Abstract

Cellular in vivo visualization of the three dimensional architecture of individual human foveal cone photoreceptors is demonstrated by combining ultrahigh resolution optical coherence tomography and a novel adaptive optics modality. Isotropic resolution in the order of 2–3μm, estimated from comparison with histology, is accomplished by employing an ultrabroad bandwidth Titanium:sapphire laser with 140nm bandwidth and previous correction of chromatic and monochromatic ocular aberrations. The latter, referred to as pancorrection, is enabled by the simultaneous use of a specially designed lens and an electromagnetically driven deformable mirror with unprecedented stroke for correcting chromatic and monochromatic aberrations, respectively. The increase in imaging resolution allows for resolving structural details of distal elements of individual foveal cones: inner segment zones - myoids and ellipsoids - are differentiated from outer segments protruding into pigment epithelial processes in the retina. The presented technique has the potential to unveil photoreceptor development and pathogenesis as well as improved therapy monitoring of numerous retinal diseases.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Taylor and J. E. Keeffe, "World blindness: a 21st century perspective," Br. J. Ophthalmol. 85, 261-266 (2001).
    [CrossRef] [PubMed]
  2. J. Porter, A. Guirao, I. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
    [CrossRef]
  3. F. J. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
    [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  5. W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
    [CrossRef]
  6. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
    [CrossRef] [PubMed]
  7. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
    [CrossRef] [PubMed]
  8. T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
    [CrossRef] [PubMed]
  9. B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
    [CrossRef] [PubMed]
  10. F. Fercher, C. K. Hitzenberger, G. Kamp, and S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995).
    [CrossRef]
  11. M. A. Choma, M. V. Sarunic, C.H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183
    [CrossRef] [PubMed]
  12. M. Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In-vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
    [CrossRef] [PubMed]
  13. R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889.
    [CrossRef] [PubMed]
  14. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  15. Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4792.
    [CrossRef] [PubMed]
  16. R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532.
    [CrossRef] [PubMed]
  17. E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
    [CrossRef] [PubMed]
  18. Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
    [CrossRef] [PubMed]
  19. R. J. Zawadzki, S. Choi, S. M. Jones, S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007).
    [CrossRef]
  20. D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3345.
    [CrossRef] [PubMed]
  21. C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007).
    [CrossRef]
  22. M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt Lett. 33, 22-24 (2008).
    [CrossRef]
  23. E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8184.
    [CrossRef] [PubMed]
  24. E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213.
    [CrossRef] [PubMed]
  25. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-8900.
    [CrossRef] [PubMed]
  26. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
    [CrossRef]
  27. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1955 (1994).
    [CrossRef]
  28. E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-9-1056.
    [CrossRef] [PubMed]
  29. E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400.
    [CrossRef] [PubMed]
  30. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, "Compact, low-cost TiAl2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003).
    [CrossRef] [PubMed]
  31. ANSI Z 136.1, Safe Use of Lasers, (American National Standard Institute, New York, 2000).
  32. W. Krebs and I. Krebs, Primate Retina and Choroid: Atlas of Fine Structure in Man and Monkey, (Springer Verlag, New York, 1991).
  33. Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, "Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation," Vis. Neurosci. 19, 395-407 (2002).
    [CrossRef]
  34. N. W. Roberts, "The optics of vertebrate photoreceptors: anisotropy and form birefringence," Vision Res. 46, 3259-3266(2006).
    [CrossRef] [PubMed]
  35. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
    [CrossRef] [PubMed]
  36. B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, "The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones," Am. J. Anat. 159, 125-146 (1980).
    [CrossRef] [PubMed]
  37. Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vis. 2, 404-412 (2002).
    [CrossRef]
  38. R. H. Steinberg, "Research update: report from a workshop on cell biology of retina detachment," Exp. Eye Res. 43, 695-706 (1986).
    [CrossRef] [PubMed]
  39. C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
    [CrossRef] [PubMed]
  40. J. J. Plantner, C. Jiang, and A. Smine, "Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration," Exp. Eye. Res. 67, 637-645 (1998).
    [CrossRef]
  41. R. H. Steinberg, S. K. Fisher, and D. H. Anderson, "Disc morphogenesis in vertebrate photoreceptors," J. Comp. Neurol. 190, 501-508 (1980).
    [CrossRef] [PubMed]
  42. K. O. Long, S. K. Fisher, R. N. Fariss, and D. H. Anderson, "Disc shedding and autophagy in the cone-dominant ground squirrel retina," Exp. Eye Res. 43, 193-205 (1986).
    [CrossRef] [PubMed]
  43. W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6486.
    [CrossRef] [PubMed]
  44. R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-8126.
    [CrossRef] [PubMed]

2008

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt Lett. 33, 22-24 (2008).
[CrossRef]

W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6486.
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-8126.
[CrossRef] [PubMed]

2007

R. J. Zawadzki, S. Choi, S. M. Jones, S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007).
[CrossRef]

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007).
[CrossRef]

2006

N. W. Roberts, "The optics of vertebrate photoreceptors: anisotropy and form birefringence," Vision Res. 46, 3259-3266(2006).
[CrossRef] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3345.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef] [PubMed]

2005

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4792.
[CrossRef] [PubMed]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8184.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400.
[CrossRef] [PubMed]

2004

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

2003

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

M. A. Choma, M. V. Sarunic, C.H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889.
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, "Compact, low-cost TiAl2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-9-1056.
[CrossRef] [PubMed]

2002

Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, "Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation," Vis. Neurosci. 19, 395-407 (2002).
[CrossRef]

Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vis. 2, 404-412 (2002).
[CrossRef]

M. Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In-vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

F. J. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

2001

H. R. Taylor and J. E. Keeffe, "World blindness: a 21st century perspective," Br. J. Ophthalmol. 85, 261-266 (2001).
[CrossRef] [PubMed]

J. Porter, A. Guirao, I. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

2000

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

1999

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

1998

J. J. Plantner, C. Jiang, and A. Smine, "Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration," Exp. Eye. Res. 67, 637-645 (1998).
[CrossRef]

1995

F. Fercher, C. K. Hitzenberger, G. Kamp, and S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995).
[CrossRef]

1994

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1955 (1994).
[CrossRef]

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1990

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

1987

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

1986

K. O. Long, S. K. Fisher, R. N. Fariss, and D. H. Anderson, "Disc shedding and autophagy in the cone-dominant ground squirrel retina," Exp. Eye Res. 43, 193-205 (1986).
[CrossRef] [PubMed]

R. H. Steinberg, "Research update: report from a workshop on cell biology of retina detachment," Exp. Eye Res. 43, 695-706 (1986).
[CrossRef] [PubMed]

1980

B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, "The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones," Am. J. Anat. 159, 125-146 (1980).
[CrossRef] [PubMed]

R. H. Steinberg, S. K. Fisher, and D. H. Anderson, "Disc morphogenesis in vertebrate photoreceptors," J. Comp. Neurol. 190, 501-508 (1980).
[CrossRef] [PubMed]

Ahnelt, P.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Anderson, D. H.

K. O. Long, S. K. Fisher, R. N. Fariss, and D. H. Anderson, "Disc shedding and autophagy in the cone-dominant ground squirrel retina," Exp. Eye Res. 43, 193-205 (1986).
[CrossRef] [PubMed]

R. H. Steinberg, S. K. Fisher, and D. H. Anderson, "Disc morphogenesis in vertebrate photoreceptors," J. Comp. Neurol. 190, 501-508 (1980).
[CrossRef] [PubMed]

Artal, P.

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-9-1056.
[CrossRef] [PubMed]

F. J. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

Bajraszewski, T.

M. Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In-vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Baumal, C. R.

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

Benito, A.

F. J. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Bigelow, C. E.

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007).
[CrossRef]

Bille, J. F.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1955 (1994).
[CrossRef]

Bloom, B.

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007).
[CrossRef]

Boppart, S. A.

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Borwein, B.

B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, "The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones," Am. J. Anat. 159, 125-146 (1980).
[CrossRef] [PubMed]

Borwein, D.

B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, "The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones," Am. J. Anat. 159, 125-146 (1980).
[CrossRef] [PubMed]

Bouma, B. E.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Bower, B.

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

Bradu, A.

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3345.
[CrossRef] [PubMed]

Castejón-Mochón, F. J.

F. J. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

Cense, B.

W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6486.
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-8126.
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Choi, S.

R. J. Zawadzki, S. Choi, S. M. Jones, S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007).
[CrossRef]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

Choi, S. S.

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-8126.
[CrossRef] [PubMed]

Choma, M. A.

M. A. Choma, M. V. Sarunic, C.H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183
[CrossRef] [PubMed]

Chung, C. K.

Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, "Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation," Vis. Neurosci. 19, 395-407 (2002).
[CrossRef]

Cox, I.

J. Porter, A. Guirao, I. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

Curcio, C. A.

Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, "Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation," Vis. Neurosci. 19, 395-407 (2002).
[CrossRef]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Dainty, C.

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3345.
[CrossRef] [PubMed]

de Boer, J. F.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Drexler, W.

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8184.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Duker, J. S.

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

El-Zaiat, S.Y.

F. Fercher, C. K. Hitzenberger, G. Kamp, and S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995).
[CrossRef]

Evans, J. W.

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt Lett. 33, 22-24 (2008).
[CrossRef]

Fariss, R. N.

K. O. Long, S. K. Fisher, R. N. Fariss, and D. H. Anderson, "Disc shedding and autophagy in the cone-dominant ground squirrel retina," Exp. Eye Res. 43, 193-205 (1986).
[CrossRef] [PubMed]

Fercher, A.

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889.
[CrossRef] [PubMed]

Fercher, A. F.

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In-vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Fercher, F.

F. Fercher, C. K. Hitzenberger, G. Kamp, and S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995).
[CrossRef]

Ferguson, R. D.

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007).
[CrossRef]

Fernández, E. J.

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8184.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-9-1056.
[CrossRef] [PubMed]

Findl, O.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

Fisher, S. K.

K. O. Long, S. K. Fisher, R. N. Fariss, and D. H. Anderson, "Disc shedding and autophagy in the cone-dominant ground squirrel retina," Exp. Eye Res. 43, 193-205 (1986).
[CrossRef] [PubMed]

R. H. Steinberg, S. K. Fisher, and D. H. Anderson, "Disc morphogenesis in vertebrate photoreceptors," J. Comp. Neurol. 190, 501-508 (1980).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Gao, W.

W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6486.
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef] [PubMed]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Goelz, S.

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1955 (1994).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Grimm, B.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1955 (1994).
[CrossRef]

Guirao, A.

J. Porter, A. Guirao, I. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

Hammer, D. X.

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hendrickson, A. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Hermann, B.

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

Hitzenberger, C.

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889.
[CrossRef] [PubMed]

Hitzenberger, C. K.

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt Lett. 33, 22-24 (2008).
[CrossRef]

F. Fercher, C. K. Hitzenberger, G. Kamp, and S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995).
[CrossRef]

Hoang, Q. V.

Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, "Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation," Vis. Neurosci. 19, 395-407 (2002).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Iftimia, N. V.

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007).
[CrossRef]

Ippen, E. P.

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Izatt, J.

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

Izatt, J. A.

M. A. Choma, M. V. Sarunic, C.H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183
[CrossRef] [PubMed]

Jiang, C.

J. J. Plantner, C. Jiang, and A. Smine, "Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration," Exp. Eye. Res. 67, 637-645 (1998).
[CrossRef]

Jones, S.

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef] [PubMed]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

Jones, S. M.

R. J. Zawadzki, S. Choi, S. M. Jones, S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007).
[CrossRef]

Jonnal, R.

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4792.
[CrossRef] [PubMed]

Jonnal, R. S.

W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6486.
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef] [PubMed]

Kaertner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Kalina, R. E.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Kamp, G.

F. Fercher, C. K. Hitzenberger, G. Kamp, and S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995).
[CrossRef]

Kärtner, F. X.

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Keeffe, J. E.

H. R. Taylor and J. E. Keeffe, "World blindness: a 21st century perspective," Br. J. Ophthalmol. 85, 261-266 (2001).
[CrossRef] [PubMed]

Ko, T. H.

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

Kowalczyk, A.

M. Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In-vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Laut, S.

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

Leitgeb, R.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889.
[CrossRef] [PubMed]

Leitgeb, R. A.

M. Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In-vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Li, X. D.

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Liang, J.

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1955 (1994).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Linsenmeier, R. A.

Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, "Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation," Vis. Neurosci. 19, 395-407 (2002).
[CrossRef]

Long, K. O.

K. O. Long, S. K. Fisher, R. N. Fariss, and D. H. Anderson, "Disc shedding and autophagy in the cone-dominant ground squirrel retina," Exp. Eye Res. 43, 193-205 (1986).
[CrossRef] [PubMed]

López-Gil, N.

F. J. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

McGowan, J. W.

B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, "The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones," Am. J. Anat. 159, 125-146 (1980).
[CrossRef] [PubMed]

Medeiros, J.

B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, "The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones," Am. J. Anat. 159, 125-146 (1980).
[CrossRef] [PubMed]

Merino, D.

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3345.
[CrossRef] [PubMed]

Miller, D.

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4792.
[CrossRef] [PubMed]

Miller, D. T.

W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6486.
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-8126.
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef] [PubMed]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Oliver, S.

R. J. Zawadzki, S. Choi, S. M. Jones, S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007).
[CrossRef]

Olivier, S.

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef] [PubMed]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

Packer, O.

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Park, B. H.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Paunescu, L. A.

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

Pierce, M. C.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Pircher, M.

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt Lett. 33, 22-24 (2008).
[CrossRef]

Pitris, C.

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Plantner, J. J.

J. J. Plantner, C. Jiang, and A. Smine, "Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration," Exp. Eye. Res. 67, 637-645 (1998).
[CrossRef]

Podoleanu, A. G.

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3345.
[CrossRef] [PubMed]

Porter, J.

J. Porter, A. Guirao, I. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

Povazay, B.

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

Považay, B.

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Prieto, P.

E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400.
[CrossRef] [PubMed]

Prieto, P. M.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

Puliafito, C. A.

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

Puliafto, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Reichel, E.

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

Rha, J.

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4792.
[CrossRef] [PubMed]

Roberts, N. W.

N. W. Roberts, "The optics of vertebrate photoreceptors: anisotropy and form birefringence," Vision Res. 46, 3259-3266(2006).
[CrossRef] [PubMed]

Rogers, A. H.

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

Sarunic, M. V.

M. A. Choma, M. V. Sarunic, C.H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183
[CrossRef] [PubMed]

Sattmann, H.

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

Scholda, C.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

Schuman, J. S.

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sloan, K. R.

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Smine, A.

J. J. Plantner, C. Jiang, and A. Smine, "Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration," Exp. Eye. Res. 67, 637-645 (1998).
[CrossRef]

Steinberg, R. H.

R. H. Steinberg, "Research update: report from a workshop on cell biology of retina detachment," Exp. Eye Res. 43, 695-706 (1986).
[CrossRef] [PubMed]

R. H. Steinberg, S. K. Fisher, and D. H. Anderson, "Disc morphogenesis in vertebrate photoreceptors," J. Comp. Neurol. 190, 501-508 (1980).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Stur, M.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Taylor, H. R.

H. R. Taylor and J. E. Keeffe, "World blindness: a 21st century perspective," Br. J. Ophthalmol. 85, 261-266 (2001).
[CrossRef] [PubMed]

Tearney, G. J.

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Unterhuber,

Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, "Compact, low-cost TiAl2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003).
[CrossRef] [PubMed]

Unterhuber, A.

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400.
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

Ustun, T. E.

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007).
[CrossRef]

Vabre, L.

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

Vargas-Martín, F.

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

Werner, J.

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

Werner, J. S.

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt Lett. 33, 22-24 (2008).
[CrossRef]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-8126.
[CrossRef] [PubMed]

R. J. Zawadzki, S. Choi, S. M. Jones, S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007).
[CrossRef]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef] [PubMed]

Williams, D. R.

J. Porter, A. Guirao, I. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

Wirtitsch, M.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

Wojtkowski, M.

M. Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In-vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

Yang, C.H.

M. A. Choma, M. V. Sarunic, C.H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183
[CrossRef] [PubMed]

Zawadzki, R.

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

Zawadzki, R. J.

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt Lett. 33, 22-24 (2008).
[CrossRef]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-8126.
[CrossRef] [PubMed]

R. J. Zawadzki, S. Choi, S. M. Jones, S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007).
[CrossRef]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef] [PubMed]

Zhang, Y.

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-8126.
[CrossRef] [PubMed]

W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6486.
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4792.
[CrossRef] [PubMed]

Zhao, M.

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

Am. J. Anat.

B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, "The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones," Am. J. Anat. 159, 125-146 (1980).
[CrossRef] [PubMed]

Arch. Ophthalmol.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, "Enhanced visualization of macular pathology using ultrahigh resolution optical coherence tomography," Arch. Ophthalmol. 121, 695-706 (2003).
[CrossRef] [PubMed]

Br. J. Ophthalmol.

H. R. Taylor and J. E. Keeffe, "World blindness: a 21st century perspective," Br. J. Ophthalmol. 85, 261-266 (2001).
[CrossRef] [PubMed]

Exp. Eye Res.

R. H. Steinberg, "Research update: report from a workshop on cell biology of retina detachment," Exp. Eye Res. 43, 695-706 (1986).
[CrossRef] [PubMed]

K. O. Long, S. K. Fisher, R. N. Fariss, and D. H. Anderson, "Disc shedding and autophagy in the cone-dominant ground squirrel retina," Exp. Eye Res. 43, 193-205 (1986).
[CrossRef] [PubMed]

Exp. Eye. Res.

J. J. Plantner, C. Jiang, and A. Smine, "Increase in interphotoreceptor matrix gelatinase A (MMP-2) associated with age-related macular degeneration," Exp. Eye. Res. 67, 637-645 (1998).
[CrossRef]

J. Biomed. Opt.

M. Wojtkowski, R. A. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, "In-vivo human retinal imaging by Fourier domain optical coherence tomography," J. Biomed. Opt. 7, 457-463 (2002).
[CrossRef] [PubMed]

J. Comp. Neurol.

R. H. Steinberg, S. K. Fisher, and D. H. Anderson, "Disc morphogenesis in vertebrate photoreceptors," J. Comp. Neurol. 190, 501-508 (1980).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, "Human photoreceptor topography," J. Comp. Neurol. 292, 497-523 (1990).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

C. E. Bigelow, N. V. Iftimia, R. D. Ferguson, T. E. Ustun, B. Bloom, and D. X. Hammer, "Compact multimodal adaptive-optics spectral-domain optical coherence tomography instrument for retinal imaging," J. Opt. Soc. Am. A 24, 1327-1336 (2007).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1955 (1994).
[CrossRef]

R. J. Zawadzki, S. Choi, S. M. Jones, S. Oliver, and J. S. Werner, "Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions," J. Opt. Soc. Am. A 24, 1373-1383 (2007).
[CrossRef]

J. Porter, A. Guirao, I. Cox, and D. R. Williams, "Monochromatic aberrations of the human eye in a large population," J. Opt. Soc. Am. A 18, 1793-1803 (2001).
[CrossRef]

J. Vis.

Roorda and D. R. Williams, "Optical fiber properties of individual human cones," J. Vis. 2, 404-412 (2002).
[CrossRef]

Nature Med.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kaertner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh resolution ophthalmic optical coherence tomography," Nature Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Ophthalmology

T. H. Ko, J. G. Fujimoto, J. S. Duker, L. A. Paunescu, W. Drexler, C. R. Baumal, C. A. Puliafito, E. Reichel, A. H. Rogers, and J. S. Schuman, "Comparison of ultrahigh and standard resolution optical coherence tomography for imaging macular hole pathology and repair," Ophthalmology 111, 2033-2043 (2004).
[CrossRef] [PubMed]

Opt Lett.

M. Pircher, R. J. Zawadzki, J. W. Evans, J. S. Werner, and C. K. Hitzenberger, "Simultaneous imaging of human cone mosaic with adaptive optics enhanced scanning laser ophthalmoscopy and high-speed transversal scanning optical coherence tomography," Opt Lett. 33, 22-24 (2008).
[CrossRef]

Opt. Comm.

F. Fercher, C. K. Hitzenberger, G. Kamp, and S.Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Comm. 117, 43-48 (1995).
[CrossRef]

Opt. Express

M. A. Choma, M. V. Sarunic, C.H. Yang, and J. A. Izatt, "Sensitivity advantage of swept source and Fourier domain optical coherence tomography," Opt. Express 11, 2183-2189 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-18-2183
[CrossRef] [PubMed]

Y. Zhang, B. Cense, J. Rha, R. S. Jonnal, W. Gao, R. J. Zawadzki, J. S. Werner, S. Jones, S. Olivier, and D. T. Miller, "High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography," Opt. Express 14, 4380-4394 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-10-4380.
[CrossRef] [PubMed]

D. Merino, C. Dainty, A. Bradu, and A. G. Podoleanu, "Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy," Opt. Express 14, 3345-3353 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-8-3345.
[CrossRef] [PubMed]

R. Leitgeb, C. Hitzenberger, and A. Fercher, "Performance of fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889.
[CrossRef] [PubMed]

Y. Zhang, J. Rha, R. Jonnal, and D. Miller, "Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina," Opt. Express 13, 4792-4811 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-12-4792.
[CrossRef] [PubMed]

R. Zawadzki, S. Jones, S. Olivier, M. Zhao, B. Bower, J. Izatt, S. Choi, S. Laut, and J. Werner, "Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging," Opt. Express 13, 8532-8546 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-21-8532.
[CrossRef] [PubMed]

E. J. Fernández and W. Drexler, "Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography," Opt. Express 13, 8184-8197 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-20-8184.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, B. Považay, B. Hermann, P. Artal, and W. Drexler, "Chromatic aberration correction of the human eye for retinal imaging in the near infrared," Opt. Express 14, 6213-6225 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-13-6213.
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-9-1056.
[CrossRef] [PubMed]

E. J. Fernández, A. Unterhuber, P. Prieto, B. Hermann, W. Drexler, and P. Artal, "Ocular aberrations as a function of wavelength in the near infrared measured with a femtosecond laser," Opt. Express 13, 400-409 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-2-400.
[CrossRef] [PubMed]

W. Gao, B. Cense, Y. Zhang, R. S. Jonnal, and D. T. Miller, "Measuring retinal contributions to the optical Stiles-Crawford effect with optical coherence tomography," Opt. Express 16, 6486-6501 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-9-6486.
[CrossRef] [PubMed]

R. J. Zawadzki, B. Cense, Y. Zhang, S. S. Choi, D. T. Miller, and J. S. Werner, "Ultrahigh-resolution optical coherence tomography with monochromatic and chromatic aberration correction," Opt. Express 16, 8126-8143 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-11-8126.
[CrossRef] [PubMed]

Opt. Lett.

Unterhuber, B. Povazay, B. Hermann, H. Sattmann, W. Drexler, V. Yakovlev, G. Tempea, C. Schubert, E. M. Anger, P. K. Ahnelt, M. Stur, J. E. Morgan, A. Cowey, G. Jung, T. Le, and A. Stingl, "Compact, low-cost TiAl2O3 laser for in vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 28, 905-907 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

B. Hermann, E. J. Fernández, A. Unterhuber, H. Sattmann, A. F. Fercher, W. Drexler, P. M. Prieto, and P. Artal, "Adaptive-optics ultrahigh-resolution optical coherence tomography," Opt. Lett. 29, 2142-2144 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, F. X. Kärtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, and J. G. Fujimoto, "In vivo ultrahigh-resolution optical coherence tomography," Opt. Lett. 24, 1221-1223 (1999).
[CrossRef]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafto, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrickson, and R. E. Kalina, "Distribution of cones in human and monkey retina: individual variability and radial asymmetry," Science 236, 579-582 (1987).
[CrossRef] [PubMed]

Vis. Neurosci.

Q. V. Hoang, R. A. Linsenmeier, C. K. Chung, and C. A. Curcio, "Photoreceptor inner segments in monkey and human retina: mitochondrial density, optics, and regional variation," Vis. Neurosci. 19, 395-407 (2002).
[CrossRef]

Vision Res.

N. W. Roberts, "The optics of vertebrate photoreceptors: anisotropy and form birefringence," Vision Res. 46, 3259-3266(2006).
[CrossRef] [PubMed]

F. J. Castejón-Mochón, N. López-Gil, A. Benito, and P. Artal, "Ocular wavefront aberration statistics in a normal young population," Vision Res. 42, 1611-1617 (2002).
[CrossRef] [PubMed]

E. J. Fernández, B. Považay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Other

ANSI Z 136.1, Safe Use of Lasers, (American National Standard Institute, New York, 2000).

W. Krebs and I. Krebs, Primate Retina and Choroid: Atlas of Fine Structure in Man and Monkey, (Springer Verlag, New York, 1991).

Supplementary Material (3)

» Media 1: AVI (5249 KB)     
» Media 2: AVI (3316 KB)     
» Media 3: AVI (3731 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Experimental system consisting of two parts: an adaptive optics (AO, in dashed lines) system responsible for pancorrection of ocular optical aberrations, and a frequency domain based OCT system for high speed retinal imaging. Charged coupled device (CCD), polarization controller (PC), borosilicate-crown glass (BK7), silicate fluoride (SF18), H2O (water), conjugate planes of the AO system (Px), fiber optical beam splitter with 90-to-10% splitting ratio (90/10).

Fig. 2.
Fig. 2.

Effect of pancorrection: three retinal tomograms obtained from a normal subject through an entrance pupil of 6.6 mm diameter, at ~2.25 deg nasal. Case affected by natural ocular aberrations (a), monochromatic aberration correction (b), pancorrection (c). Enlarged areas are from the level of the inner/outer segment junctions (IS/OS PR) to the retinal pigment epithelium (d, e, f from a, b, and c, respectively).

Fig. 3.
Fig. 3.

AO OCT retinal imaging using pancorrection in a normal subject at two nasal parafoveal locations, at ~ 2 deg (a, d) and ~ 1 deg (c, f), and micrographs of 15 μm cryosection of an adult human retina with visualization of short wavelength sensitive cones by opsin antibody: differential interference contrast (DIC) profile at ca. 250 μm eccentricity (b), and a sum projection at ca. 500 μm eccentricity (e), outlining the characteristic axial organization of cone profiles (e), as exemplified in the adjacent schematic drawing. At ~2 deg the enlarged (4x) distal portions of the OCT profiles (d) obtained with pancorrection allows to objectively distinguish individual photoreceptors and several of their axial elements: ellipsoid (ELL) and myoid (MY, arrowhead points to distinct distal portions) of the cone inner segments (IS) and a second high intensity sub-tier clearly represents the photoreceptor outer segment (OS) zone. The next evident layers represent the retinal pigment epithelium with processes (surrounding outer segment tips) and the epithelial cellular portion. At ~1 deg (c, f), in spite of smaller cone diameters as compared with higher eccentricities, imaging different distal parts of individual photoreceptors is still partly possible. Cone cell bodies (CB), Müller cell (MC) and ELL microvillar zone (mmv, cmv), nerve fiber layer (NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), outer plexiform layer (OPL), Henle fiber layer (HF), outer nuclear layer (ONL), external limiting membrane (ELM) is indicated by green dashes in d)-f), ELL by white dashes in e), retinal pigment epithelium (R/PE), choriocapillaris (Ch.cap.).

Fig. 4.
Fig. 4.

In vivo cellular resolution retinal imaging: three-dimensional OCT using pancorrection of a small retinal volume, at ~2.25 deg eccentricity, of 230 μm lateral extension obtained (a) [Media 1]. Three-dimensional morphology of photoreceptor ellipsoids, together with the outer segments, is visualized. Two different volumes showing the detailed micro-structural architecture of single photoreceptors at two eccentricities: ~2,25 and ~1,12 deg (b, c) [Media 2] [Media 3].

Fig. 5.
Fig. 5.

Cellular resolution retinal imaging of photoreceptor anomalies: tomogram centered at ~265 μm nasally from the foveal center with a dashed square of a small portion of the retina, ~50 μm lateral, containing the zone between external limiting membrane and retinal pigment epithelium. Two dark grey circular features in four consecutive, adjacent and enlarged tomograms at this location (b-e) that might be indicators of early changes, such as neovascularization, in the photoreceptor layer.

Metrics