Abstract

Mechanical forces such as adhesion, shear stress and compression play crucial roles in tissue growth, patterning and development. To understand the role of these mechanical stimuli, it is of great importance to measure biomechanical properties of developing, engineered, and natural tissues. To enable these measurements on the micro-scale, a novel, dynamic, non-invasive, high-speed optical coherence elastography (OCE) system has been developed utilizing spectral-domain optical coherence tomography (OCT) and a mechanical wave driver. Experimental results of OCE on silicone phantoms are in good agreement with those obtained from a standardized indentation method. Using phase-resolved imaging, we demonstrate OCE can map dynamic elastic moduli of normal and neoplastic ex vivo human breast tissue with a sensitivity of 0.08%. Spatial micro-scale mapping of elastic moduli of tissue offers the potential for basic science and clinical investigations into the role biomechanics play in health and disease.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissue (Springer-Verlag New York, Inc., 1993).
  2. B. Shraiman, "Mechanical feedback as a possible regulator of tissue growth," Proc Natl. Acad. Sci. USA 102, 3318-3323 (2005).
    [CrossRef] [PubMed]
  3. B. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, "Cyclic mechanical strain regulates the development of engineered smooth muscle tissue," Nat. Biotechnol. 17, 979-983 (1999).
    [CrossRef] [PubMed]
  4. L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, "Imaging of the elastic properties of tissue - A review," Ultrasound Med. Biol. 22, 959-977 (1996).
    [CrossRef] [PubMed]
  5. J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
    [CrossRef]
  6. I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography - elasticity imaging using ultrasound with application to muscle and breast in-vivo," Ultrason. Imaging 15, 73-88 (1993).
    [CrossRef] [PubMed]
  7. J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol. 29, 1387-1396 (2003).
    [CrossRef] [PubMed]
  8. E. J. Chen, J. Novakofski, W. K. Jenkins, and W. D. Jr. O�??Brien, "Young's modulus measurements of soft tissues with application to elasticity imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 43, 191-194 (1996).
    [CrossRef]
  9. A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, "MR Elastography of breast cancer: preliminary results," Am. J. Roentgenol. 178, 1411-1417 (2002).
  10. L. S. Wilson, D. E. Robinson, and M. J. Dadd, "Elastography - the movement begins," Phys. Med. Biol. 45, 1409-1421 (2000).
    [CrossRef] [PubMed]
  11. R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, "Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography," Magn. Reson. Med. 53, 372-387 (2005).
    [CrossRef] [PubMed]
  12. J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
    [CrossRef] [PubMed]
  13. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
    [CrossRef] [PubMed]
  14. G. J. Tearney, S. A. Boppart, B. E. Bouma, C. Pitris, M. E. Brezinski, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
    [CrossRef] [PubMed]
  15. M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  16. J. M. Schmitt, "OCT elastography: imaging microscopic deformation and strain of tissue," Opt. Express 3, 199-211 (1998).
    [CrossRef] [PubMed]
  17. T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nature Phys. 3, 129-134 (2007).
    [CrossRef]
  18. T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006).
    [CrossRef] [PubMed]
  19. R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  20. A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. M. R. Kaazempur, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
    [CrossRef] [PubMed]
  21. G. Van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, "Robust intravascular optical coherence elastography by line correlations," Phys. Med. Biol. 52, 2445-2458 (2007).
    [CrossRef] [PubMed]
  22. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2004).
    [CrossRef] [PubMed]
  23. H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Eng. 12, 63-73 (2006).
    [CrossRef] [PubMed]
  24. R. K. Wang, S. J. Kirkpatrick, and M. Hinds, "Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time," Appl. Phys. Lett. 90, 164105 (2007).
    [CrossRef]
  25. S. J. Kirkpatrick, R. K. Wang and D. D. Duncan, "OCT-based elastography for large and small deformations," Opt. Express 14, 11585-11597 (2006).
    [CrossRef] [PubMed]
  26. J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
    [CrossRef]
  27. B. W. Pogue and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041102 (2006).
    [CrossRef] [PubMed]
  28. E. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. Chadwick, "Determination of elastic moduli of thin layers of soft material using the atomic force microscope," Biophys. J. 82, 2798-2810 (2002).
    [CrossRef] [PubMed]
  29. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
    [CrossRef]
  30. A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, "Measuring the elastic modulus of ex vivo small tissue samples," Phys. Med. Biol. 48, 2183-2198 (2003).
    [CrossRef] [PubMed]
  31. E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, J. B. Weaver, and K. D. Paulsen, "Initial in vivo experience with steady-state subzone-based MR elastography of the human breast," J. Magn. Reson. Imaging. 17, 72-85 (2003).
    [CrossRef]
  32. R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, "High-resolution tensor MR elastography for breast tumour detection," Phys. Med. Biol. 45, 1649-1664 (2000).
    [CrossRef] [PubMed]
  33. J. Zhou, J. and L. L. Hsiung, "Biomolecular origin of the rate-dependent deformation of prismatic enamel," Appl. Phys. Lett. 89, 051904 (2006).
    [CrossRef]
  34. P. Frank, Introduction to System Sensitivity Theory (Academic Press, INC., 1978).

2007 (3)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nature Phys. 3, 129-134 (2007).
[CrossRef]

G. Van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, "Robust intravascular optical coherence elastography by line correlations," Phys. Med. Biol. 52, 2445-2458 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. J. Kirkpatrick, and M. Hinds, "Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time," Appl. Phys. Lett. 90, 164105 (2007).
[CrossRef]

2006 (6)

S. J. Kirkpatrick, R. K. Wang and D. D. Duncan, "OCT-based elastography for large and small deformations," Opt. Express 14, 11585-11597 (2006).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041102 (2006).
[CrossRef] [PubMed]

H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Eng. 12, 63-73 (2006).
[CrossRef] [PubMed]

J. Zhou, J. and L. L. Hsiung, "Biomolecular origin of the rate-dependent deformation of prismatic enamel," Appl. Phys. Lett. 89, 051904 (2006).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

2005 (3)

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. M. R. Kaazempur, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, "Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography," Magn. Reson. Med. 53, 372-387 (2005).
[CrossRef] [PubMed]

B. Shraiman, "Mechanical feedback as a possible regulator of tissue growth," Proc Natl. Acad. Sci. USA 102, 3318-3323 (2005).
[CrossRef] [PubMed]

2004 (3)

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2004).
[CrossRef] [PubMed]

2003 (4)

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, "Measuring the elastic modulus of ex vivo small tissue samples," Phys. Med. Biol. 48, 2183-2198 (2003).
[CrossRef] [PubMed]

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, J. B. Weaver, and K. D. Paulsen, "Initial in vivo experience with steady-state subzone-based MR elastography of the human breast," J. Magn. Reson. Imaging. 17, 72-85 (2003).
[CrossRef]

J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
[CrossRef] [PubMed]

J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol. 29, 1387-1396 (2003).
[CrossRef] [PubMed]

2002 (3)

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, "MR Elastography of breast cancer: preliminary results," Am. J. Roentgenol. 178, 1411-1417 (2002).

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

E. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. Chadwick, "Determination of elastic moduli of thin layers of soft material using the atomic force microscope," Biophys. J. 82, 2798-2810 (2002).
[CrossRef] [PubMed]

2000 (2)

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, "High-resolution tensor MR elastography for breast tumour detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

L. S. Wilson, D. E. Robinson, and M. J. Dadd, "Elastography - the movement begins," Phys. Med. Biol. 45, 1409-1421 (2000).
[CrossRef] [PubMed]

1999 (2)

B. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, "Cyclic mechanical strain regulates the development of engineered smooth muscle tissue," Nat. Biotechnol. 17, 979-983 (1999).
[CrossRef] [PubMed]

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

1998 (1)

J. M. Schmitt, "OCT elastography: imaging microscopic deformation and strain of tissue," Opt. Express 3, 199-211 (1998).
[CrossRef] [PubMed]

1997 (1)

G. J. Tearney, S. A. Boppart, B. E. Bouma, C. Pitris, M. E. Brezinski, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

1996 (2)

L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, "Imaging of the elastic properties of tissue - A review," Ultrasound Med. Biol. 22, 959-977 (1996).
[CrossRef] [PubMed]

E. J. Chen, J. Novakofski, W. K. Jenkins, and W. D. Jr. O�??Brien, "Young's modulus measurements of soft tissues with application to elasticity imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 43, 191-194 (1996).
[CrossRef]

1993 (1)

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography - elasticity imaging using ultrasound with application to muscle and breast in-vivo," Ultrason. Imaging 15, 73-88 (1993).
[CrossRef] [PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Adler, D. C.

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

Alam, S. K.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

Bachman, M.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Bercoff, J.

J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol. 29, 1387-1396 (2003).
[CrossRef] [PubMed]

Bishop, J.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, "Measuring the elastic modulus of ex vivo small tissue samples," Phys. Med. Biol. 48, 2183-2198 (2003).
[CrossRef] [PubMed]

Bonadio, J.

B. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, "Cyclic mechanical strain regulates the development of engineered smooth muscle tissue," Nat. Biotechnol. 17, 979-983 (1999).
[CrossRef] [PubMed]

Boppart, S. A.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nature Phys. 3, 129-134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006).
[CrossRef] [PubMed]

H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Eng. 12, 63-73 (2006).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, C. Pitris, M. E. Brezinski, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Bouma, B. E.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. M. R. Kaazempur, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, C. Pitris, M. E. Brezinski, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Brezinski, M. E.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2004).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, C. Pitris, M. E. Brezinski, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Carney, P. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nature Phys. 3, 129-134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006).
[CrossRef] [PubMed]

Catheline, S.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, "Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography," Magn. Reson. Med. 53, 372-387 (2005).
[CrossRef] [PubMed]

J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol. 29, 1387-1396 (2003).
[CrossRef] [PubMed]

Céspedes, I.

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography - elasticity imaging using ultrasound with application to muscle and breast in-vivo," Ultrason. Imaging 15, 73-88 (1993).
[CrossRef] [PubMed]

Chadwick, R.

E. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. Chadwick, "Determination of elastic moduli of thin layers of soft material using the atomic force microscope," Biophys. J. 82, 2798-2810 (2002).
[CrossRef] [PubMed]

Chaffai, S.

J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol. 29, 1387-1396 (2003).
[CrossRef] [PubMed]

Chan, R. C.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. M. R. Kaazempur, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Chau, A. H.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. M. R. Kaazempur, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

Chen, E. J.

E. J. Chen, J. Novakofski, W. K. Jenkins, and W. D. Jr. O�??Brien, "Young's modulus measurements of soft tissues with application to elasticity imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 43, 191-194 (1996).
[CrossRef]

Chen, Z.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Dadd, M. J.

L. S. Wilson, D. E. Robinson, and M. J. Dadd, "Elastography - the movement begins," Phys. Med. Biol. 45, 1409-1421 (2000).
[CrossRef] [PubMed]

Dargatz, M.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, "High-resolution tensor MR elastography for breast tumour detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

de Jong, N.

G. Van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, "Robust intravascular optical coherence elastography by line correlations," Phys. Med. Biol. 52, 2445-2458 (2007).
[CrossRef] [PubMed]

Dimitriadis, E.

E. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. Chadwick, "Determination of elastic moduli of thin layers of soft material using the atomic force microscope," Biophys. J. 82, 2798-2810 (2002).
[CrossRef] [PubMed]

Doyley, M. M.

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, J. B. Weaver, and K. D. Paulsen, "Initial in vivo experience with steady-state subzone-based MR elastography of the human breast," J. Magn. Reson. Imaging. 17, 72-85 (2003).
[CrossRef]

Duker, J.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Duncan, D. D.

S. J. Kirkpatrick, R. K. Wang and D. D. Duncan, "OCT-based elastography for large and small deformations," Opt. Express 14, 11585-11597 (2006).
[CrossRef] [PubMed]

Ehman, R. L.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, "MR Elastography of breast cancer: preliminary results," Am. J. Roentgenol. 178, 1411-1417 (2002).

Fink, M.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, "Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography," Magn. Reson. Med. 53, 372-387 (2005).
[CrossRef] [PubMed]

J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol. 29, 1387-1396 (2003).
[CrossRef] [PubMed]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Fujimoto, J.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Fujimoto, J. G.

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2004).
[CrossRef] [PubMed]

J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, C. Pitris, M. E. Brezinski, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Gao, L.

L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, "Imaging of the elastic properties of tissue - A review," Ultrasound Med. Biol. 22, 959-977 (1996).
[CrossRef] [PubMed]

Garra, B. S.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

Gennisson, J. L.

J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol. 29, 1387-1396 (2003).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Guo, S.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Hartmann, L. C.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, "MR Elastography of breast cancer: preliminary results," Am. J. Roentgenol. 178, 1411-1417 (2002).

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Hinds, M.

R. K. Wang, S. J. Kirkpatrick, and M. Hinds, "Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time," Appl. Phys. Lett. 90, 164105 (2007).
[CrossRef]

Holz, D.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, "High-resolution tensor MR elastography for breast tumour detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Horkay, F.

E. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. Chadwick, "Determination of elastic moduli of thin layers of soft material using the atomic force microscope," Biophys. J. 82, 2798-2810 (2002).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Huber, R.

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

Jenkins, W. K.

E. J. Chen, J. Novakofski, W. K. Jenkins, and W. D. Jr. O�??Brien, "Young's modulus measurements of soft tissues with application to elasticity imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 43, 191-194 (1996).
[CrossRef]

Jr, W. D.

E. J. Chen, J. Novakofski, W. K. Jenkins, and W. D. Jr. O�??Brien, "Young's modulus measurements of soft tissues with application to elasticity imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 43, 191-194 (1996).
[CrossRef]

Kaazempur, M. M. R.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. M. R. Kaazempur, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

Kachar, B.

E. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. Chadwick, "Determination of elastic moduli of thin layers of soft material using the atomic force microscope," Biophys. J. 82, 2798-2810 (2002).
[CrossRef] [PubMed]

Kallel, F.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

Kennedy, F. E.

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, J. B. Weaver, and K. D. Paulsen, "Initial in vivo experience with steady-state subzone-based MR elastography of the human breast," J. Magn. Reson. Imaging. 17, 72-85 (2003).
[CrossRef]

Khalil, A. S.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. M. R. Kaazempur, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

Kim, B.

B. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, "Cyclic mechanical strain regulates the development of engineered smooth muscle tissue," Nat. Biotechnol. 17, 979-983 (1999).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

R. K. Wang, S. J. Kirkpatrick, and M. Hinds, "Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time," Appl. Phys. Lett. 90, 164105 (2007).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang and D. D. Duncan, "OCT-based elastography for large and small deformations," Opt. Express 14, 11585-11597 (2006).
[CrossRef] [PubMed]

Ko, H.

H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Eng. 12, 63-73 (2006).
[CrossRef] [PubMed]

Ko, T.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Konofagou, E. E.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

Kowalczyk, A.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Krouskop, T.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

Kugel, J. L.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, "MR Elastography of breast cancer: preliminary results," Am. J. Roentgenol. 178, 1411-1417 (2002).

Kuhl, C.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, "Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography," Magn. Reson. Med. 53, 372-387 (2005).
[CrossRef] [PubMed]

Lerner, R. M.

L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, "Imaging of the elastic properties of tissue - A review," Ultrasound Med. Biol. 22, 959-977 (1996).
[CrossRef] [PubMed]

Levinson, S. F.

L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, "Imaging of the elastic properties of tissue - A review," Ultrasound Med. Biol. 22, 959-977 (1996).
[CrossRef] [PubMed]

Li, G. P.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Lorenzen, J.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, "Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography," Magn. Reson. Med. 53, 372-387 (2005).
[CrossRef] [PubMed]

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, "High-resolution tensor MR elastography for breast tumour detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Lorenzen, M.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, "High-resolution tensor MR elastography for breast tumour detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Luginbuhl, C.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, "Measuring the elastic modulus of ex vivo small tissue samples," Phys. Med. Biol. 48, 2183-2198 (2003).
[CrossRef] [PubMed]

Maklad, N.

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography - elasticity imaging using ultrasound with application to muscle and breast in-vivo," Ultrason. Imaging 15, 73-88 (1993).
[CrossRef] [PubMed]

Manduca, A.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, "MR Elastography of breast cancer: preliminary results," Am. J. Roentgenol. 178, 1411-1417 (2002).

Maresca, J.

E. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. Chadwick, "Determination of elastic moduli of thin layers of soft material using the atomic force microscope," Biophys. J. 82, 2798-2810 (2002).
[CrossRef] [PubMed]

Marks, D. L.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nature Phys. 3, 129-134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006).
[CrossRef] [PubMed]

Mastik, F.

G. Van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, "Robust intravascular optical coherence elastography by line correlations," Phys. Med. Biol. 52, 2445-2458 (2007).
[CrossRef] [PubMed]

McKnight, A. L.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, "MR Elastography of breast cancer: preliminary results," Am. J. Roentgenol. 178, 1411-1417 (2002).

Merritt, C. R. B.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

Meunier, M.

J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol. 29, 1387-1396 (2003).
[CrossRef] [PubMed]

Mooney, D. J.

B. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, "Cyclic mechanical strain regulates the development of engineered smooth muscle tissue," Nat. Biotechnol. 17, 979-983 (1999).
[CrossRef] [PubMed]

Nikolovski, J.

B. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, "Cyclic mechanical strain regulates the development of engineered smooth muscle tissue," Nat. Biotechnol. 17, 979-983 (1999).
[CrossRef] [PubMed]

Novakofski, J.

E. J. Chen, J. Novakofski, W. K. Jenkins, and W. D. Jr. O�??Brien, "Young's modulus measurements of soft tissues with application to elasticity imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 43, 191-194 (1996).
[CrossRef]

Ophir, J.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography - elasticity imaging using ultrasound with application to muscle and breast in-vivo," Ultrason. Imaging 15, 73-88 (1993).
[CrossRef] [PubMed]

Parker, K. J.

L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, "Imaging of the elastic properties of tissue - A review," Ultrasound Med. Biol. 22, 959-977 (1996).
[CrossRef] [PubMed]

Patel, N. A.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2004).
[CrossRef] [PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041102 (2006).
[CrossRef] [PubMed]

Paulsen, K. D.

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, J. B. Weaver, and K. D. Paulsen, "Initial in vivo experience with steady-state subzone-based MR elastography of the human breast," J. Magn. Reson. Imaging. 17, 72-85 (2003).
[CrossRef]

Pitris, C.

G. J. Tearney, S. A. Boppart, B. E. Bouma, C. Pitris, M. E. Brezinski, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Plewes, D. B.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, "Measuring the elastic modulus of ex vivo small tissue samples," Phys. Med. Biol. 48, 2183-2198 (2003).
[CrossRef] [PubMed]

Pogue, B. W.

B. W. Pogue and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041102 (2006).
[CrossRef] [PubMed]

Ponnekanti, H.

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography - elasticity imaging using ultrasound with application to muscle and breast in-vivo," Ultrason. Imaging 15, 73-88 (1993).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Ralston, T. S.

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nature Phys. 3, 129-134 (2007).
[CrossRef]

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006).
[CrossRef] [PubMed]

Righetti, R.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

Robinson, D. E.

L. S. Wilson, D. E. Robinson, and M. J. Dadd, "Elastography - the movement begins," Phys. Med. Biol. 45, 1409-1421 (2000).
[CrossRef] [PubMed]

Rogowska, J.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2004).
[CrossRef] [PubMed]

Rossman, P. J.

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, "MR Elastography of breast cancer: preliminary results," Am. J. Roentgenol. 178, 1411-1417 (2002).

Samani, A.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, "Measuring the elastic modulus of ex vivo small tissue samples," Phys. Med. Biol. 48, 2183-2198 (2003).
[CrossRef] [PubMed]

Sandrin, L.

J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol. 29, 1387-1396 (2003).
[CrossRef] [PubMed]

Schmitt, J. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

J. M. Schmitt, "OCT elastography: imaging microscopic deformation and strain of tissue," Opt. Express 3, 199-211 (1998).
[CrossRef] [PubMed]

Schrader, D.

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, "High-resolution tensor MR elastography for breast tumour detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Shraiman, B.

B. Shraiman, "Mechanical feedback as a possible regulator of tissue growth," Proc Natl. Acad. Sci. USA 102, 3318-3323 (2005).
[CrossRef] [PubMed]

Sinkus, R.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, "Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography," Magn. Reson. Med. 53, 372-387 (2005).
[CrossRef] [PubMed]

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, "High-resolution tensor MR elastography for breast tumour detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Sondermann, E.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, "Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography," Magn. Reson. Med. 53, 372-387 (2005).
[CrossRef] [PubMed]

Souchon, R.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

Southern, J. F.

G. J. Tearney, S. A. Boppart, B. E. Bouma, C. Pitris, M. E. Brezinski, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Srinivasan, S.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

Srinivasan, V.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Stack, R.

H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Eng. 12, 63-73 (2006).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Swanson, E. A.

G. J. Tearney, S. A. Boppart, B. E. Bouma, C. Pitris, M. E. Brezinski, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

Tan, W.

H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Eng. 12, 63-73 (2006).
[CrossRef] [PubMed]

Tanter, M.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, "Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography," Magn. Reson. Med. 53, 372-387 (2005).
[CrossRef] [PubMed]

J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol. 29, 1387-1396 (2003).
[CrossRef] [PubMed]

Tearney, G. J.

G. J. Tearney, S. A. Boppart, B. E. Bouma, C. Pitris, M. E. Brezinski, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

van der Steen, A. F. W.

G. Van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, "Robust intravascular optical coherence elastography by line correlations," Phys. Med. Biol. 52, 2445-2458 (2007).
[CrossRef] [PubMed]

Van Houten, E. E. W.

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, J. B. Weaver, and K. D. Paulsen, "Initial in vivo experience with steady-state subzone-based MR elastography of the human breast," J. Magn. Reson. Imaging. 17, 72-85 (2003).
[CrossRef]

Van Soest, G.

G. Van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, "Robust intravascular optical coherence elastography by line correlations," Phys. Med. Biol. 52, 2445-2458 (2007).
[CrossRef] [PubMed]

Varghese, T.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

Wang, L.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Wang, R. K.

R. K. Wang, S. J. Kirkpatrick, and M. Hinds, "Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time," Appl. Phys. Lett. 90, 164105 (2007).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang and D. D. Duncan, "OCT-based elastography for large and small deformations," Opt. Express 14, 11585-11597 (2006).
[CrossRef] [PubMed]

Wang, Y.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Weaver, J. B.

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, J. B. Weaver, and K. D. Paulsen, "Initial in vivo experience with steady-state subzone-based MR elastography of the human breast," J. Magn. Reson. Imaging. 17, 72-85 (2003).
[CrossRef]

Wilson, L. S.

L. S. Wilson, D. E. Robinson, and M. J. Dadd, "Elastography - the movement begins," Phys. Med. Biol. 45, 1409-1421 (2000).
[CrossRef] [PubMed]

Wojtkowski, M.

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

Xiang, S. H.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

Yung, K. M.

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

Zhang, J.

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Zhou, J.

J. Zhou, J. and L. L. Hsiung, "Biomolecular origin of the rate-dependent deformation of prismatic enamel," Appl. Phys. Lett. 89, 051904 (2006).
[CrossRef]

Am. J. Roentgenol. (1)

A. L. McKnight, J. L. Kugel, P. J. Rossman, A. Manduca, L. C. Hartmann, and R. L. Ehman, "MR Elastography of breast cancer: preliminary results," Am. J. Roentgenol. 178, 1411-1417 (2002).

Ann. Biomed. Eng. (1)

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. M. R. Kaazempur, "Tissue elasticity estimation with optical coherence elastography: Toward mechanical characterization of in vivo soft tissue," Ann. Biomed. Eng. 33, 1631-1639 (2005).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

R. K. Wang, S. J. Kirkpatrick, and M. Hinds, "Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time," Appl. Phys. Lett. 90, 164105 (2007).
[CrossRef]

J. Zhou, J. and L. L. Hsiung, "Biomolecular origin of the rate-dependent deformation of prismatic enamel," Appl. Phys. Lett. 89, 051904 (2006).
[CrossRef]

Biophys. J. (1)

E. Dimitriadis, F. Horkay, J. Maresca, B. Kachar, and R. Chadwick, "Determination of elastic moduli of thin layers of soft material using the atomic force microscope," Biophys. J. 82, 2798-2810 (2002).
[CrossRef] [PubMed]

Heart (1)

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, "Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues," Heart 90, 556-562 (2004).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control. (1)

E. J. Chen, J. Novakofski, W. K. Jenkins, and W. D. Jr. O�??Brien, "Young's modulus measurements of soft tissues with application to elasticity imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 43, 191-194 (1996).
[CrossRef]

J. Biomed. Opt. (2)

J. M. Schmitt, S. H. Xiang, and K. M. Yung, "Speckle in optical coherence tomography," J. Biomed. Opt. 4, 95-105 (1999).
[CrossRef]

B. W. Pogue and M. S. Patterson, "Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041102 (2006).
[CrossRef] [PubMed]

J. Magn. Reson. Imaging. (1)

E. E. W. Van Houten, M. M. Doyley, F. E. Kennedy, J. B. Weaver, and K. D. Paulsen, "Initial in vivo experience with steady-state subzone-based MR elastography of the human breast," J. Magn. Reson. Imaging. 17, 72-85 (2003).
[CrossRef]

J. Med. Ultrasonics (1)

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrasonics 29, 155-171 (2002).
[CrossRef]

Magn. Reson. Med. (1)

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, "Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography," Magn. Reson. Med. 53, 372-387 (2005).
[CrossRef] [PubMed]

Nat. Biotechnol. (2)

J. G. Fujimoto, "Optical coherence tomography for ultrahigh resolution in vivo imaging," Nat. Biotechnol. 21, 1361-1367 (2003).
[CrossRef] [PubMed]

B. Kim, J. Nikolovski, J. Bonadio, and D. J. Mooney, "Cyclic mechanical strain regulates the development of engineered smooth muscle tissue," Nat. Biotechnol. 17, 979-983 (1999).
[CrossRef] [PubMed]

Nature Phys. (1)

T. S. Ralston, D. L. Marks, P. S. Carney, and S. A. Boppart, "Interferometric synthetic aperture microscopy," Nature Phys. 3, 129-134 (2007).
[CrossRef]

Opt. Commun. (1)

L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, "Frequency domain phase-resolved optical Doppler and Doppler variance tomography," Opt. Commun. 242, 345-350 (2004).
[CrossRef]

Opt. Express (3)

S. J. Kirkpatrick, R. K. Wang and D. D. Duncan, "OCT-based elastography for large and small deformations," Opt. Express 14, 11585-11597 (2006).
[CrossRef] [PubMed]

M. Wojtkowski, V. Srinivasan, T. Ko, J. Fujimoto, A. Kowalczyk, and J. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

J. M. Schmitt, "OCT elastography: imaging microscopic deformation and strain of tissue," Opt. Express 3, 199-211 (1998).
[CrossRef] [PubMed]

Opt. Lett. (2)

T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Inverse scattering for high-resolution interferometric microscopy," Opt. Lett. 31, 3585-3587 (2006).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, "Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s," Opt. Lett. 31, 2975-2977 (2006).
[CrossRef] [PubMed]

Phys. Med. Biol. (4)

L. S. Wilson, D. E. Robinson, and M. J. Dadd, "Elastography - the movement begins," Phys. Med. Biol. 45, 1409-1421 (2000).
[CrossRef] [PubMed]

G. Van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, "Robust intravascular optical coherence elastography by line correlations," Phys. Med. Biol. 52, 2445-2458 (2007).
[CrossRef] [PubMed]

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, "Measuring the elastic modulus of ex vivo small tissue samples," Phys. Med. Biol. 48, 2183-2198 (2003).
[CrossRef] [PubMed]

R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, "High-resolution tensor MR elastography for breast tumour detection," Phys. Med. Biol. 45, 1649-1664 (2000).
[CrossRef] [PubMed]

Proc Natl. Acad. Sci. USA (1)

B. Shraiman, "Mechanical feedback as a possible regulator of tissue growth," Proc Natl. Acad. Sci. USA 102, 3318-3323 (2005).
[CrossRef] [PubMed]

Science (2)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181(1991).
[CrossRef] [PubMed]

G. J. Tearney, S. A. Boppart, B. E. Bouma, C. Pitris, M. E. Brezinski, J. F. Southern, E. A. Swanson, and J. G. Fujimoto, "In vivo endoscopic optical biopsy with optical coherence tomography," Science 276, 2037-2039 (1997).
[CrossRef] [PubMed]

Tissue Eng. (1)

H. Ko, W. Tan, R. Stack, and S. A. Boppart, "Optical coherence elastography of engineered and developing tissue," Tissue Eng. 12, 63-73 (2006).
[CrossRef] [PubMed]

Ultrason. Imaging (1)

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography - elasticity imaging using ultrasound with application to muscle and breast in-vivo," Ultrason. Imaging 15, 73-88 (1993).
[CrossRef] [PubMed]

Ultrasound Med. Biol. (2)

J. Bercoff, S. Chaffai, M. Tanter, L. Sandrin, S. Catheline, M. Fink, J. L. Gennisson, and M. Meunier, "In vivo breast tumor detection using transient elastography," Ultrasound Med. Biol. 29, 1387-1396 (2003).
[CrossRef] [PubMed]

L. Gao, K. J. Parker, R. M. Lerner, and S. F. Levinson, "Imaging of the elastic properties of tissue - A review," Ultrasound Med. Biol. 22, 959-977 (1996).
[CrossRef] [PubMed]

Other (2)

Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissue (Springer-Verlag New York, Inc., 1993).

P. Frank, Introduction to System Sensitivity Theory (Academic Press, INC., 1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of the OCE system. In the OCE system the sample stage is driven upward by the mechanical wave driver, compressing the tissue against a fixed optically transparent window. Step- or sinusoidally-driven mechanical displacements are synchronized with the OCE acquisition system. For M-mode measurements, the X-Y scanning mirrors remain stationary during acquisition.

Fig. 2.
Fig. 2.

Schematic diagram of sample models. (a) Voigt body model for the mechanical wave driver. (b) Voigt body models for mechanical wave driver coupled to tissue or silicone phantom.

Fig. 3.
Fig. 3.

OCE images of silicone tissue phantoms. (a) B-mode OCT image of a representative silicone tissue phantom. Dashed arrow denotes the position of the laser beam for M-mode OCT imaging. (b) M-mode OCT image of the silicone tissue phantom at the laser beam position in (a). (c) M-mode OCE image with a step-driven waveform. (d) Zoomed-in image of the dotted range in (c). The dashed line represents the driving waveform and the solid line represents the fitted curve, while the image data between the curves shows the scattering particle movement. (e) M-mode OCE image with a sinusoidally-driven waveform. (f) Zoomed-in image of the dotted range in (e). The dashed line represents the driving waveform (amplitude rescaled) and the solid line represents the fitted curve, while the image data between the curves is due to the scattering particle movement.

Fig. 4.
Fig. 4.

Measured elastic moduli results by three methods. Measured elastic moduli results with error bars were acquired from step-driven and sinusoidally-driven OCE methods. Measurements were from silicone tissue phantoms of different mass concentration ratios of pure PDMS fluid to the cross-linking PDMS GE-RTV-615 A. Measurements are calibrated with the results from a standard commercial indentation method.

Fig. 5.
Fig. 5.

OCE of human breast tissue. (a) B-mode OCT image of breast tissue. The left side of this image represents the adipose tissue while the right side of the image represents the tumor tissue. Dotted arrows denote the two positions which have corresponding OCE images. (b) Histology image corresponding to (a). (c) M-mode sinusoidally-driven OCE image of the breast tissue at the laser beam position on the left side in (a). (d) Magnified image of the dotted range in (c). The dotted line represents the driving wave form and the solid line represents the fitted curve, while the one between them is the real particle motion track. (e) M-mode sinusoidally-driven OCE image of the breast tissue at the laser beam position on the right side in (a). (f) Magnified image of the dotted range in (e). The dotted line represents the driving wave from and the solid line represents the fitted curve, while the one between them is the real particle motion track.

Fig. 6.
Fig. 6.

Phase-resolved OCE map of human breast tissue elasticity. a, B-mode OCT image of breast tissue. The left side of this image represents the adipose tissue while the right side of the image represents the tumor tissue. b, Histology image corresponding to a. c, Map of elasticity by sinusoidally-driven phase-resolved OCE. d, Error map of elasticity by sinusoidally-driven phase-resolved OCE. Unit for color bar is kPa.

Tables (2)

Tables Icon

Table 1. Measured elastic moduli for tissue phantoms.

Tables Icon

Table 2. Measured elastic moduli for tissue phantoms.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

m z ̈ ss + γ 0 ż ss ( t ) + k 0 z ss ( t ) = F ( t ) ,
z ss ( t ) = Re λt cos ( μt δ )
m′ z ̈ sp ( t ) + ( γ 0 + γ ) ż sp ( t ) + ( k 0 + k ) z sp ( t ) = F ( t ) ,
E s = kL S = [ ( μ 2 + λ 2 ) m′ k 0 ] L S ,
z sp ( t ) = Re λt cos ( μt δ ) + D sin ( ωt α ) ,
E m = kL S = [ ( ω 2 2 ωλ tan α ) m′ k 0 ] L S ,
σ Es = ( E λ ) 2 σ λ 2 + ( E μ ) 2 σ μ 2 = ( 2 L 0 S m′ ) λ 2 σ λ 2 + μ 2 σ μ 2 ,
σ Em = ( E λ ) 2 σ λ 2 + ( E α ) 2 σ α 2
= ( 2 m′ω L 0 S ) ( 1 tan α ) 2 σ λ 2 + ( λ sin 2 α cos 4 α ) 2 σ α 2 ,

Metrics