Abstract

Frequency-shifted dispersive optical waves generated as a result of soliton dynamics of 30-fs Ti: sapphire-laser pulses in an array of waveguiding wires, implemented on a platform of a photonic-crystal fiber (PCF), are shown to produce regular stable interference patterns with high visibility, indicating a high coherence of frequency-shifted fields. For a hexagonal array of waveguides built into a silica PCF, the field intensity at the main peak of a six-beam interference pattern was found to be a factor of 22 higher than the intensity of a frequency-shifted signal from an individual waveguide in the array and 3.7 times higher than the field intensity attainable through an incoherent superposition of the same fields.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P.St.J. Russell, “Photonic crystal fibers,” Science 299,358–362(2003).
    [Crossref] [PubMed]
  2. J. C. Knight, “Photonic crystal fibers,” Nature 424,847–851 (2003).
    [Crossref] [PubMed]
  3. Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416,233–237 (2002).
    [Crossref] [PubMed]
  4. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288,635–639 (2000).
    [Crossref] [PubMed]
  5. P. B. Corkum and F. Krausz, “Attosecond science,” Nature Phys. 3,381–387 (2007).
    [Crossref]
  6. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25,25–27 (2000).
    [Crossref]
  7. A. M. Zheltikov, “Let there be white light: Supercontinuum generation by ultrashort laser pulses,” Phys. Uspekhi, 49,605–628 (2006).
    [Crossref]
  8. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1176, (2006).
    [Crossref]
  9. A. M. Zheltikov, “Nonlinear optics of microstructure fibers,”Phys. Uspekhi, 47,69–98(2004).
    [Crossref]
  10. J. Sharping, J. Chen, X. Li, P. Kumar, and R. Windeler, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086–3094 (2004).
    [Crossref] [PubMed]
  11. J. Rarity, J. Fulconis, J. Duligall, W. Wadsworth, and P. Russell , “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
    [Crossref] [PubMed]
  12. C. Teisset, N. Ishii, T. Fuji, T. Metzger, S. Köhler, R. Holzwarth, A. Baltuška, A. Zheltikov, and F. Krausz , “Soliton-based pump-seed synchronization for few-cycle OPCPA,”Opt. Express 13, 6550–6557 (2005).
    [Crossref] [PubMed]
  13. M. Bellini and T. W. Hänsch, “Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer,” Opt. Lett. 25, 1049–1051 (2000).
    [Crossref]
  14. X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, and R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697–2703 (2003).
    [Crossref] [PubMed]
  15. F. Lu and W. Knox, “Generation of a broadband continuum with high spectral coherence in tapered singlemode optical fibers,” Opt. Express 12, 347–353 (2004).
    [Crossref] [PubMed]
  16. K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904–1(2003).
    [Crossref] [PubMed]
  17. C. Gross, T. Best, D. van Oosten, and I. Bloch, “Coherent and incoherent spectral broadening in a photonic crystal fiber,” Opt. Lett. 32, 1767–1769 (2007).
    [Crossref] [PubMed]
  18. D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel’skii, V. S. Shevandin, and Y. N. Kondrat’ev, “Efficient anti-Stokes generation through phasematched four-wave mixing in higher-order modes of a microstructure fiber,”Opt. Lett. 28, 1948–1950(2003).
    [Crossref] [PubMed]
  19. G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nature Photonics 1, 115–118 (2007).
    [Crossref]
  20. G. P. AgrawalNonlinear Fiber Optics (San Diego, Academic, 2001).
  21. P. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
    [Crossref] [PubMed]
  22. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
    [Crossref] [PubMed]
  23. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
    [Crossref] [PubMed]

2007 (3)

P. B. Corkum and F. Krausz, “Attosecond science,” Nature Phys. 3,381–387 (2007).
[Crossref]

G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nature Photonics 1, 115–118 (2007).
[Crossref]

C. Gross, T. Best, D. van Oosten, and I. Bloch, “Coherent and incoherent spectral broadening in a photonic crystal fiber,” Opt. Lett. 32, 1767–1769 (2007).
[Crossref] [PubMed]

2006 (2)

A. M. Zheltikov, “Let there be white light: Supercontinuum generation by ultrashort laser pulses,” Phys. Uspekhi, 49,605–628 (2006).
[Crossref]

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1176, (2006).
[Crossref]

2005 (2)

2004 (3)

2003 (5)

2002 (2)

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416,233–237 (2002).
[Crossref] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

2000 (3)

1995 (1)

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

1990 (1)

P. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

Agrawal, G. P.

G. P. AgrawalNonlinear Fiber Optics (San Diego, Academic, 2001).

Akhmediev, N.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Akimov, D. A.

Baltuška, A.

Bellini, M.

Benabid, F.

G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nature Photonics 1, 115–118 (2007).
[Crossref]

Best, T.

Bloch, I.

Chen, H. H.

P. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

Chen, J.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1176, (2006).
[Crossref]

X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, and R. Windeler, “Experimental studies of the coherence of microstructure-fiber supercontinuum,” Opt. Express 11, 2697–2703 (2003).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904–1(2003).
[Crossref] [PubMed]

Cordeiro, C.

G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nature Photonics 1, 115–118 (2007).
[Crossref]

Corkum, P. B.

P. B. Corkum and F. Krausz, “Attosecond science,” Nature Phys. 3,381–387 (2007).
[Crossref]

Corwin, K. L.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904–1(2003).
[Crossref] [PubMed]

Couny, F.

G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nature Photonics 1, 115–118 (2007).
[Crossref]

Cruz, C. H. B.

G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nature Photonics 1, 115–118 (2007).
[Crossref]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288,635–639 (2000).
[Crossref] [PubMed]

Diddams, S. A.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904–1(2003).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288,635–639 (2000).
[Crossref] [PubMed]

Dudley, J.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1176, (2006).
[Crossref]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904–1(2003).
[Crossref] [PubMed]

Dukel’skii, K. V.

Duligall, J.

Fragnito, H. L.

G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nature Photonics 1, 115–118 (2007).
[Crossref]

Fuji, T.

Fulconis, J.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1176, (2006).
[Crossref]

Griebner, U.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Gross, C.

Gu, X.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288,635–639 (2000).
[Crossref] [PubMed]

Hänsch, T. W.

Herrmann, J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Holzwarth, R.

Husakou, A.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Ishii, N.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288,635–639 (2000).
[Crossref] [PubMed]

Karlsson, M.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Kiefer, W.

Kimmel, M.

Knight, J. C.

G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nature Photonics 1, 115–118 (2007).
[Crossref]

J. C. Knight, “Photonic crystal fibers,” Nature 424,847–851 (2003).
[Crossref] [PubMed]

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Knox, W.

Köhler, S.

Kondrat’ev, Y. N.

Korn, G.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Krausz, F.

Kumar, P.

Lee, Y. C.

P. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

Li, X.

Lu, F.

Maier, S.

G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nature Photonics 1, 115–118 (2007).
[Crossref]

Maksimenka, R.

Metzger, T.

Newbury, N. R.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904–1(2003).
[Crossref] [PubMed]

Nickel, D.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Ranka, J. K.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25,25–27 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288,635–639 (2000).
[Crossref] [PubMed]

Rarity, J.

Russell, P.

Russell, P. St. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Russell, P.St.J.

P.St.J. Russell, “Photonic crystal fibers,” Science 299,358–362(2003).
[Crossref] [PubMed]

Schmitt, M.

Serebryannikov, E. E.

Sharping, J.

Shevandin, V. S.

Shreenath, A.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288,635–639 (2000).
[Crossref] [PubMed]

Stentz, A. J.

Teisset, C.

Trebino, R.

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416,233–237 (2002).
[Crossref] [PubMed]

van Oosten, D.

Wadsworth, W.

Wadsworth, W. J.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Wai, P. A.

P. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

Webber, K.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904–1(2003).
[Crossref] [PubMed]

Wiederhecker, G.

G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nature Photonics 1, 115–118 (2007).
[Crossref]

Windeler, R.

Windeler, R. S.

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904–1(2003).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288,635–639 (2000).
[Crossref] [PubMed]

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25,25–27 (2000).
[Crossref]

Zhavoronkov, N.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

Zheltikov, A.

Zheltikov, A. M.

A. M. Zheltikov, “Let there be white light: Supercontinuum generation by ultrashort laser pulses,” Phys. Uspekhi, 49,605–628 (2006).
[Crossref]

A. M. Zheltikov, “Nonlinear optics of microstructure fibers,”Phys. Uspekhi, 47,69–98(2004).
[Crossref]

D. A. Akimov, E. E. Serebryannikov, A. M. Zheltikov, M. Schmitt, R. Maksimenka, W. Kiefer, K. V. Dukel’skii, V. S. Shevandin, and Y. N. Kondrat’ev, “Efficient anti-Stokes generation through phasematched four-wave mixing in higher-order modes of a microstructure fiber,”Opt. Lett. 28, 1948–1950(2003).
[Crossref] [PubMed]

Nature (2)

J. C. Knight, “Photonic crystal fibers,” Nature 424,847–851 (2003).
[Crossref] [PubMed]

Th. Udem, R. Holzwarth, and T. W. Hänsch, “Optical Frequency Metrology,” Nature 416,233–237 (2002).
[Crossref] [PubMed]

Nature Photonics (1)

G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. C. Knight, C. H. B. Cruz, and H. L. Fragnito, “Field enhancement within an optical fibre with a subwavelength air core,” Nature Photonics 1, 115–118 (2007).
[Crossref]

Nature Phys. (1)

P. B. Corkum and F. Krausz, “Attosecond science,” Nature Phys. 3,381–387 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Phys. Rev. A (2)

P. A. Wai, H. H. Chen, and Y. C. Lee, “Radiations by solitons at the zero group-dispersion wavelength of singlemode optical fibers,” Phys. Rev. A 41, 426–439 (1990).
[Crossref] [PubMed]

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51, 2602–2607 (1995).
[Crossref] [PubMed]

Phys. Rev. Lett. (2)

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn,“Experimental Evidence for Supercontinuum Generation by Fission of Higher-Order Solitons in Photonic Fibers,” Phys. Rev. Lett. 88, 173901 (2002).
[Crossref] [PubMed]

K. L. Corwin, N. R. Newbury, J. M. Dudley, S. Coen, S. A. Diddams, K. Webber, and R. S. Windeler, “Fundamental noise limitations to supercontinuum generation in microstructure fiber,” Phys. Rev. Lett. 90, 113904–1(2003).
[Crossref] [PubMed]

Phys. Uspekhi, (2)

A. M. Zheltikov, “Let there be white light: Supercontinuum generation by ultrashort laser pulses,” Phys. Uspekhi, 49,605–628 (2006).
[Crossref]

A. M. Zheltikov, “Nonlinear optics of microstructure fibers,”Phys. Uspekhi, 47,69–98(2004).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1176, (2006).
[Crossref]

Science (2)

P.St.J. Russell, “Photonic crystal fibers,” Science 299,358–362(2003).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrierenvelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288,635–639 (2000).
[Crossref] [PubMed]

Other (1)

G. P. AgrawalNonlinear Fiber Optics (San Diego, Academic, 2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

(a) Scanning electron-microscope image of the photonic-crystal fiber with a hexagonal unit cell of the cladding encircled by a dashed line. (b) Spectra of Ti: sapphire-laser pulses transmitted through two adjacent microchannel waveguides in the hexagonal unit cell of the PCF cladding are shown by filled and open circles. The dashed line shows the spectrum of the input pulse.

Fig. 2.
Fig. 2.

Experimental (a) and computer-simulated (b) two-beam interference patterns produced by 460-nm frequency-shifted signals from two adjacent waveguides in the hexagonal waveguide array. (c) One-dimensional cut of the two-beam interference pattern produced by 460-nm frequency-shifted signals: (filled circles) experimental results, (dashed line) simulations for two fully coherent sources of 460-nm radiation.

Fig. 3.
Fig. 3.

Experimental (a) and computer-simulated (b) six-beam interference patterns produced by 460-nm frequency-shifted signals from the hexagonal waveguide array. Simulations were performed for a hexagonal array of fully coherent identical radiation sources with σ ij =0, δ ij =0,E i =E 0, and Ī6 = 6I 0 ; x and y are the transverse coordinates in the plane of the interference pattern and L is the distance from this plane to the end of the fiber. (c) Experimental multibeam interference pattern generated by an array of channel waveguides with slightly different geometries.

Metrics