Abstract

We have reported the optical clock division utilizing an injected mode-locked fiber ring laser incorporating semiconductor optical amplifiers (SOAs) and a dispersion compensation fiber (DCF). The clock division is mainly caused by the modulation competition between two wavelength components while both of them satisfy the harmonic mode-locking condition at the newly generated frequency. Stable second, third, and fourth clock divisions are obtained by properly adjusting the polarization controllers inside the ring cavity when a 10-GHz clock signal without any sub-harmonic frequency component is injected into the cavity. The radio-frequency spectra show good qualities of the obtained clock division trains.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Y. Ming, L. H. Feng, and Y. Matsui, "A new scheme of all-optical clock division for optical time division multiplexing networks," in 13th Annual Meeting LEOS 2000, 623-624.
  2. K. K. Chow, C. Shu, Y. M. Yang, and H. F. Liu, "Optical control of period doubling in a gain-switched fabry-Perot laser diode and its application in all-optical clock division," IEE Proc.-Optoelectron. 150, 239-245 (2003).
    [CrossRef]
  3. R. J. Manning, A. J. Pousite, and K. J. Blow, "All-optical clock division using a semiconductor optical amplifier loop mirror with feedback," Electron. Lett. 32, 1504-1506 (1996).
    [CrossRef]
  4. R. J. Manning, I. D. Philips, A. D. Ellis, A. E. Kelly, A. J. Poustie, and K. J. Blow, "All-optical clock division at 40 GHz using semiconductor optical amplifier based nonlinear interferometer," Electron. Lett. 35, 827-829 (1999).
    [CrossRef]
  5. L. H. Jae and K. H. Geun, "Polarization-independent all-optical clock division using a semiconductor optical amplifier/grating filter switch," IEEE Photon. Technol. Lett. 11, 469-471 (1999).
    [CrossRef]
  6. X. Lei, Y. Minyu, B. C. Wang, I. Glesk, and P. R. Prucnal, "All-optical clock division with mode-locked figure-eight laser based on the slow carrier recovery rate in semiconductor optical amplifier," IEEE Photon. Technol. Lett. 14, 402-404 (2002).
    [CrossRef]
  7. T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos," 20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser," Opt. Lett. 17, 1209-1211 (1999).
    [CrossRef]
  8. K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, "30 Gb/s All-optical clock recovery circuit," IEEE Photon. Technol. Lett. 12, 705-707 (2000).
    [CrossRef]
  9. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier," Appl. Phys. Lett. 91, 051107 (2007).
    [CrossRef]
  10. J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking," Opt. Lett. 32, 2462-2464 (2007).
    [CrossRef] [PubMed]
  11. K. Vlachos, "Optical clock recovery and clock division at 20 Gb/s using a tunable semiconductor fiber ring laser," Opt. Commun. 222, 249-255 (2003).
    [CrossRef]
  12. W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength mode-locked fiber ring laser based on reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
    [CrossRef]
  13. K. E. Zoiros, T. Houbavlis, and M. Moyssidis, "Complete theoretical analysis of actively mode-locked fiber ring laser with external optical modulation of a semiconductor optical amplifier," Opt. Commun. 254, 310-329 (2005).
    [CrossRef]
  14. L. M. Zhao, D. Y. Tang, F. Liu, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Exp. 19, 4573-4578 (2004).
    [CrossRef]

2007 (3)

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier," Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking," Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength mode-locked fiber ring laser based on reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

2005 (1)

K. E. Zoiros, T. Houbavlis, and M. Moyssidis, "Complete theoretical analysis of actively mode-locked fiber ring laser with external optical modulation of a semiconductor optical amplifier," Opt. Commun. 254, 310-329 (2005).
[CrossRef]

2004 (1)

L. M. Zhao, D. Y. Tang, F. Liu, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Exp. 19, 4573-4578 (2004).
[CrossRef]

2003 (2)

K. Vlachos, "Optical clock recovery and clock division at 20 Gb/s using a tunable semiconductor fiber ring laser," Opt. Commun. 222, 249-255 (2003).
[CrossRef]

K. K. Chow, C. Shu, Y. M. Yang, and H. F. Liu, "Optical control of period doubling in a gain-switched fabry-Perot laser diode and its application in all-optical clock division," IEE Proc.-Optoelectron. 150, 239-245 (2003).
[CrossRef]

2002 (1)

X. Lei, Y. Minyu, B. C. Wang, I. Glesk, and P. R. Prucnal, "All-optical clock division with mode-locked figure-eight laser based on the slow carrier recovery rate in semiconductor optical amplifier," IEEE Photon. Technol. Lett. 14, 402-404 (2002).
[CrossRef]

2000 (1)

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, "30 Gb/s All-optical clock recovery circuit," IEEE Photon. Technol. Lett. 12, 705-707 (2000).
[CrossRef]

1999 (3)

T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos," 20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser," Opt. Lett. 17, 1209-1211 (1999).
[CrossRef]

R. J. Manning, I. D. Philips, A. D. Ellis, A. E. Kelly, A. J. Poustie, and K. J. Blow, "All-optical clock division at 40 GHz using semiconductor optical amplifier based nonlinear interferometer," Electron. Lett. 35, 827-829 (1999).
[CrossRef]

L. H. Jae and K. H. Geun, "Polarization-independent all-optical clock division using a semiconductor optical amplifier/grating filter switch," IEEE Photon. Technol. Lett. 11, 469-471 (1999).
[CrossRef]

1996 (1)

R. J. Manning, A. J. Pousite, and K. J. Blow, "All-optical clock division using a semiconductor optical amplifier loop mirror with feedback," Electron. Lett. 32, 1504-1506 (1996).
[CrossRef]

Avramopoulos, H.

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, "30 Gb/s All-optical clock recovery circuit," IEEE Photon. Technol. Lett. 12, 705-707 (2000).
[CrossRef]

T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos," 20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser," Opt. Lett. 17, 1209-1211 (1999).
[CrossRef]

Blow, K. J.

R. J. Manning, I. D. Philips, A. D. Ellis, A. E. Kelly, A. J. Poustie, and K. J. Blow, "All-optical clock division at 40 GHz using semiconductor optical amplifier based nonlinear interferometer," Electron. Lett. 35, 827-829 (1999).
[CrossRef]

R. J. Manning, A. J. Pousite, and K. J. Blow, "All-optical clock division using a semiconductor optical amplifier loop mirror with feedback," Electron. Lett. 32, 1504-1506 (1996).
[CrossRef]

Chow, K. K.

K. K. Chow, C. Shu, Y. M. Yang, and H. F. Liu, "Optical control of period doubling in a gain-switched fabry-Perot laser diode and its application in all-optical clock division," IEE Proc.-Optoelectron. 150, 239-245 (2003).
[CrossRef]

Ellis, A. D.

R. J. Manning, I. D. Philips, A. D. Ellis, A. E. Kelly, A. J. Poustie, and K. J. Blow, "All-optical clock division at 40 GHz using semiconductor optical amplifier based nonlinear interferometer," Electron. Lett. 35, 827-829 (1999).
[CrossRef]

Fejer, M. M.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier," Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking," Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

Geun, K. H.

L. H. Jae and K. H. Geun, "Polarization-independent all-optical clock division using a semiconductor optical amplifier/grating filter switch," IEEE Photon. Technol. Lett. 11, 469-471 (1999).
[CrossRef]

Glesk, I.

X. Lei, Y. Minyu, B. C. Wang, I. Glesk, and P. R. Prucnal, "All-optical clock division with mode-locked figure-eight laser based on the slow carrier recovery rate in semiconductor optical amplifier," IEEE Photon. Technol. Lett. 14, 402-404 (2002).
[CrossRef]

Hatziefremidis, A.

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, "30 Gb/s All-optical clock recovery circuit," IEEE Photon. Technol. Lett. 12, 705-707 (2000).
[CrossRef]

T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos," 20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser," Opt. Lett. 17, 1209-1211 (1999).
[CrossRef]

Houbavlis, T.

K. E. Zoiros, T. Houbavlis, and M. Moyssidis, "Complete theoretical analysis of actively mode-locked fiber ring laser with external optical modulation of a semiconductor optical amplifier," Opt. Commun. 254, 310-329 (2005).
[CrossRef]

Huang, D.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier," Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking," Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

Jae, L. H.

L. H. Jae and K. H. Geun, "Polarization-independent all-optical clock division using a semiconductor optical amplifier/grating filter switch," IEEE Photon. Technol. Lett. 11, 469-471 (1999).
[CrossRef]

Kelly, A. E.

R. J. Manning, I. D. Philips, A. D. Ellis, A. E. Kelly, A. J. Poustie, and K. J. Blow, "All-optical clock division at 40 GHz using semiconductor optical amplifier based nonlinear interferometer," Electron. Lett. 35, 827-829 (1999).
[CrossRef]

Lei, X.

X. Lei, Y. Minyu, B. C. Wang, I. Glesk, and P. R. Prucnal, "All-optical clock division with mode-locked figure-eight laser based on the slow carrier recovery rate in semiconductor optical amplifier," IEEE Photon. Technol. Lett. 14, 402-404 (2002).
[CrossRef]

Liu, F.

L. M. Zhao, D. Y. Tang, F. Liu, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Exp. 19, 4573-4578 (2004).
[CrossRef]

Liu, H. F.

K. K. Chow, C. Shu, Y. M. Yang, and H. F. Liu, "Optical control of period doubling in a gain-switched fabry-Perot laser diode and its application in all-optical clock division," IEE Proc.-Optoelectron. 150, 239-245 (2003).
[CrossRef]

Liu, L.

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength mode-locked fiber ring laser based on reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Manning, R. J.

R. J. Manning, I. D. Philips, A. D. Ellis, A. E. Kelly, A. J. Poustie, and K. J. Blow, "All-optical clock division at 40 GHz using semiconductor optical amplifier based nonlinear interferometer," Electron. Lett. 35, 827-829 (1999).
[CrossRef]

R. J. Manning, A. J. Pousite, and K. J. Blow, "All-optical clock division using a semiconductor optical amplifier loop mirror with feedback," Electron. Lett. 32, 1504-1506 (1996).
[CrossRef]

Minyu, Y.

X. Lei, Y. Minyu, B. C. Wang, I. Glesk, and P. R. Prucnal, "All-optical clock division with mode-locked figure-eight laser based on the slow carrier recovery rate in semiconductor optical amplifier," IEEE Photon. Technol. Lett. 14, 402-404 (2002).
[CrossRef]

Moyssidis, M.

K. E. Zoiros, T. Houbavlis, and M. Moyssidis, "Complete theoretical analysis of actively mode-locked fiber ring laser with external optical modulation of a semiconductor optical amplifier," Opt. Commun. 254, 310-329 (2005).
[CrossRef]

Papakyriakopoulos, T.

T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos," 20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser," Opt. Lett. 17, 1209-1211 (1999).
[CrossRef]

Philips, I. D.

R. J. Manning, I. D. Philips, A. D. Ellis, A. E. Kelly, A. J. Poustie, and K. J. Blow, "All-optical clock division at 40 GHz using semiconductor optical amplifier based nonlinear interferometer," Electron. Lett. 35, 827-829 (1999).
[CrossRef]

Pousite, A. J.

R. J. Manning, A. J. Pousite, and K. J. Blow, "All-optical clock division using a semiconductor optical amplifier loop mirror with feedback," Electron. Lett. 32, 1504-1506 (1996).
[CrossRef]

Poustie, A. J.

R. J. Manning, I. D. Philips, A. D. Ellis, A. E. Kelly, A. J. Poustie, and K. J. Blow, "All-optical clock division at 40 GHz using semiconductor optical amplifier based nonlinear interferometer," Electron. Lett. 35, 827-829 (1999).
[CrossRef]

Prucnal, P. R.

X. Lei, Y. Minyu, B. C. Wang, I. Glesk, and P. R. Prucnal, "All-optical clock division with mode-locked figure-eight laser based on the slow carrier recovery rate in semiconductor optical amplifier," IEEE Photon. Technol. Lett. 14, 402-404 (2002).
[CrossRef]

Shu, C.

K. K. Chow, C. Shu, Y. M. Yang, and H. F. Liu, "Optical control of period doubling in a gain-switched fabry-Perot laser diode and its application in all-optical clock division," IEE Proc.-Optoelectron. 150, 239-245 (2003).
[CrossRef]

Sun, J.

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength mode-locked fiber ring laser based on reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking," Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier," Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

Sun, Q.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier," Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking," Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

Tang, D. Y.

L. M. Zhao, D. Y. Tang, F. Liu, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Exp. 19, 4573-4578 (2004).
[CrossRef]

Theophilopoulos, G.

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, "30 Gb/s All-optical clock recovery circuit," IEEE Photon. Technol. Lett. 12, 705-707 (2000).
[CrossRef]

Vlachos, K.

K. Vlachos, "Optical clock recovery and clock division at 20 Gb/s using a tunable semiconductor fiber ring laser," Opt. Commun. 222, 249-255 (2003).
[CrossRef]

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, "30 Gb/s All-optical clock recovery circuit," IEEE Photon. Technol. Lett. 12, 705-707 (2000).
[CrossRef]

T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos," 20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser," Opt. Lett. 17, 1209-1211 (1999).
[CrossRef]

Wang, B. C.

X. Lei, Y. Minyu, B. C. Wang, I. Glesk, and P. R. Prucnal, "All-optical clock division with mode-locked figure-eight laser based on the slow carrier recovery rate in semiconductor optical amplifier," IEEE Photon. Technol. Lett. 14, 402-404 (2002).
[CrossRef]

Wang, D.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking," Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier," Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

Wang, J.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier," Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking," Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength mode-locked fiber ring laser based on reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Yang, Y. M.

K. K. Chow, C. Shu, Y. M. Yang, and H. F. Liu, "Optical control of period doubling in a gain-switched fabry-Perot laser diode and its application in all-optical clock division," IEE Proc.-Optoelectron. 150, 239-245 (2003).
[CrossRef]

Zhang, W.

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength mode-locked fiber ring laser based on reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Zhang, X.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking," Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier," Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

Zhao, B.

L. M. Zhao, D. Y. Tang, F. Liu, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Exp. 19, 4573-4578 (2004).
[CrossRef]

Zhao, L. M.

L. M. Zhao, D. Y. Tang, F. Liu, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Exp. 19, 4573-4578 (2004).
[CrossRef]

Zhou, M.

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier," Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking," Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

Zoiros, K. E.

K. E. Zoiros, T. Houbavlis, and M. Moyssidis, "Complete theoretical analysis of actively mode-locked fiber ring laser with external optical modulation of a semiconductor optical amplifier," Opt. Commun. 254, 310-329 (2005).
[CrossRef]

Appl. Phys. Lett. (1)

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "All-optical format conversion using a periodically poled lithium niobate waveguide and a reflective semiconductor optical amplifier," Appl. Phys. Lett. 91, 051107 (2007).
[CrossRef]

Electron. Lett. (2)

R. J. Manning, A. J. Pousite, and K. J. Blow, "All-optical clock division using a semiconductor optical amplifier loop mirror with feedback," Electron. Lett. 32, 1504-1506 (1996).
[CrossRef]

R. J. Manning, I. D. Philips, A. D. Ellis, A. E. Kelly, A. J. Poustie, and K. J. Blow, "All-optical clock division at 40 GHz using semiconductor optical amplifier based nonlinear interferometer," Electron. Lett. 35, 827-829 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

L. H. Jae and K. H. Geun, "Polarization-independent all-optical clock division using a semiconductor optical amplifier/grating filter switch," IEEE Photon. Technol. Lett. 11, 469-471 (1999).
[CrossRef]

X. Lei, Y. Minyu, B. C. Wang, I. Glesk, and P. R. Prucnal, "All-optical clock division with mode-locked figure-eight laser based on the slow carrier recovery rate in semiconductor optical amplifier," IEEE Photon. Technol. Lett. 14, 402-404 (2002).
[CrossRef]

K. Vlachos, G. Theophilopoulos, A. Hatziefremidis, and H. Avramopoulos, "30 Gb/s All-optical clock recovery circuit," IEEE Photon. Technol. Lett. 12, 705-707 (2000).
[CrossRef]

W. Zhang, J. Sun, J. Wang, and L. Liu, "Multiwavelength mode-locked fiber ring laser based on reflective semiconductor optical amplifiers," IEEE Photon. Technol. Lett. 19, 1418-1420 (2007).
[CrossRef]

Opt. Commun. (2)

K. E. Zoiros, T. Houbavlis, and M. Moyssidis, "Complete theoretical analysis of actively mode-locked fiber ring laser with external optical modulation of a semiconductor optical amplifier," Opt. Commun. 254, 310-329 (2005).
[CrossRef]

K. Vlachos, "Optical clock recovery and clock division at 20 Gb/s using a tunable semiconductor fiber ring laser," Opt. Commun. 222, 249-255 (2003).
[CrossRef]

Opt. Exp. (1)

L. M. Zhao, D. Y. Tang, F. Liu, and B. Zhao, "Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity," Opt. Exp. 19, 4573-4578 (2004).
[CrossRef]

Opt. Lett. (2)

T. Papakyriakopoulos, K. Vlachos, A. Hatziefremidis, and H. Avramopoulos," 20-GHz broadly tunable and stable mode-locked semiconductor amplifier fiber ring laser," Opt. Lett. 17, 1209-1211 (1999).
[CrossRef]

J. Wang, J. Sun, Q. Sun, D. Wang, M. Zhou, X. Zhang, D. Huang, and M. M. Fejer, "Experimental observation of all-optical non-return-to-zero-to-return-to-zero format conversion based on cascaded second-order nonlinearity assisted by active mode-locking," Opt. Lett. 32, 2462-2464 (2007).
[CrossRef] [PubMed]

Optoelectron. (1)

K. K. Chow, C. Shu, Y. M. Yang, and H. F. Liu, "Optical control of period doubling in a gain-switched fabry-Perot laser diode and its application in all-optical clock division," IEE Proc.-Optoelectron. 150, 239-245 (2003).
[CrossRef]

Other (1)

Y. Y. Ming, L. H. Feng, and Y. Matsui, "A new scheme of all-optical clock division for optical time division multiplexing networks," in 13th Annual Meeting LEOS 2000, 623-624.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental setup of optical clock division. OC: optical circulator. PC: polarization controller. SOA: semiconductor optical amplifier. RSOA: reflective semiconductor optical amplifier. DCF: dispersion compensation fiber. BPF: band-pass filter. VOA: variable optical attenuator. TNBF: Tunable narrow band filter. PD: photo detector. CSA: communications signal analyzer. OSA: optical spectrum analyzer. RF: radio-frequency spectrum analyzer.

Fig. 2.
Fig. 2.

(a). The RF spectrum of the injected clock signal. (b) The waveform of the injected clock signal.

Fig. 3.
Fig. 3.

(a1)–(a3), (b1)–(b3), and (c1)–(c3): optical spectra, RF spectra and waveforms for 2nd, 3rd and 4th clock divisions, respectively. In (a3), (b3) and (c3), R1s indicate the waveforms without filter; R2s show the waveforms of one of the filtered wavelength components at quasi-stable states; R3s and R4s show the stable waveforms of the two filtered wavelength components respectively.

Fig. 4.
Fig. 4.

(a). The RF spectrum of the ‘11001100’ output pulse train. (b) The waveforms of stable ‘11001100’ output pulse trains.

Fig. 5.
Fig. 5.

The RF spectra of the (a) 5th clock division and (b) 6th clock division.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f i = mc L eff = mc n r L r + n d ( λ ) L d ,
Δ λ = Δ m f i D L d ,

Metrics