. Express 16, 731-739 (2008).
[CrossRef] [PubMed]

S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008).
[CrossRef]

L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, "Direct electron beam writing of channel waveguides in nonlinear optical organic crystals," Opt. Express 15, 16828-16838 (2007).
[CrossRef] [PubMed]

A. Choubey, O.-P. Kwon, M. Jazbinsek, and P. Günter, "High-Quality Organic Single Crystalline Thin Films for Nonlinear Optical Applications by Vapor Growth," Cryst. Growth Des. 7, 402-405 (2007).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth," Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, "Femtosecond laser ablation of DAST," Appl. Surface Science 220, 88-95 (2003).
[CrossRef]

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4??-N??-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

S. Manetta, M. Ehrensperger, C. Bosshard, and P. Günter, "Organic thin film crystal growth for nonlinear optics: Present methods and exploratory developments," Comptes Rendus Physique 3, 449-462 (2002).
[CrossRef]

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4??-N??-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Hangweier, P.

P. Lindner, V. Dragoi, S. Farrens, T. Glinsner, and P. Hangweier, "Advanced techniques for 3D devices in waferbonding processes," Solide State Technol. 47, 55-58 (2004).

Heber, J. D.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Herzog, C.

Hochberg, M.

Hu, X.

H. C. Jung, W. Lu, S. Wang, L. J. Lee, and X. Hu, "Etching of Pyrex glass substrates by inductively coupled plasma reactive ion etching for micronanofluidic devices," J. Vac. Sci. Technol. B 24, 3162-3164 (2006).
[CrossRef]

Huang, J.

Huebner, U.

M. Schmidt, M. Eich, U. Huebner, and R. Boucher, "Electro-optically tunable photonic crystals," Appl. Phys. Lett. 87, 121110 (2005).
[CrossRef]

Hung, Y.-C.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic Polymer Ring Resonator Modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Jazbinsek, M.

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Gunter, "Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials," J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

M. Jazbinsek, L. Mutter, and P. Günter, "Photonic applications with the organic nonlinear optical crystal DAST," IEEE J. Sel. Top. Quantum Electron., doi: 10.1109/JSTQE.2008.921407 (2008).

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, "Electro-optic Charon polymeric microring modulators," Opt. Express 16, 613-627 (2008).
[CrossRef] [PubMed]

S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008).
[CrossRef]

O.-P. Kwon, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, "Organic Electro-optic Single- Crystalline Thin Films Grown Directly on Modified Amorphous Substrates," Adv. Mater. 20, 543-545 (2008).
[CrossRef]

A. Choubey, O.-P. Kwon, M. Jazbinsek, and P. Günter, "High-Quality Organic Single Crystalline Thin Films for Nonlinear Optical Applications by Vapor Growth," Cryst. Growth Des. 7, 402-405 (2007).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth," Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4??-N??-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

Jazbinšek, M.

Jen, A. K.-Y.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic Polymer Ring Resonator Modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

Jung, H. C.

H. C. Jung, W. Lu, S. Wang, L. J. Lee, and X. Hu, "Etching of Pyrex glass substrates by inductively coupled plasma reactive ion etching for micronanofluidic devices," J. Vac. Sci. Technol. B 24, 3162-3164 (2006).
[CrossRef]

Kaino, T.

T. Kaino, B. Cai, and K. Takayama, "Fabrication of DAST channel optical waveguides," Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Katz, H. E.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Kim, T. D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

Knöpfle, G.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4??-N??-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Koechlin, M.

Koos, C.

Krohn, K. E.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Kwon, O.-P.

O.-P. Kwon, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, "Organic Electro-optic Single- Crystalline Thin Films Grown Directly on Modified Amorphous Substrates," Adv. Mater. 20, 543-545 (2008).
[CrossRef]

S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008).
[CrossRef]

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, "Electro-optic Charon polymeric microring modulators," Opt. Express 16, 613-627 (2008).
[CrossRef] [PubMed]

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Gunter, "Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials," J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

A. Choubey, O.-P. Kwon, M. Jazbinsek, and P. Günter, "High-Quality Organic Single Crystalline Thin Films for Nonlinear Optical Applications by Vapor Growth," Cryst. Growth Des. 7, 402-405 (2007).
[CrossRef]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth," Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Kwon, S.-J.

O.-P. Kwon, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, "Organic Electro-optic Single- Crystalline Thin Films Grown Directly on Modified Amorphous Substrates," Adv. Mater. 20, 543-545 (2008).
[CrossRef]

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Gunter, "Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials," J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008).
[CrossRef]

Lee, L. J.

H. C. Jung, W. Lu, S. Wang, L. J. Lee, and X. Hu, "Etching of Pyrex glass substrates by inductively coupled plasma reactive ion etching for micronanofluidic devices," J. Vac. Sci. Technol. B 24, 3162-3164 (2006).
[CrossRef]

Lee, M.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Lee, Y.-S.

S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008).
[CrossRef]

Leuthold, J.

Leyderman, A.

A. Leyderman, Y. Cui, and B. G. Penn, "Electro-optical effects in thin single-crystalline organic films grown from the melt," J. Phys. D: Appl. Phys. 31, 2711-2717 (1998).
[CrossRef]

Li, L.

L. Li, T. Abe, and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003).
[CrossRef]

Li, X.

X. Li, T. Abe, and M. Esashi, "Deep reactive ion etching of Pyrex glass using SF6 plasma," Sens. Actuators, A 87, 139-145 (2001).
[CrossRef]

Lindner, P.

P. Lindner, V. Dragoi, S. Farrens, T. Glinsner, and P. Hangweier, "Advanced techniques for 3D devices in waferbonding processes," Solide State Technol. 47, 55-58 (2004).

Lipson, M.

Loychik, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

Lu, W.

H. C. Jung, W. Lu, S. Wang, L. J. Lee, and X. Hu, "Etching of Pyrex glass substrates by inductively coupled plasma reactive ion etching for micronanofluidic devices," J. Vac. Sci. Technol. B 24, 3162-3164 (2006).
[CrossRef]

Luo, J.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic Polymer Ring Resonator Modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

Lyszczarz, T. M.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Manetta, S.

S. Manetta, M. Ehrensperger, C. Bosshard, and P. Günter, "Organic thin film crystal growth for nonlinear optics: Present methods and exploratory developments," Comptes Rendus Physique 3, 449-462 (2002).
[CrossRef]

Marchant, M. F.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Mathine, D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

McGee, D. J.

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Meier, U.

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4??-N??-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

Mishra, A.

M. Thakur, J. Titus, and A. Mishra, "Single-crystal thin films of organic molecular salt may lead to a new generation of electro-optic devices," Opt. Eng. 42, 456-458 (2003).
[CrossRef]

Montemezzani, G.

P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, "Femtosecond laser ablation of DAST," Appl. Surface Science 220, 88-95 (2003).
[CrossRef]

Mowers, W.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Mutter, L.

L. Mutter, M. Jazbinšek, C. Herzog, and P. Günter, "Electro-optic and nonlinear optical properties of ion implanted waveguides in organic crystals," Opt. Express 16, 731-739 (2008).
[CrossRef] [PubMed]

S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008).
[CrossRef]

M. Jazbinsek, L. Mutter, and P. Günter, "Photonic applications with the organic nonlinear optical crystal DAST," IEEE J. Sel. Top. Quantum Electron., doi: 10.1109/JSTQE.2008.921407 (2008).

L. Mutter, M. Koechlin, M. Jazbinšek, and P. Günter, "Direct electron beam writing of channel waveguides in nonlinear optical organic crystals," Opt. Express 15, 16828-16838 (2007).
[CrossRef] [PubMed]

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth," Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4??-N??-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

Nicola, L.

A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, "Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers," Sens. Actuators, A 82, 224-228 (2000).
[CrossRef]

Norwood, R. A.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

Olbricht, B. C.

L. R. Dalton, P. A. Sullivan, D. H. Bale, and B. C. Olbricht, "Theory-inspired nano-engineering of photonic and electronic materials: Noncentrosymmetric charge-transfer electro-optic materials," Solid-State Electron. 51, 1263-1277 (2007).
[CrossRef]

Pan, F.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4??-N??-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Penn, B. G.

A. Leyderman, Y. Cui, and B. G. Penn, "Electro-optical effects in thin single-crystalline organic films grown from the melt," J. Phys. D: Appl. Phys. 31, 2711-2717 (1998).
[CrossRef]

Peyghambarian, N.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

Rezzonico, D.

D. Rezzonico, M. Jazbinsek, A. Guarino, O.-P. Kwon, and P. Günter, "Electro-optic Charon polymeric microring modulators," Opt. Express 16, 613-627 (2008).
[CrossRef] [PubMed]

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Gunter, "Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials," J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

Robertson, I. D.

D. A. Zeze, R. D. Forrest, J. D. Carey, D. C. Cox, I. D. Robertson, B. L. Weiss, and S. R. P. Silva, "Reactive ion etching of quartz and Pyrex for microelectronic applications," J. Appl. Phys. 92, 3624-3629 (2002).
[CrossRef]

Robinson, B. H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape," Science 288, 119-122 (2000).
[CrossRef]

Ruiz, B.

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth," Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Salin, F.

Sarro, P. M.

A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, "Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers," Sens. Actuators, A 82, 224-228 (2000).
[CrossRef]

Scherer, A.

Schmidt, M.

M. Schmidt, M. Eich, U. Huebner, and R. Boucher, "Electro-optically tunable photonic crystals," Appl. Phys. Lett. 87, 121110 (2005).
[CrossRef]

Schmidt, M. A.

M. A. Schmidt, "Wafer-to-Wafer Bonding for Microstructure Formation," Proc. IEEE 86, 1575-1585 (1998).
[CrossRef]

Schneider, A.

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth," Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Seo, B.-J.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic Polymer Ring Resonator Modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Seo, J.-I.

S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008).
[CrossRef]

Shi, Y.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape," Science 288, 119-122 (2000).
[CrossRef]

Silva, S. R. P.

D. A. Zeze, R. D. Forrest, J. D. Carey, D. C. Cox, I. D. Robertson, B. L. Weiss, and S. R. P. Silva, "Reactive ion etching of quartz and Pyrex for microelectronic applications," J. Appl. Phys. 92, 3624-3629 (2002).
[CrossRef]

Sinta, R.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Spector, S. J.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

Spreiter, R.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4??-N??-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Steier, W. H.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic Polymer Ring Resonator Modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape," Science 288, 119-122 (2000).
[CrossRef]

Sullivan, P.

Sullivan, P. A.

L. R. Dalton, P. A. Sullivan, D. H. Bale, and B. C. Olbricht, "Theory-inspired nano-engineering of photonic and electronic materials: Noncentrosymmetric charge-transfer electro-optic materials," Solid-State Electron. 51, 1263-1277 (2007).
[CrossRef]

Takayama, K.

T. Kaino, B. Cai, and K. Takayama, "Fabrication of DAST channel optical waveguides," Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Tazawa, H.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic Polymer Ring Resonator Modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

Thakur, M.

M. Thakur, J. Titus, and A. Mishra, "Single-crystal thin films of organic molecular salt may lead to a new generation of electro-optic devices," Opt. Eng. 42, 456-458 (2003).
[CrossRef]

Tian, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

Titus, J.

M. Thakur, J. Titus, and A. Mishra, "Single-crystal thin films of organic molecular salt may lead to a new generation of electro-optic devices," Opt. Eng. 42, 456-458 (2003).
[CrossRef]

Vellekoop, M. J.

A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, "Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers," Sens. Actuators, A 82, 224-228 (2000).
[CrossRef]

Vidakovic, P. V.

Waldow, M.

Wang, G.

Wang, S.

H. C. Jung, W. Lu, S. Wang, L. J. Lee, and X. Hu, "Etching of Pyrex glass substrates by inductively coupled plasma reactive ion etching for micronanofluidic devices," J. Vac. Sci. Technol. B 24, 3162-3164 (2006).
[CrossRef]

Weiss, B. L.

D. A. Zeze, R. D. Forrest, J. D. Carey, D. C. Cox, I. D. Robertson, B. L. Weiss, and S. R. P. Silva, "Reactive ion etching of quartz and Pyrex for microelectronic applications," J. Appl. Phys. 92, 3624-3629 (2002).
[CrossRef]

Wong, M. S.

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4??-N??-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Xu, Q.

Yun, H.

S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008).
[CrossRef]

Zeze, D. A.

D. A. Zeze, R. D. Forrest, J. D. Carey, D. C. Cox, I. D. Robertson, B. L. Weiss, and S. R. P. Silva, "Reactive ion etching of quartz and Pyrex for microelectronic applications," J. Appl. Phys. 92, 3624-3629 (2002).
[CrossRef]

Zgonik, M.

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4??-N??-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

Zhang, C.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape," Science 288, 119-122 (2000).
[CrossRef]

Zhang, H.

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape," Science 288, 119-122 (2000).
[CrossRef]

Zyss, J.

S. Gauvin and J. Zyss, "Growth of organic crystalline thin films, their optical characterization and application to non-linear optics," J. Cryst. Growth 166, 507-527 (1996).
[CrossRef]

Adv. Funct. Mater.

T. Kaino, B. Cai, and K. Takayama, "Fabrication of DAST channel optical waveguides," Adv. Funct. Mater. 12, 599-603 (2002).
[CrossRef]

Adv. Mater.

O.-P. Kwon, S.-J. Kwon, H. Figi, M. Jazbinsek, and P. Günter, "Organic Electro-optic Single- Crystalline Thin Films Grown Directly on Modified Amorphous Substrates," Adv. Mater. 20, 543-545 (2008).
[CrossRef]

Appl. Phys. Lett.

W. Geis, R. Sinta, W. Mowers, S. J. Deneault, M. F. Marchant, K. E. Krohn, S. J. Spector, D. R. Calawa, and T. M. Lyszczarz, "Fabrication of crystalline organic waveguides with an exceptionally large electro-optic coefficient," Appl. Phys. Lett. 84, 3729-3731 (2004).
[CrossRef]

M. Schmidt, M. Eich, U. Huebner, and R. Boucher, "Electro-optically tunable photonic crystals," Appl. Phys. Lett. 87, 121110 (2005).
[CrossRef]

F. Pan, G. Knöpfle, C. Bosshard, S. Follonier, R. Spreiter, M. S. Wong, and P. Günter, "Electro-optic properties of the organic salt 4-N,N-dimethylamino-4??-N??-methyl-stilbazolium tosylate," Appl. Phys. Lett. 69, 13-15 (1996).
[CrossRef]

Appl. Surface Science

P. Dittrich, R. Bartlome, G. Montemezzani, and P. Günter, "Femtosecond laser ablation of DAST," Appl. Surface Science 220, 88-95 (2003).
[CrossRef]

Chem. Mater.

O.-P. Kwon, B. Ruiz, A. Choubey, L. Mutter, A. Schneider, M. Jazbinsek, V. Gramlich, and P. Günter, "Organic Nonlinear Optical Crystals Based on Configurationally Locked Polyene for Melt Growth," Chem. Mater. 18, 4049-4054 (2006).
[CrossRef]

Comptes Rendus Physique

S. Manetta, M. Ehrensperger, C. Bosshard, and P. Günter, "Organic thin film crystal growth for nonlinear optics: Present methods and exploratory developments," Comptes Rendus Physique 3, 449-462 (2002).
[CrossRef]

Cryst. Growth Des.

A. Choubey, O.-P. Kwon, M. Jazbinsek, and P. Günter, "High-Quality Organic Single Crystalline Thin Films for Nonlinear Optical Applications by Vapor Growth," Cryst. Growth Des. 7, 402-405 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron

M. Jazbinsek, L. Mutter, and P. Günter, "Photonic applications with the organic nonlinear optical crystal DAST," IEEE J. Sel. Top. Quantum Electron., doi: 10.1109/JSTQE.2008.921407 (2008).

IEEE J. Sel. Top. Quantum Electron.

B. Bortnik, Y.-C. Hung, H. Tazawa, B.-J. Seo, J. Luo, A. K.-Y. Jen, W. H. Steier, and H. R. Fetterman, "Electrooptic Polymer Ring Resonator Modulation up to 165 GHz," IEEE J. Sel. Top. Quantum Electron. 13, 104-110 (2007).
[CrossRef]

J. Appl. Phys.

L. Mutter, M. Jazbinsek, M. Zgonik, U. Meier, C. Bosshard, and P. Günter, "Photobleaching and optical properties of organic crystal 4-N, N-dimethylamino-4??-N??-methyl stilbazolium tosylate," J. Appl. Phys. 94, 1356-1361 (2003).
[CrossRef]

D. A. Zeze, R. D. Forrest, J. D. Carey, D. C. Cox, I. D. Robertson, B. L. Weiss, and S. R. P. Silva, "Reactive ion etching of quartz and Pyrex for microelectronic applications," J. Appl. Phys. 92, 3624-3629 (2002).
[CrossRef]

W. L. Bond, "Measurement of the Refractive Indices of Several Crystals," J. Appl. Phys. 36, 1674-1677 (1965).
[CrossRef]

J. Chem. Phys.

D. Rezzonico, S.-J. Kwon, H. Figi, O.-P. Kwon, M. Jazbinsek, and P. Gunter, "Photochemical stability of nonlinear optical chromophores in polymeric and crystalline materials," J. Chem. Phys. 128, 124713 (2008).
[CrossRef] [PubMed]

J. Cryst. Growth

S. Gauvin and J. Zyss, "Growth of organic crystalline thin films, their optical characterization and application to non-linear optics," J. Cryst. Growth 166, 507-527 (1996).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. C

S.-J. Kwon, O.-P. Kwon, J.-I. Seo, M. Jazbinsek, L. Mutter, V. Gramlich, Y.-S. Lee, H. Yun, and P. Günter, "Highly Nonlinear Optical Configurationally Locked Triene Crystals Based on 3,5-Dimethyl-2-cyclohexen-1-one," J. Phys. Chem. C 112, 7846-7852 (2008).
[CrossRef]

J. Phys. D: Appl. Phys.

A. Leyderman, Y. Cui, and B. G. Penn, "Electro-optical effects in thin single-crystalline organic films grown from the melt," J. Phys. D: Appl. Phys. 31, 2711-2717 (1998).
[CrossRef]

J. Vac. Sci. Technol. B

L. Li, T. Abe, and M. Esashi, "Smooth surface glass etching by deep reactive ion etching with SF6 and Xe gases," J. Vac. Sci. Technol. B 21, 2545-2549 (2003).
[CrossRef]

H. C. Jung, W. Lu, S. Wang, L. J. Lee, and X. Hu, "Etching of Pyrex glass substrates by inductively coupled plasma reactive ion etching for micronanofluidic devices," J. Vac. Sci. Technol. B 24, 3162-3164 (2006).
[CrossRef]

Nat. Photon.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, "Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients," Nat. Photon. 1, 180-185 (2007).
[CrossRef]

Opt. Eng.

M. Thakur, J. Titus, and A. Mishra, "Single-crystal thin films of organic molecular salt may lead to a new generation of electro-optic devices," Opt. Eng. 42, 456-458 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

M. A. Schmidt, "Wafer-to-Wafer Bonding for Microstructure Formation," Proc. IEEE 86, 1575-1585 (1998).
[CrossRef]

Science

Y. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, and W. H. Steier, "Low (Sub-1-Volt) Halfwave Voltage Polymeric Electro-optic Modulators Achieved by Controlling Chromophore Shape," Science 288, 119-122 (2000).
[CrossRef]

M. Lee, H. E. Katz, C. Erben, D. M. Gill, P. Gopalan, J. D. Heber, and D. J. McGee, "Broadband Modulation of Light by Using an Electro-Optic Polymer," Science 298, 1401-1403 (2002).
[CrossRef] [PubMed]

Sens. Actuators, A

A. Berthold, L. Nicola, P. M. Sarro, and M. J. Vellekoop, "Glass-to-glass anodic bonding with standard IC technology thin films as intermediate layers," Sens. Actuators, A 82, 224-228 (2000).
[CrossRef]

X. Li, T. Abe, and M. Esashi, "Deep reactive ion etching of Pyrex glass using SF6 plasma," Sens. Actuators, A 87, 139-145 (2001).
[CrossRef]

Solid-State Electron.

L. R. Dalton, P. A. Sullivan, D. H. Bale, and B. C. Olbricht, "Theory-inspired nano-engineering of photonic and electronic materials: Noncentrosymmetric charge-transfer electro-optic materials," Solid-State Electron. 51, 1263-1277 (2007).
[CrossRef]

Solide State Technol.

P. Lindner, V. Dragoi, S. Farrens, T. Glinsner, and P. Hangweier, "Advanced techniques for 3D devices in waferbonding processes," Solide State Technol. 47, 55-58 (2004).

Other

OlympIOs, "Integrated Optics Software," Available at http://www.c2v.nl/fr index.shtml? /products/software/olympios-software.shtml.

Q.-Y. Tong and U. Gösele, Semiconductor wafer bonding: Science and technology (John Wiley & Sons, New York, 1999).

C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Florsheimer, P. Kaatz, and P. Günter, Organic nonlinear optical materials (Gordon and Breach, Basel, 1995).

C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, and P. Günter, "Second-Order Nonlinear Optical Organic Materials: Recent Developments," in Nonlinear Optical Effects and Materials, P. Günter, ed., Springer Series in Optical Sciences Vol. 72, chap. 3 (Springer-Verlag, Berlin, 2000).

C. Hunziker, S.-J. Kwon, H. Figi, F. Juvalta, O.-P. Kwon, M. Jazbinsek, and P. Günter, "Configurationally locked polyene organic crystals OH1: Linear and nonlinear optical properties," (2008). (submitted).

H. Figi, L. Mutter, C. Hunziker, M. Jazbinsek, P. Günter, and B. J. Coe, "Extremely large non-resonant quadratic nonlinear optical response in crystals of the stilbazolium salt DAPSH," (2008). (submitted).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

A view of the unit cell along the polar crystallographic b axis (two fold symmetry axis) showing the alignment of the chromophores in the ac plane with respect to the unit cell; θ is the angle between the dielectric axis x 1 and the normal to the bc plane (dashed line) and was determined as described in the Appendix. The good agreement of the intramolecular donor-acceptor direction with the experimentally determined orientation of x 1 can be seen. The hydrogen atoms are omitted for clarity.

Fig. 2.
Fig. 2.

Processing steps for the fabrication of electrode equipped waveguide channels. a) 40 nm chromium and 50 nm amorphous silicon were deposited and structured on a borosilicate wafer by standard photolithography. b) The straight waveguide structure was patterned in-between neighboring chromium/silicon stripes by reactive ion etching. c) A cover borosilicate glass was anodically bonded to the fabricated structure to delimit the waveguide volume in vertical direction. d) The cover glass was shorter than the waveguide length, such that the fabricated channels were accessible for the melt of DAT2 and the material could flow in by capillary action and crystallize there.

Fig. 3.
Fig. 3.

X-ray diffraction θ –2θ scan of a melt grown thin film crystal of DAT2. The reflections correspond to a single lattice constant normal to the surface of 20.1±0.3Å.

Fig. 4.
Fig. 4.

Transmission microscope image of a DAT2 crystal grown from the melt in a groove of a correspondingly structured substrate. The crystallographic a- and b-axes are parallel and perpendicular to the waveguide respectively.

Fig. 5.
Fig. 5.

Scanning electron micrograph of an end-facet of a melt grown DAT2 crystal.

Fig. 6.
Fig. 6.

Transmission microscope image of approximately 25 nm thick DAT2 crystalline stripes grown from the melt as seen between crossed polarizers. The corresponding end-facet is shown in Fig. 7.

Fig. 7.
Fig. 7.

Scanning electron micrograph of an end-facet of an approximately 25 nm thick DAT2 crystal grown from the melt.

Fig. 8.
Fig. 8.

Transmission microscope image of an approximately 90 nm thick crystalline nanosheet of DAT2 grown from the melt as seen between crossed polarizers. The black spots indicate regions without crystalline material. Two crystalline domains can be seen as noticeable in the lower right corner, where the crystal orientation rotates by 11±1°. Grooves of any shape structured in the substrate borosilicate glass can be efficiently filled by flowing the melt of DAT2 through nanosize channels to the structure, a 0.5 μm deep microring resonator structure in this case. The orientation of the crystal in the ring-structure is the same as throughout the entire single crystalline domain.

Fig. A1.
Fig. A1.

Numbered fringe maxima of normal incidence transmission spectrum measured on a DAT2 crystalline thin film. The light was polarized parallel to the dielectric x 2-axis (open dots) or perpendicular to it (i.e. parallel to the crystallographic a-axis) (full squares). The solid lines correspond to the Sellmeier model in Eq. (A1) with parameters of Table A1. The inset shows a typical transmission spectrum measured, from which the fringe maxima were extracted.

Fig. A2.
Fig. A2.

Dispersion of the refractive indices of DAT2 in terms of a one-oscillator model. The solid lines represent the refractive index experienced by light polarized parallel (n 2) and perpendicular (n 13) to the dielectric axis x 2 with normal incidence to the c-face of a DAT2 crystal as a function of the wavelength. The solid curves were obtained from a least square theoretical analysis of the Sellmeier model in Eq. (A1) to the data from a normal incidence transmission spectrum. The discrete data points at 1.064 μm represent the resulting refractive indices determined from a prism coupling experiment. To obtain the refractive index value experienced by a TM mode at 1.55 μm (filled diamond) the corresponding data point measured at 1.064 μm (filled square) was extrapolated assuming the same dispersion coefficients q and λ 0 (dashed curve) as for the refractive index n 13.

Fig. A3.
Fig. A3.

Birefringence between the two eigenpolarizations for incident normal to the ab-crystallographic plane. The dotted curve represents the birefringence calculated from the dispersion parameters in Table A1. The dashed line is the birefringence measured with a tilting compensator B and a polarizing microscope with a white light source. The two birefringence values are in good agreement close to the absorption edge in the transmission spectrum of DAT2 (solid line).

Fig. A4.
Fig. A4.

Coupling angle measured in a prism coupling experiment with a DAT2 crystalline thin film. The wave vector of the guided modes was along the crystallographic a-axis and the light was polarized parallel to the dielectric x 2 axes (TE-modes, full squares) or polarized perpendicular to the crystallographic ab-plane (TM modes, open dots). The solid lines are the least square theoretical fits to a model based on Eq.(A2) and the standard mode equation of a asymmetric step-index planar waveguide. The inset shows a typical reflected intensity in a coupling experiment as a function of the incidence angle on the hypotenuse of the prism. Note that prism coupling for TM and TE polarization was performed with the crystal on glass substrate and without a substrate respectively.

Tables (1)

Tables Icon

Table A1. Sellmeier parameters for the refractive index dispersion of Eq. (A1) which correspond best to the experimental data obtained from a normal incidence transmission spectrum or which were used to extrapolate the refractive index measured for a TM mode at 1.064 μm to a wavelength of 1.55 μm. The given values are the parameters for calculating the refractive indices, while the error indicated is the error range of the measurement.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ ( 1 n 2 ) ij = r ijk E k ,
r 112 = δI M ΔI M 1 ( cos θ ) 2 2 λ d π ln eff n 2 δ U ,
n 2 ( λ ) = n 0 2 + q λ 2 λ 2 λ 0 2 = n 0 2 + E d E 0 E 0 2 E 2 ,
N m = n p sin ( δ arcsin ( sin ( φ m ) n p ) ) ,

Metrics