Abstract

We evaluate the efficiency of back-scattering, ηB, from a standard cantilevered AFM probe contacting a flat sample, and also the back-scattering phase. Both quantities are spectroscopically determined over a broad 9-12 μm wavelength range by coherent frequency-comb Fourier-transform spectroscopy (c-FTIR). While Fresnel reflectivity contributes a key factor with the SiC Reststrahlen edge at 975 cm-1 as previously documented, we observe spectral effects ascribable to antenna resonances involving the shaft, cantilever, and sample. Most conspicuous is strong (ηB = 13%), resonant back-scattering at 955 cm-1, a frequency that suggests the involvement of surface-phonon-polariton excitation, when the tip probes the area near a SiC/Au boundary. The probe’s antenna properties are elucidated by numerically simulating the near fields, the fields in the radiation zone, and the far-field scattering distributions. The simulations are performed for a realistic tip/sample configuration with a three-orders-of-magnitude scale variation. The results suggest a standing-surface-plasmon-polariton pattern along the shaft, as well as far-field antenna lobes that change with the sample’s dielectric properties.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. Roy. Soc. A 362, 787-805 (2004).
    [CrossRef]
  2. T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003).
    [CrossRef] [PubMed]
  3. F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution," Science 269, 1083-1085 (1995).
    [CrossRef] [PubMed]
  4. B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
    [CrossRef]
  5. R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
    [CrossRef] [PubMed]
  6. B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
    [CrossRef]
  7. B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000).
    [CrossRef]
  8. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002).
    [CrossRef] [PubMed]
  9. T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nanolett. 4, 1669-1672 (2004).
    [CrossRef]
  10. T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
    [CrossRef]
  11. Z. H. Kim, B. Liu, and S. R. Leone, "Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy," J. Chem. Phys. B 109, 8503-8508 (2005).
  12. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," NanoLett. 6, 1307-1310 (2006).
    [CrossRef]
  13. A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550 (2007).
    [CrossRef] [PubMed]
  14. J. Wessel, "Surface-enhanced optical microscopy," J. Opt. Soc. Am. B 2, 1538-1540 (1985).
    [CrossRef]
  15. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
    [CrossRef] [PubMed]
  16. C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  17. F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542-1544 (2004).
    [CrossRef] [PubMed]
  18. A. Schliesser, M. Brehm, D. W. v. d. Weide, and F. Keilmann, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-9038 (2005).
    [CrossRef] [PubMed]
  19. M. Brehm, A. Schliesser, and F. Keilmann, "Spectroscopic near-field microscopy using frequency combs in the mid-infrared," Opt. Express 14, 11222-11233 (2006).
    [CrossRef] [PubMed]
  20. L. M. Matarrese and K. M. Evenson, "Improved coupling to infrared whisker diodes by use of antenna theory," Appl. Phys. Lett. 17, 8-10 (1970).
    [CrossRef]
  21. B. Twu and S. E. Schwarz, "Mechanisms and properties of point-contact metal-insulator-metal diode detectors at 10.6 µm," Appl. Phys. Lett. 25, 595-598 (1974).
    [CrossRef]
  22. B. Twu and S. E. Schwarz, "Properties of infrared cat-whisker antennas near 10.6 µm," Appl. Phys. Lett. 26, 672-675 (1975).
    [CrossRef]
  23. S. Wang, "Antenna properties and operation of metal-barrier-metal devices in the infrared and visible regions," Appl. Phys. Lett. 28, 303-305 (1976).
    [CrossRef]
  24. D. B. Rutledge, S. E. Schwarz, and A. T. Adams, "Infrared and submillimetre antennas," Infr. Phys. 18, 713-729 (1978).
    [CrossRef]
  25. T. Kurosawa, "Properties of the S/N ratio of the beat note in frequency-mixing using the W-Ni point contact diode at 32 THz," Jp. J. Appl. Phys. 27, 55-61 (1988).
    [CrossRef]
  26. M. Völcker, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning force microscope and its application to detect local conductivity," J. Vac. Sci. Technol. B 12, 2129-2132 (1994).
    [CrossRef]
  27. T. Gutjahr-Löser, A. Hornsteiner, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning tunneling microscope at 1.3 µm," J. Appl. Phys. 85, 6331-6336 (1999).
    [CrossRef]
  28. C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant length of infrared dipole antennas," Inf. Phys. Technol. 41, 271-281 (2000).
    [CrossRef]
  29. S. V. Chepurov, V. M. Klementyev, S. A. Kuznetsov, V. S. Pivtsov, and V. F. Zakharyash, "Experimental investigations of Schottky barrier diodes as nonlinear elements in 800-nm-wavelength region," Appl. Phys. B 79, 33-38 (2004).
    [CrossRef]
  30. B. Knoll and F. Keilmann, "Mid-infrared scanning near-field optical microscope resolves 30 nm," J. Microsc. 194, 512-515 (1999).
    [CrossRef]
  31. H. F. Hamann, A. Gallagher, and D. J. Nesbitt, "Enhanced sensitivity near-field scanning optical microscopy at high spatial resolution," Appl. Phys. Lett. 73, 1469-1471 (1998).
    [CrossRef]
  32. M. Brehm, Infrarot-Mikrospektroskopie mit einem Nahfeldmikroskop (Verlag Dr. Hut, Dissertation Technische Universität, München, 2007).
  33. A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, "Near-field spectral effects due to electromagnetic surface excitations," Phys. Rev. Lett. 85, 1548-1551 (2000).
    [CrossRef] [PubMed]
  34. Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).
  35. Z. Schlesinger, B. C. Webb, and A. J. Sievers, "Attenuation and coupling of far-infrared surface plasmons," Solid-State Commun. 39, 1035-1039 (1981).
    [CrossRef]
  36. A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 81103-81101 - 81103-81103 (2005).
    [CrossRef]
  37. D. A. G. Bruggemann, Annalen der Physik 24, 636 (1935).
  38. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
    [CrossRef] [PubMed]
  39. R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003).
    [CrossRef]
  40. R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
    [CrossRef]
  41. J. Renger, S. Grafstrom, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 075410 (2005).
    [CrossRef]
  42. R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14, 2921-2931 (2006).
    [CrossRef] [PubMed]
  43. R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probes," Nanotechnology 17, 475-482 (2006).
    [CrossRef]
  44. J. Jin, The finite element method in electromagnetics (J. Wiley&Sons, New York, 1993).
  45. D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. �?ajko, and I. Tsukerman, "Optical properties and enhancement factors of the tips for apertureless near-field optics," J. Opt. A 8, S183-S190 (2006).
    [CrossRef]
  46. I. Tsukerman, Computational methods for nanoscale applications (Springer Verlag, 2008).
  47. J. Dai, F. �?ajko, I. Tsukerman, and M. I. Stockman, "Electrodynamic effects in plasmonic nanolenses," Phys. Rev. B 77, 115419 (2008).
    [CrossRef]
  48. J. H. Weaver, "Optical properties of Rh, Pd, Ir, and Pt," Phys. Rev. B 11, 1416-1425 (1975).
    [CrossRef]
  49. P. B. Johnson and R. W. Christy, "Optical properties of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  50. M. Hofmann, A. Zwyietz, K. Karch, and F. Bechstedt, "Lattice dynamics of SiC polytypes within the bond-charge model," Phys. Rev. B 50, 13401-13411 (1994).
    [CrossRef]

2008 (1)

J. Dai, F. �?ajko, I. Tsukerman, and M. I. Stockman, "Electrodynamic effects in plasmonic nanolenses," Phys. Rev. B 77, 115419 (2008).
[CrossRef]

2007 (2)

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550 (2007).
[CrossRef] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

2006 (6)

Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," NanoLett. 6, 1307-1310 (2006).
[CrossRef]

M. Brehm, A. Schliesser, and F. Keilmann, "Spectroscopic near-field microscopy using frequency combs in the mid-infrared," Opt. Express 14, 11222-11233 (2006).
[CrossRef] [PubMed]

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14, 2921-2931 (2006).
[CrossRef] [PubMed]

R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probes," Nanotechnology 17, 475-482 (2006).
[CrossRef]

D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. �?ajko, and I. Tsukerman, "Optical properties and enhancement factors of the tips for apertureless near-field optics," J. Opt. A 8, S183-S190 (2006).
[CrossRef]

2005 (3)

J. Renger, S. Grafstrom, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 075410 (2005).
[CrossRef]

Z. H. Kim, B. Liu, and S. R. Leone, "Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy," J. Chem. Phys. B 109, 8503-8508 (2005).

A. Schliesser, M. Brehm, D. W. v. d. Weide, and F. Keilmann, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-9038 (2005).
[CrossRef] [PubMed]

2004 (5)

S. V. Chepurov, V. M. Klementyev, S. A. Kuznetsov, V. S. Pivtsov, and V. F. Zakharyash, "Experimental investigations of Schottky barrier diodes as nonlinear elements in 800-nm-wavelength region," Appl. Phys. B 79, 33-38 (2004).
[CrossRef]

F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542-1544 (2004).
[CrossRef] [PubMed]

F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. Roy. Soc. A 362, 787-805 (2004).
[CrossRef]

T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nanolett. 4, 1669-1672 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
[CrossRef]

2003 (2)

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003).
[CrossRef] [PubMed]

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003).
[CrossRef]

2002 (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

2001 (2)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
[CrossRef]

2000 (5)

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant length of infrared dipole antennas," Inf. Phys. Technol. 41, 271-281 (2000).
[CrossRef]

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, "Near-field spectral effects due to electromagnetic surface excitations," Phys. Rev. Lett. 85, 1548-1551 (2000).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000).
[CrossRef]

1999 (3)

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

B. Knoll and F. Keilmann, "Mid-infrared scanning near-field optical microscope resolves 30 nm," J. Microsc. 194, 512-515 (1999).
[CrossRef]

T. Gutjahr-Löser, A. Hornsteiner, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning tunneling microscope at 1.3 µm," J. Appl. Phys. 85, 6331-6336 (1999).
[CrossRef]

1998 (1)

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, "Enhanced sensitivity near-field scanning optical microscopy at high spatial resolution," Appl. Phys. Lett. 73, 1469-1471 (1998).
[CrossRef]

1995 (1)

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

1994 (2)

M. Völcker, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning force microscope and its application to detect local conductivity," J. Vac. Sci. Technol. B 12, 2129-2132 (1994).
[CrossRef]

M. Hofmann, A. Zwyietz, K. Karch, and F. Bechstedt, "Lattice dynamics of SiC polytypes within the bond-charge model," Phys. Rev. B 50, 13401-13411 (1994).
[CrossRef]

1988 (1)

T. Kurosawa, "Properties of the S/N ratio of the beat note in frequency-mixing using the W-Ni point contact diode at 32 THz," Jp. J. Appl. Phys. 27, 55-61 (1988).
[CrossRef]

1985 (1)

J. Wessel, "Surface-enhanced optical microscopy," J. Opt. Soc. Am. B 2, 1538-1540 (1985).
[CrossRef]

1981 (1)

Z. Schlesinger, B. C. Webb, and A. J. Sievers, "Attenuation and coupling of far-infrared surface plasmons," Solid-State Commun. 39, 1035-1039 (1981).
[CrossRef]

1978 (1)

D. B. Rutledge, S. E. Schwarz, and A. T. Adams, "Infrared and submillimetre antennas," Infr. Phys. 18, 713-729 (1978).
[CrossRef]

1976 (1)

S. Wang, "Antenna properties and operation of metal-barrier-metal devices in the infrared and visible regions," Appl. Phys. Lett. 28, 303-305 (1976).
[CrossRef]

1975 (2)

B. Twu and S. E. Schwarz, "Properties of infrared cat-whisker antennas near 10.6 µm," Appl. Phys. Lett. 26, 672-675 (1975).
[CrossRef]

J. H. Weaver, "Optical properties of Rh, Pd, Ir, and Pt," Phys. Rev. B 11, 1416-1425 (1975).
[CrossRef]

1974 (1)

B. Twu and S. E. Schwarz, "Mechanisms and properties of point-contact metal-insulator-metal diode detectors at 10.6 µm," Appl. Phys. Lett. 25, 595-598 (1974).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical properties of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1970 (1)

L. M. Matarrese and K. M. Evenson, "Improved coupling to infrared whisker diodes by use of antenna theory," Appl. Phys. Lett. 17, 8-10 (1970).
[CrossRef]

1935 (1)

D. A. G. Bruggemann, Annalen der Physik 24, 636 (1935).

??ajko, F.

J. Dai, F. �?ajko, I. Tsukerman, and M. I. Stockman, "Electrodynamic effects in plasmonic nanolenses," Phys. Rev. B 77, 115419 (2008).
[CrossRef]

D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. �?ajko, and I. Tsukerman, "Optical properties and enhancement factors of the tips for apertureless near-field optics," J. Opt. A 8, S183-S190 (2006).
[CrossRef]

Adams, A. T.

D. B. Rutledge, S. E. Schwarz, and A. T. Adams, "Infrared and submillimetre antennas," Infr. Phys. 18, 713-729 (1978).
[CrossRef]

Adams, M. M.

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14, 2921-2931 (2006).
[CrossRef] [PubMed]

Aizpurua, J.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003).
[CrossRef]

Andreev, G. O.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

Balatsky, A. V.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

Basov, D. N.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

Bechstedt, F.

M. Hofmann, A. Zwyietz, K. Karch, and F. Bechstedt, "Lattice dynamics of SiC polytypes within the bond-charge model," Phys. Rev. B 50, 13401-13411 (1994).
[CrossRef]

Boreman, G. D.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant length of infrared dipole antennas," Inf. Phys. Technol. 41, 271-281 (2000).
[CrossRef]

Brehm, M.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," NanoLett. 6, 1307-1310 (2006).
[CrossRef]

M. Brehm, A. Schliesser, and F. Keilmann, "Spectroscopic near-field microscopy using frequency combs in the mid-infrared," Opt. Express 14, 11222-11233 (2006).
[CrossRef] [PubMed]

A. Schliesser, M. Brehm, D. W. v. d. Weide, and F. Keilmann, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-9038 (2005).
[CrossRef] [PubMed]

Bruggemann, D. A. G.

D. A. G. Bruggemann, Annalen der Physik 24, 636 (1935).

Carminati, R.

Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, "Near-field spectral effects due to electromagnetic surface excitations," Phys. Rev. Lett. 85, 1548-1551 (2000).
[CrossRef] [PubMed]

Chae, B. G.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

Chen, Y.

Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).

Chepurov, S. V.

S. V. Chepurov, V. M. Klementyev, S. A. Kuznetsov, V. S. Pivtsov, and V. F. Zakharyash, "Experimental investigations of Schottky barrier diodes as nonlinear elements in 800-nm-wavelength region," Appl. Phys. B 79, 33-38 (2004).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical properties of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Codreanu, I.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant length of infrared dipole antennas," Inf. Phys. Technol. 41, 271-281 (2000).
[CrossRef]

Cvitkovic, A.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550 (2007).
[CrossRef] [PubMed]

Dai, J.

J. Dai, F. �?ajko, I. Tsukerman, and M. I. Stockman, "Electrodynamic effects in plasmonic nanolenses," Phys. Rev. B 77, 115419 (2008).
[CrossRef]

de Wilde, Y.

Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).

Eng, L. M.

J. Renger, S. Grafstrom, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 075410 (2005).
[CrossRef]

Esteban, R.

R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probes," Nanotechnology 17, 475-482 (2006).
[CrossRef]

Evenson, K. M.

L. M. Matarrese and K. M. Evenson, "Improved coupling to infrared whisker diodes by use of antenna theory," Appl. Phys. Lett. 17, 8-10 (1970).
[CrossRef]

Formanek, F.

Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).

Foster, M. D.

D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. �?ajko, and I. Tsukerman, "Optical properties and enhancement factors of the tips for apertureless near-field optics," J. Opt. A 8, S183-S190 (2006).
[CrossRef]

Fumeaux, C.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant length of infrared dipole antennas," Inf. Phys. Technol. 41, 271-281 (2000).
[CrossRef]

Gallagher, A.

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, "Enhanced sensitivity near-field scanning optical microscopy at high spatial resolution," Appl. Phys. Lett. 73, 1469-1471 (1998).
[CrossRef]

Gohle, C.

F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542-1544 (2004).
[CrossRef] [PubMed]

Gonzalez, F. J.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant length of infrared dipole antennas," Inf. Phys. Technol. 41, 271-281 (2000).
[CrossRef]

Grafstrom, S.

J. Renger, S. Grafstrom, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 075410 (2005).
[CrossRef]

Gralak, B.

Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).

Greffet, J. J.

Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, "Near-field spectral effects due to electromagnetic surface excitations," Phys. Rev. Lett. 85, 1548-1551 (2000).
[CrossRef] [PubMed]

Gritz, M. A.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant length of infrared dipole antennas," Inf. Phys. Technol. 41, 271-281 (2000).
[CrossRef]

Gutjahr-Löser, T.

T. Gutjahr-Löser, A. Hornsteiner, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning tunneling microscope at 1.3 µm," J. Appl. Phys. 85, 6331-6336 (1999).
[CrossRef]

Hamann, H. F.

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, "Enhanced sensitivity near-field scanning optical microscopy at high spatial resolution," Appl. Phys. Lett. 73, 1469-1471 (1998).
[CrossRef]

Hanarp, P.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003).
[CrossRef]

Hartschuh, R. D.

D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. �?ajko, and I. Tsukerman, "Optical properties and enhancement factors of the tips for apertureless near-field optics," J. Opt. A 8, S183-S190 (2006).
[CrossRef]

Hillenbrand, R.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550 (2007).
[CrossRef] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," NanoLett. 6, 1307-1310 (2006).
[CrossRef]

J. Renger, S. Grafstrom, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 075410 (2005).
[CrossRef]

T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nanolett. 4, 1669-1672 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
[CrossRef]

F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. Roy. Soc. A 362, 787-805 (2004).
[CrossRef]

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003).
[CrossRef] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
[CrossRef]

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 81103-81101 - 81103-81103 (2005).
[CrossRef]

Ho, P. C.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

Hofmann, M.

M. Hofmann, A. Zwyietz, K. Karch, and F. Bechstedt, "Lattice dynamics of SiC polytypes within the bond-charge model," Phys. Rev. B 50, 13401-13411 (1994).
[CrossRef]

Holzwarth, R.

F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542-1544 (2004).
[CrossRef] [PubMed]

Hornsteiner, A.

T. Gutjahr-Löser, A. Hornsteiner, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning tunneling microscope at 1.3 µm," J. Appl. Phys. 85, 6331-6336 (1999).
[CrossRef]

Huber, A.

A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 81103-81101 - 81103-81103 (2005).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical properties of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Joulain, K.

Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, "Near-field spectral effects due to electromagnetic surface excitations," Phys. Rev. Lett. 85, 1548-1551 (2000).
[CrossRef] [PubMed]

Kalkbrenner, T.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Karch, K.

M. Hofmann, A. Zwyietz, K. Karch, and F. Bechstedt, "Lattice dynamics of SiC polytypes within the bond-charge model," Phys. Rev. B 50, 13401-13411 (1994).
[CrossRef]

Kazantsev, D.

A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 81103-81101 - 81103-81103 (2005).
[CrossRef]

Keilmann, F.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," NanoLett. 6, 1307-1310 (2006).
[CrossRef]

M. Brehm, A. Schliesser, and F. Keilmann, "Spectroscopic near-field microscopy using frequency combs in the mid-infrared," Opt. Express 14, 11222-11233 (2006).
[CrossRef] [PubMed]

F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. Roy. Soc. A 362, 787-805 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
[CrossRef]

F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542-1544 (2004).
[CrossRef] [PubMed]

T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nanolett. 4, 1669-1672 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003).
[CrossRef] [PubMed]

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
[CrossRef]

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000).
[CrossRef]

B. Knoll and F. Keilmann, "Mid-infrared scanning near-field optical microscope resolves 30 nm," J. Microsc. 194, 512-515 (1999).
[CrossRef]

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

Kern, K.

R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probes," Nanotechnology 17, 475-482 (2006).
[CrossRef]

Kim, B. J.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

Kim, H. T.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

Kim, Z. H.

Z. H. Kim, B. Liu, and S. R. Leone, "Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy," J. Chem. Phys. B 109, 8503-8508 (2005).

Kisliuk, A.

D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. �?ajko, and I. Tsukerman, "Optical properties and enhancement factors of the tips for apertureless near-field optics," J. Opt. A 8, S183-S190 (2006).
[CrossRef]

Klementyev, V. M.

S. V. Chepurov, V. M. Klementyev, S. A. Kuznetsov, V. S. Pivtsov, and V. F. Zakharyash, "Experimental investigations of Schottky barrier diodes as nonlinear elements in 800-nm-wavelength region," Appl. Phys. B 79, 33-38 (2004).
[CrossRef]

Knoll, B.

B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000).
[CrossRef]

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

B. Knoll and F. Keilmann, "Mid-infrared scanning near-field optical microscope resolves 30 nm," J. Microsc. 194, 512-515 (1999).
[CrossRef]

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

Krieger, W.

T. Gutjahr-Löser, A. Hornsteiner, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning tunneling microscope at 1.3 µm," J. Appl. Phys. 85, 6331-6336 (1999).
[CrossRef]

M. Völcker, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning force microscope and its application to detect local conductivity," J. Vac. Sci. Technol. B 12, 2129-2132 (1994).
[CrossRef]

Kurosawa, T.

T. Kurosawa, "Properties of the S/N ratio of the beat note in frequency-mixing using the W-Ni point contact diode at 32 THz," Jp. J. Appl. Phys. 27, 55-61 (1988).
[CrossRef]

Kuznetsov, S. A.

S. V. Chepurov, V. M. Klementyev, S. A. Kuznetsov, V. S. Pivtsov, and V. F. Zakharyash, "Experimental investigations of Schottky barrier diodes as nonlinear elements in 800-nm-wavelength region," Appl. Phys. B 79, 33-38 (2004).
[CrossRef]

Lee, N.

D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. �?ajko, and I. Tsukerman, "Optical properties and enhancement factors of the tips for apertureless near-field optics," J. Opt. A 8, S183-S190 (2006).
[CrossRef]

Lemoine, P. A.

Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).

Leone, S. R.

Z. H. Kim, B. Liu, and S. R. Leone, "Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy," J. Chem. Phys. B 109, 8503-8508 (2005).

Liu, B.

Z. H. Kim, B. Liu, and S. R. Leone, "Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy," J. Chem. Phys. B 109, 8503-8508 (2005).

Maple, M. B.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

Martin, Y.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Matarrese, L. M.

L. M. Matarrese and K. M. Evenson, "Improved coupling to infrared whisker diodes by use of antenna theory," Appl. Phys. Lett. 17, 8-10 (1970).
[CrossRef]

Mehtani, D.

D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. �?ajko, and I. Tsukerman, "Optical properties and enhancement factors of the tips for apertureless near-field optics," J. Opt. A 8, S183-S190 (2006).
[CrossRef]

Mlynek, J.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Mulet, J. P.

Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).

Neacsu, C. C.

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14, 2921-2931 (2006).
[CrossRef] [PubMed]

Nesbitt, D. J.

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, "Enhanced sensitivity near-field scanning optical microscopy at high spatial resolution," Appl. Phys. Lett. 73, 1469-1471 (1998).
[CrossRef]

Ocelic, N.

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550 (2007).
[CrossRef] [PubMed]

A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 81103-81101 - 81103-81103 (2005).
[CrossRef]

Osgood, R. M.

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14, 2921-2931 (2006).
[CrossRef] [PubMed]

Panoiu, N. C.

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14, 2921-2931 (2006).
[CrossRef] [PubMed]

Pivtsov, V. S.

S. V. Chepurov, V. M. Klementyev, S. A. Kuznetsov, V. S. Pivtsov, and V. F. Zakharyash, "Experimental investigations of Schottky barrier diodes as nonlinear elements in 800-nm-wavelength region," Appl. Phys. B 79, 33-38 (2004).
[CrossRef]

Qazilbash, M. M.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

Ramstein, M.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Raschke, M. B.

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14, 2921-2931 (2006).
[CrossRef] [PubMed]

Renger, J.

J. Renger, S. Grafstrom, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 075410 (2005).
[CrossRef]

Roth, R. M.

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14, 2921-2931 (2006).
[CrossRef] [PubMed]

Rutledge, D. B.

D. B. Rutledge, S. E. Schwarz, and A. T. Adams, "Infrared and submillimetre antennas," Infr. Phys. 18, 713-729 (1978).
[CrossRef]

Sandoghdar, V.

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

Schaich, W. L.

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant length of infrared dipole antennas," Inf. Phys. Technol. 41, 271-281 (2000).
[CrossRef]

Schlesinger, Z.

Z. Schlesinger, B. C. Webb, and A. J. Sievers, "Attenuation and coupling of far-infrared surface plasmons," Solid-State Commun. 39, 1035-1039 (1981).
[CrossRef]

Schliesser, A.

M. Brehm, A. Schliesser, and F. Keilmann, "Spectroscopic near-field microscopy using frequency combs in the mid-infrared," Opt. Express 14, 11222-11233 (2006).
[CrossRef] [PubMed]

A. Schliesser, M. Brehm, D. W. v. d. Weide, and F. Keilmann, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-9038 (2005).
[CrossRef] [PubMed]

Schwarz, S. E.

D. B. Rutledge, S. E. Schwarz, and A. T. Adams, "Infrared and submillimetre antennas," Infr. Phys. 18, 713-729 (1978).
[CrossRef]

B. Twu and S. E. Schwarz, "Properties of infrared cat-whisker antennas near 10.6 µm," Appl. Phys. Lett. 26, 672-675 (1975).
[CrossRef]

B. Twu and S. E. Schwarz, "Mechanisms and properties of point-contact metal-insulator-metal diode detectors at 10.6 µm," Appl. Phys. Lett. 25, 595-598 (1974).
[CrossRef]

Shchegrov, A. V.

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, "Near-field spectral effects due to electromagnetic surface excitations," Phys. Rev. Lett. 85, 1548-1551 (2000).
[CrossRef] [PubMed]

Sievers, A. J.

Z. Schlesinger, B. C. Webb, and A. J. Sievers, "Attenuation and coupling of far-infrared surface plasmons," Solid-State Commun. 39, 1035-1039 (1981).
[CrossRef]

Sokolov, A. P.

D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. �?ajko, and I. Tsukerman, "Optical properties and enhancement factors of the tips for apertureless near-field optics," J. Opt. A 8, S183-S190 (2006).
[CrossRef]

Stockman, M. I.

J. Dai, F. �?ajko, I. Tsukerman, and M. I. Stockman, "Electrodynamic effects in plasmonic nanolenses," Phys. Rev. B 77, 115419 (2008).
[CrossRef]

Sutherland, D. S.

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003).
[CrossRef]

Taubner, T.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," NanoLett. 6, 1307-1310 (2006).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
[CrossRef]

T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nanolett. 4, 1669-1672 (2004).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003).
[CrossRef] [PubMed]

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

Tsukerman, I.

J. Dai, F. �?ajko, I. Tsukerman, and M. I. Stockman, "Electrodynamic effects in plasmonic nanolenses," Phys. Rev. B 77, 115419 (2008).
[CrossRef]

D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. �?ajko, and I. Tsukerman, "Optical properties and enhancement factors of the tips for apertureless near-field optics," J. Opt. A 8, S183-S190 (2006).
[CrossRef]

Twu, B.

B. Twu and S. E. Schwarz, "Properties of infrared cat-whisker antennas near 10.6 µm," Appl. Phys. Lett. 26, 672-675 (1975).
[CrossRef]

B. Twu and S. E. Schwarz, "Mechanisms and properties of point-contact metal-insulator-metal diode detectors at 10.6 µm," Appl. Phys. Lett. 25, 595-598 (1974).
[CrossRef]

Vogelgesang, R.

R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probes," Nanotechnology 17, 475-482 (2006).
[CrossRef]

Völcker, M.

M. Völcker, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning force microscope and its application to detect local conductivity," J. Vac. Sci. Technol. B 12, 2129-2132 (1994).
[CrossRef]

Walther, H.

T. Gutjahr-Löser, A. Hornsteiner, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning tunneling microscope at 1.3 µm," J. Appl. Phys. 85, 6331-6336 (1999).
[CrossRef]

M. Völcker, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning force microscope and its application to detect local conductivity," J. Vac. Sci. Technol. B 12, 2129-2132 (1994).
[CrossRef]

Wang, S.

S. Wang, "Antenna properties and operation of metal-barrier-metal devices in the infrared and visible regions," Appl. Phys. Lett. 28, 303-305 (1976).
[CrossRef]

Weaver, J. H.

J. H. Weaver, "Optical properties of Rh, Pd, Ir, and Pt," Phys. Rev. B 11, 1416-1425 (1975).
[CrossRef]

Webb, B. C.

Z. Schlesinger, B. C. Webb, and A. J. Sievers, "Attenuation and coupling of far-infrared surface plasmons," Solid-State Commun. 39, 1035-1039 (1981).
[CrossRef]

Wessel, J.

J. Wessel, "Surface-enhanced optical microscopy," J. Opt. Soc. Am. B 2, 1538-1540 (1985).
[CrossRef]

Wickramasinghe, H. K.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Yun, S. J.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

Zakharyash, V. F.

S. V. Chepurov, V. M. Klementyev, S. A. Kuznetsov, V. S. Pivtsov, and V. F. Zakharyash, "Experimental investigations of Schottky barrier diodes as nonlinear elements in 800-nm-wavelength region," Appl. Phys. B 79, 33-38 (2004).
[CrossRef]

Zenhausern, F.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

Zwyietz, A.

M. Hofmann, A. Zwyietz, K. Karch, and F. Bechstedt, "Lattice dynamics of SiC polytypes within the bond-charge model," Phys. Rev. B 50, 13401-13411 (1994).
[CrossRef]

Annalen der Physik (1)

D. A. G. Bruggemann, Annalen der Physik 24, 636 (1935).

Appl. Phys. B (2)

R. Hillenbrand and F. Keilmann, "Optical oscillation modes of plasmon particles observed in direct space by phase-contrast near-field microscopy," Appl. Phys. B 73, 239-243 (2001).
[CrossRef]

S. V. Chepurov, V. M. Klementyev, S. A. Kuznetsov, V. S. Pivtsov, and V. F. Zakharyash, "Experimental investigations of Schottky barrier diodes as nonlinear elements in 800-nm-wavelength region," Appl. Phys. B 79, 33-38 (2004).
[CrossRef]

Appl. Phys. Lett. (8)

H. F. Hamann, A. Gallagher, and D. J. Nesbitt, "Enhanced sensitivity near-field scanning optical microscopy at high spatial resolution," Appl. Phys. Lett. 73, 1469-1471 (1998).
[CrossRef]

L. M. Matarrese and K. M. Evenson, "Improved coupling to infrared whisker diodes by use of antenna theory," Appl. Phys. Lett. 17, 8-10 (1970).
[CrossRef]

B. Twu and S. E. Schwarz, "Mechanisms and properties of point-contact metal-insulator-metal diode detectors at 10.6 µm," Appl. Phys. Lett. 25, 595-598 (1974).
[CrossRef]

B. Twu and S. E. Schwarz, "Properties of infrared cat-whisker antennas near 10.6 µm," Appl. Phys. Lett. 26, 672-675 (1975).
[CrossRef]

S. Wang, "Antenna properties and operation of metal-barrier-metal devices in the infrared and visible regions," Appl. Phys. Lett. 28, 303-305 (1976).
[CrossRef]

B. Knoll and F. Keilmann, "Infrared conductivity mapping for nanoelectronics," Appl. Phys. Lett. 77, 3980-3982 (2000).
[CrossRef]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Nanoscale polymer recognition by spectral signature in scattering infrared near-field microscopy," Appl. Phys. Lett. 85, 5064-5066 (2004).
[CrossRef]

R. Hillenbrand, F. Keilmann, P. Hanarp, D. S. Sutherland, and J. Aizpurua, "Coherent imaging of nanoscale plasmon patterns with a carbon nanotube optical probe," Appl. Phys. Lett. 83, 368-370 (2003).
[CrossRef]

Inf. Phys. Technol. (1)

C. Fumeaux, M. A. Gritz, I. Codreanu, W. L. Schaich, F. J. Gonzalez, and G. D. Boreman, "Measurement of the resonant length of infrared dipole antennas," Inf. Phys. Technol. 41, 271-281 (2000).
[CrossRef]

Infr. Phys. (1)

D. B. Rutledge, S. E. Schwarz, and A. T. Adams, "Infrared and submillimetre antennas," Infr. Phys. 18, 713-729 (1978).
[CrossRef]

J. Appl. Phys. (1)

T. Gutjahr-Löser, A. Hornsteiner, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning tunneling microscope at 1.3 µm," J. Appl. Phys. 85, 6331-6336 (1999).
[CrossRef]

J. Chem. Phys. B (1)

Z. H. Kim, B. Liu, and S. R. Leone, "Nanometer-scale optical imaging of epitaxially grown GaN and InN islands using apertureless near-field microscopy," J. Chem. Phys. B 109, 8503-8508 (2005).

J. Microsc. (3)

T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, "A single gold particle as a probe for apertureless scanning near-field optical microscopy," J. Microsc. 202, 72-76 (2001).
[CrossRef] [PubMed]

T. Taubner, R. Hillenbrand, and F. Keilmann, "Performance of visible and mid-infrared scattering-type near-field optical microscopes," J. Microsc. 210, 311-314 (2003).
[CrossRef] [PubMed]

B. Knoll and F. Keilmann, "Mid-infrared scanning near-field optical microscope resolves 30 nm," J. Microsc. 194, 512-515 (1999).
[CrossRef]

J. Opt. A (1)

D. Mehtani, N. Lee, R. D. Hartschuh, A. Kisliuk, M. D. Foster, A. P. Sokolov, F. �?ajko, and I. Tsukerman, "Optical properties and enhancement factors of the tips for apertureless near-field optics," J. Opt. A 8, S183-S190 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Wessel, "Surface-enhanced optical microscopy," J. Opt. Soc. Am. B 2, 1538-1540 (1985).
[CrossRef]

J. Vac. Sci. Technol. B (1)

M. Völcker, W. Krieger, and H. Walther, "Laser-frequency mixing in a scanning force microscope and its application to detect local conductivity," J. Vac. Sci. Technol. B 12, 2129-2132 (1994).
[CrossRef]

Jp. J. Appl. Phys. (1)

T. Kurosawa, "Properties of the S/N ratio of the beat note in frequency-mixing using the W-Ni point contact diode at 32 THz," Jp. J. Appl. Phys. 27, 55-61 (1988).
[CrossRef]

Nanolett. (1)

T. Taubner, F. Keilmann, and R. Hillenbrand, "Nanomechanical resonance tuning and phase effects in optical near-field interaction," Nanolett. 4, 1669-1672 (2004).
[CrossRef]

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared spectroscopic mapping of single nanoparticles and viruses at nanoscale resolution," NanoLett. 6, 1307-1310 (2006).
[CrossRef]

Nanotechnol. (1)

R. Esteban, R. Vogelgesang, and K. Kern, "Simulation of optical near and far fields of dielectric apertureless scanning probes," Nanotechnology 17, 475-482 (2006).
[CrossRef]

Nature (3)

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999).
[CrossRef]

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418, 159-162 (2002).
[CrossRef] [PubMed]

Y. de Wilde, F. Formanek, R. Carminati, B. Gralak, P. A. Lemoine, K. Joulain, J. P. Mulet, Y. Chen, and J. J. Greffet, "Thermal radiation scanning tunneling microscopy," Nature 444, 740743 (2006).

Opt. Commun. (1)

B. Knoll and F. Keilmann, "Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy," Opt. Commun. 182, 321-328 (2000).
[CrossRef]

Opt. Express (4)

A. Cvitkovic, N. Ocelic, and R. Hillenbrand, "Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy," Opt. Express 15, 8550 (2007).
[CrossRef] [PubMed]

A. Schliesser, M. Brehm, D. W. v. d. Weide, and F. Keilmann, "Frequency-comb infrared spectrometer for rapid, remote chemical sensing," Opt. Express 13, 9029-9038 (2005).
[CrossRef] [PubMed]

M. Brehm, A. Schliesser, and F. Keilmann, "Spectroscopic near-field microscopy using frequency combs in the mid-infrared," Opt. Express 14, 11222-11233 (2006).
[CrossRef] [PubMed]

R. M. Roth, N. C. Panoiu, M. M. Adams, R. M. Osgood, C. C. Neacsu, and M. B. Raschke, "Resonant plasmon field enhancement from asymmetrically illuminated conical metallic-probe tips," Opt. Express 14, 2921-2931 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

F. Keilmann, C. Gohle, and R. Holzwarth, "Time-domain mid-infrared frequency-comb spectrometer," Opt. Lett. 29, 1542-1544 (2004).
[CrossRef] [PubMed]

Phil. Trans. Roy. Soc. A (1)

F. Keilmann and R. Hillenbrand, "Near-field microscopy by elastic light scattering from a tip," Phil. Trans. Roy. Soc. A 362, 787-805 (2004).
[CrossRef]

Phys. Rev. B (5)

J. Dai, F. �?ajko, I. Tsukerman, and M. I. Stockman, "Electrodynamic effects in plasmonic nanolenses," Phys. Rev. B 77, 115419 (2008).
[CrossRef]

J. H. Weaver, "Optical properties of Rh, Pd, Ir, and Pt," Phys. Rev. B 11, 1416-1425 (1975).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical properties of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

M. Hofmann, A. Zwyietz, K. Karch, and F. Bechstedt, "Lattice dynamics of SiC polytypes within the bond-charge model," Phys. Rev. B 50, 13401-13411 (1994).
[CrossRef]

J. Renger, S. Grafstrom, L. M. Eng, and R. Hillenbrand, "Resonant light scattering by near-field-induced phonon polaritons," Phys. Rev. B 71, 075410 (2005).
[CrossRef]

Phys. Rev. Lett. (2)

A. V. Shchegrov, K. Joulain, R. Carminati, and J. J. Greffet, "Near-field spectral effects due to electromagnetic surface excitations," Phys. Rev. Lett. 85, 1548-1551 (2000).
[CrossRef] [PubMed]

R. Hillenbrand and F. Keilmann, "Complex optical constants on a subwavelength scale," Phys. Rev. Lett. 85, 3029-3032 (2000).
[CrossRef] [PubMed]

Science (2)

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, "Scanning interferometric apertureless microscopy: optical imaging at 10 Angstrom resolution," Science 269, 1083-1085 (1995).
[CrossRef] [PubMed]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, "Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging," Science 318, 1750-1753 (2007).
[CrossRef] [PubMed]

Solid-State Commun. (1)

Z. Schlesinger, B. C. Webb, and A. J. Sievers, "Attenuation and coupling of far-infrared surface plasmons," Solid-State Commun. 39, 1035-1039 (1981).
[CrossRef]

Other (5)

A. Huber, N. Ocelic, D. Kazantsev, and R. Hillenbrand, "Near-field imaging of mid-infrared surface phonon polariton propagation," Appl. Phys. Lett. 87, 81103-81101 - 81103-81103 (2005).
[CrossRef]

M. Brehm, Infrarot-Mikrospektroskopie mit einem Nahfeldmikroskop (Verlag Dr. Hut, Dissertation Technische Universität, München, 2007).

C. F. Bohren and D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).

J. Jin, The finite element method in electromagnetics (J. Wiley&Sons, New York, 1993).

I. Tsukerman, Computational methods for nanoscale applications (Springer Verlag, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Optical layout of coupling a collimated infrared beam to the probe chip, using a parabolic mirror for both illumination and collection of back-scattering.

Fig. 2.
Fig. 2.

Infrared spectra of (A) measured back-scattering from s-SNOM tip in contact with a flat sample material, Au-red, Si-black, SiC-green; (B) calculated Fresnel reflection of SiC, normalized to a p-polarized plane wave incident at 45°.

Fig. 3.
Fig. 3.

Amplitude spectra of mid-infrared radiation back-scattered from tip in contact with SiC, for eight different focus positions separated by 5 μm, vertically (upper panel) and horizontally (lower panel). The colours correspond to the focus positions (upper panel) and the incident beam positions (lower panel), respectively, marked by 5 μm wide coloured symbols on the inserted SEM images showing two different views of the actually used tip.

Fig. 4.
Fig. 4.

Normalized amplitude spectra √η B of tip back-scattering, at varied distance z between tip and Au sample, as designated in μm in the colour table.

Fig. 5.
Fig. 5.

Normalized power efficiency spectra η B of tip back-scattering when the tip is in contact with SiC (green) or Au (red). Strong, resonant enhancement around 955 cm-1 is observed when the tip probes near the edge of a 20 nm thick Au film on SiC, at three different positions (blue, light bue, purple)).

Fig. 6.
Fig. 6.

Computational domain for simulating the field distribution near a realistic s-SNOM cantilevered tip probing near the edge of a 30 nm thick Au film on a SiC substrate.

Fig. 7.
Fig. 7.

Calculated distribution of the total field amplitude /Etot/ (normalized to the input field at beam center) in the central plane of the computational domain, for 950 cm-1 with the tip on Au, at 2.4 μm distance of from the film edge. The colour in the upper graph is in logarithmic scale. The lower, zoomed graphs (linear colour scales) show enhanced near fields around the tip apex (left) and the film edge (right).

Fig. 8.
Fig. 8.

Distribution of energy flow (normalized to the input value at beam center) for the same geometry and parameters as in Fig. 7. Logarithmic colour scale.

Fig. 9.
Fig. 9.

Calculated far-field angular scattering intensity for 950 cm-1. The angular range of the convergent input beam is indicated as a grey sector impinging from the left. (A) Two cases of homogeneous, flat samples, SiC (full) or Au (dashed); (B) a case of a partially Au covered SiC sample, with the tip positioned right on the edge (dashed), or at 2.4 μm distance from the edge on the Au film (full); the lines below the graph serve to visualize the Au film and its edge.

Fig. 10.
Fig. 10.

Calculated back-scattering efficiency η B integrated over the receiver aperture, for 950 cm-1 and 900 cm-1, vs. tip position from the Au film edge.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

( × E ) tan = jk 0 E tan j k 0 tan × ( tan × E tan ) + j k 0 tan ( tan ∙E tan )

Metrics