Abstract

This paper reports an integrated optical buffer consisting of a low loss silicon waveguide delay line and a silicon evanescent gate matrix switch. The integrated device demonstrates an error free operation at 40 Gb/s data rate with a packet delay of 1.1 ns. This demonstration also highlights the silicon evanescent device platform to realize new types of photonic integrated devices by combining the low loss silicon passive components with the silicon evanescent photonic active devices.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Optical node with time-space-and-wavelength domain contention resolution, deflection and dropping capability

J.J. Vegas Olmos, N. Chi, G. Zervas, D. Simeonidou, S. Yu, I. Tafur Monroy, and A.M.J. Koonen
Opt. Express 14(24) 11545-11550 (2006)

SOA gate array recirculating buffer with fiber delay loop

Emily F. Burmeister, John P. Mack, Henrik N. Poulsen, Jonathan Klamkin, Larry A. Coldren, Daniel J. Blumenthal, and John E. Bowers
Opt. Express 16(12) 8451-8456 (2008)

Photonic integrated circuit optical buffer for packet-switched networks

Emily F. Burmeister, John P. Mack, Henrik N. Poulsen, Milan L. Mašanović, Biljana Stamenic, Daniel J. Blumenthal, and John E. Bowers
Opt. Express 17(8) 6629-6635 (2009)

References

  • View by:
  • |
  • |
  • |

  1. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics 1, 65–71, (2007).
    [Crossref]
  2. M. Davanco, A. M. Xing, J. Raring, E. L. Hu, and D. J. Blumenthal, “Detailed characterization of slow and dispersive propagation near a mini-stop-band of an InP photonic crystal waveguide,” Opt. Express 13, 4931–4938, (2005).
    [Crossref] [PubMed]
  3. N. Ogashiwa, H. Harai, N. Wada, F. Kubota, and Y. Shinoda, “Multi-stage fiber delay line buffer in photonic packet switch for asynchronously arriving variable-length packets,” IEICE Transactions on Communications E88b, 258–265, (2005).
    [Crossref]
  4. E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA Gate Array Recirculating Buffer for Optical Packet Switching,– Proc. OFC,  OWE4, (2008).
  5. E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 6, 10–18, (2008).
    [Crossref]
  6. H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An Electrically Pumped AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
    [Crossref]
  7. E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photon. Technol. Lett 18, 103–105, (2006).
    [Crossref]
  8. H. Park, Y. -H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15, 13539–13546, (2007).
    [Crossref] [PubMed]
  9. D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6, 122–154, (2000).
    [Crossref]
  10. G. P. Agrawal, Fiber-optic communication systems, 3rd ed. (New York: Wiley-Interscience, 2002).
  11. J. P. Mack, H. N. Poulsen, and D. J. Blumenthal, “40 Gb/s Autonomous Optical Packet Synchronizer,“ Proc. OFC, OTuD3, (2008).

2008 (2)

E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA Gate Array Recirculating Buffer for Optical Packet Switching,– Proc. OFC,  OWE4, (2008).

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 6, 10–18, (2008).
[Crossref]

2007 (3)

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An Electrically Pumped AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
[Crossref]

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics 1, 65–71, (2007).
[Crossref]

H. Park, Y. -H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15, 13539–13546, (2007).
[Crossref] [PubMed]

2006 (1)

E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photon. Technol. Lett 18, 103–105, (2006).
[Crossref]

2005 (2)

N. Ogashiwa, H. Harai, N. Wada, F. Kubota, and Y. Shinoda, “Multi-stage fiber delay line buffer in photonic packet switch for asynchronously arriving variable-length packets,” IEICE Transactions on Communications E88b, 258–265, (2005).
[Crossref]

M. Davanco, A. M. Xing, J. Raring, E. L. Hu, and D. J. Blumenthal, “Detailed characterization of slow and dispersive propagation near a mini-stop-band of an InP photonic crystal waveguide,” Opt. Express 13, 4931–4938, (2005).
[Crossref] [PubMed]

2000 (1)

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6, 122–154, (2000).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Fiber-optic communication systems, 3rd ed. (New York: Wiley-Interscience, 2002).

Baney, D. M.

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6, 122–154, (2000).
[Crossref]

Blumenthal, D. J.

E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA Gate Array Recirculating Buffer for Optical Packet Switching,– Proc. OFC,  OWE4, (2008).

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 6, 10–18, (2008).
[Crossref]

M. Davanco, A. M. Xing, J. Raring, E. L. Hu, and D. J. Blumenthal, “Detailed characterization of slow and dispersive propagation near a mini-stop-band of an InP photonic crystal waveguide,” Opt. Express 13, 4931–4938, (2005).
[Crossref] [PubMed]

J. P. Mack, H. N. Poulsen, and D. J. Blumenthal, “40 Gb/s Autonomous Optical Packet Synchronizer,“ Proc. OFC, OTuD3, (2008).

Bowers, J. E.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 6, 10–18, (2008).
[Crossref]

E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA Gate Array Recirculating Buffer for Optical Packet Switching,– Proc. OFC,  OWE4, (2008).

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An Electrically Pumped AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
[Crossref]

H. Park, Y. -H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15, 13539–13546, (2007).
[Crossref] [PubMed]

E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photon. Technol. Lett 18, 103–105, (2006).
[Crossref]

Burmeister, E. F.

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 6, 10–18, (2008).
[Crossref]

E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA Gate Array Recirculating Buffer for Optical Packet Switching,– Proc. OFC,  OWE4, (2008).

E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photon. Technol. Lett 18, 103–105, (2006).
[Crossref]

Cohen, O.

H. Park, Y. -H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15, 13539–13546, (2007).
[Crossref] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An Electrically Pumped AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
[Crossref]

Coldren, L. A.

E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA Gate Array Recirculating Buffer for Optical Packet Switching,– Proc. OFC,  OWE4, (2008).

Davanco, M.

Fang, A. W.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An Electrically Pumped AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
[Crossref]

H. Park, Y. -H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15, 13539–13546, (2007).
[Crossref] [PubMed]

Gallion, P.

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6, 122–154, (2000).
[Crossref]

Harai, H.

N. Ogashiwa, H. Harai, N. Wada, F. Kubota, and Y. Shinoda, “Multi-stage fiber delay line buffer in photonic packet switch for asynchronously arriving variable-length packets,” IEICE Transactions on Communications E88b, 258–265, (2005).
[Crossref]

Hu, E. L.

Jones, R.

H. Park, Y. -H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15, 13539–13546, (2007).
[Crossref] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An Electrically Pumped AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
[Crossref]

Klamkin, J.

E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA Gate Array Recirculating Buffer for Optical Packet Switching,– Proc. OFC,  OWE4, (2008).

Kubota, F.

N. Ogashiwa, H. Harai, N. Wada, F. Kubota, and Y. Shinoda, “Multi-stage fiber delay line buffer in photonic packet switch for asynchronously arriving variable-length packets,” IEICE Transactions on Communications E88b, 258–265, (2005).
[Crossref]

Kuo, Y. -H.

Mack, J. P.

E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA Gate Array Recirculating Buffer for Optical Packet Switching,– Proc. OFC,  OWE4, (2008).

J. P. Mack, H. N. Poulsen, and D. J. Blumenthal, “40 Gb/s Autonomous Optical Packet Synchronizer,“ Proc. OFC, OTuD3, (2008).

Ogashiwa, N.

N. Ogashiwa, H. Harai, N. Wada, F. Kubota, and Y. Shinoda, “Multi-stage fiber delay line buffer in photonic packet switch for asynchronously arriving variable-length packets,” IEICE Transactions on Communications E88b, 258–265, (2005).
[Crossref]

Paniccia, M. J.

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An Electrically Pumped AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
[Crossref]

H. Park, Y. -H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15, 13539–13546, (2007).
[Crossref] [PubMed]

Park, H.

H. Park, Y. -H. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers, “A hybrid AlGaInAs-silicon evanescent preamplifier and photodetector,” Opt. Express 15, 13539–13546, (2007).
[Crossref] [PubMed]

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An Electrically Pumped AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
[Crossref]

Poulsen, H. N.

E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA Gate Array Recirculating Buffer for Optical Packet Switching,– Proc. OFC,  OWE4, (2008).

J. P. Mack, H. N. Poulsen, and D. J. Blumenthal, “40 Gb/s Autonomous Optical Packet Synchronizer,“ Proc. OFC, OTuD3, (2008).

Raring, J.

Sekaric, L.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics 1, 65–71, (2007).
[Crossref]

Shinoda, Y.

N. Ogashiwa, H. Harai, N. Wada, F. Kubota, and Y. Shinoda, “Multi-stage fiber delay line buffer in photonic packet switch for asynchronously arriving variable-length packets,” IEICE Transactions on Communications E88b, 258–265, (2005).
[Crossref]

Tucker, R. S.

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6, 122–154, (2000).
[Crossref]

Vlasov, Y.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics 1, 65–71, (2007).
[Crossref]

Wada, N.

N. Ogashiwa, H. Harai, N. Wada, F. Kubota, and Y. Shinoda, “Multi-stage fiber delay line buffer in photonic packet switch for asynchronously arriving variable-length packets,” IEICE Transactions on Communications E88b, 258–265, (2005).
[Crossref]

Xia, F. N.

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics 1, 65–71, (2007).
[Crossref]

Xing, A. M.

IEEE Photon. Technol. Lett (1)

E. F. Burmeister and J. E. Bowers, “Integrated gate matrix switch for optical packet buffering,” IEEE Photon. Technol. Lett 18, 103–105, (2006).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. Park, A. W. Fang, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “An Electrically Pumped AlGaInAs-Silicon Evanescent Amplifier,” IEEE Photon. Technol. Lett. 19, 230–232 (2007).
[Crossref]

IEICE Transactions on Communications (1)

N. Ogashiwa, H. Harai, N. Wada, F. Kubota, and Y. Shinoda, “Multi-stage fiber delay line buffer in photonic packet switch for asynchronously arriving variable-length packets,” IEICE Transactions on Communications E88b, 258–265, (2005).
[Crossref]

Nature Photonics (1)

F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nature Photonics 1, 65–71, (2007).
[Crossref]

Opt. Express (2)

Opt. Fiber Technol. (1)

D. M. Baney, P. Gallion, and R. S. Tucker, “Theory and measurement techniques for the noise figure of optical amplifiers,” Opt. Fiber Technol. 6, 122–154, (2000).
[Crossref]

Opt. Switching Networking (1)

E. F. Burmeister, D. J. Blumenthal, and J. E. Bowers, “A comparison of optical buffering technologies,” Opt. Switching Networking 6, 10–18, (2008).
[Crossref]

Proc. OFC (1)

E. F. Burmeister, J. P. Mack, H. N. Poulsen, J. Klamkin, L. A. Coldren, D. J. Blumenthal, and J. E. Bowers, “SOA Gate Array Recirculating Buffer for Optical Packet Switching,– Proc. OFC,  OWE4, (2008).

Other (2)

G. P. Agrawal, Fiber-optic communication systems, 3rd ed. (New York: Wiley-Interscience, 2002).

J. P. Mack, H. N. Poulsen, and D. J. Blumenthal, “40 Gb/s Autonomous Optical Packet Synchronizer,“ Proc. OFC, OTuD3, (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Device layout (a) integrated buffer (b) gate matrix switch. The cross-over operation is illustrated as an example.

Fig. 2.
Fig. 2.

Device process flow.

Fig. 3.
Fig. 3.

(a). SEM image of 8 integrated silicon evanescent amplifiers (b) Microscope image of the 4 integrated buffers mounted on an AlN carrier.

Fig. 4.
Fig. 4.

Measured chip gain of the amplifiers.

Fig. 5.
Fig. 5.

Schematic diagram of the testing setup.

Fig. 6.
Fig. 6.

(a). Data packet without recirculation (through switch state) (b) Delayed data packet after one recirculation (cross-over switch state).

Fig. 7.
Fig. 7.

(a). Measured BER as a function of the received power with different input powers to the device. (b). Power penalty at a BER of 10−9.

Fig. 8.
Fig. 8.

Device model using a cascaded link of the passive elements and the amplifiers.

Fig. 9.
Fig. 9.

Calculated power penalty as a function of a number of recirculation with a different loss of the delay line and gain of the input amplifier.

Tables (1)

Tables Icon

Table. 1. Device Definitions of the parameters used in the device model.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F N = 0 net = F IN + F OUT G IN , for 0 recirculation .
F N 1 net = F IN + F LOOP G IN k = 1 N 1 G LOOP k 1 + F OUT G LOOP N , for N recirculations .
F N 1 net = F IN + F LOOP G IN N + F OUT G IN , for G LOOP = 1 .
P rec = hv F N net Δf ( Q 2 + Q ( Δ v opt Δf ) 1 2 )

Metrics