Abstract

We describe a high-throughput hyperspectral microscope. The system replaces the slit of conventional pushbroom spectral imagers with a static coded aperture mask. We present the theoretical underpinnings of the aperture coded spectral engine and describe two proof-of-concept experimental implementations. Compared to a conventional pushbroom system, the aperture coded systems have 32 times greater throughput. Both systems have about a 1nm spectral resolution over the spectral range of 550–665nm. For the first design, the spatial resolution for the system is 5.4μm, while the spatial resolution for the second system ranges from 7.7μm to 1.54μm. We describe experimental results from proof-of-concept applications of the imager to hyperspectral microscopy.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94-102 (2001).
    [CrossRef]
  2. C. Stellman, F. Olchowski, and J. Michalowicz, "WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment)," Proc. SPIE 4379, 339-346 (2001).
    [CrossRef]
  3. T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engles, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fouriertransform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000).
    [CrossRef]
  4. R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, "Hyperspectral imaging: A novel approach for microscopic analysis," Cytometry 43, 239 - 247 (2001).
    [CrossRef] [PubMed]
  5. M. Descour and E. Dereniak, "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results," Appl. Opt. 34, 4817-4826 (1995).
    [CrossRef] [PubMed]
  6. P. Bernhardt, "Direct reconstruction methods for hyperspectral imaging with rotational spectrotomography," J. Opt. Soc. Am. A 12, 1884-1901 (1995).
    [CrossRef]
  7. J. Mooney, V. Vickers, M. An, and A. Brodzik, "High-throughput hyperspectral infrared camera," J. Opt. Soc. Am. A 14, 2951-2961 (1997).
    [CrossRef]
  8. A. Brodzik and J. Mooney, "Convex projections algorithm for restoration of limited-angle chromotomographic images," J. Opt. Soc. Am. A 16,246-257 (1999).
    [CrossRef]
  9. C. Snively, G. Katzenberger, and J. Lauterbach, "Fourier-transform infrared imaging using a rapid-scan spectrometer," Opt. Lett. 24, 1841-1843 (1999).
    [CrossRef]
  10. A. Wuttig and R. Riesenberg, "Sensitive Hadamard transform imaging spectrometer with a simple MEMS," Proc. SPIE 4881, 167-178 (2003).
    [CrossRef]
  11. M. Gehm, S. McCain, N. Pitsianis, D. Brady, P. Potuluri, and M. Sullivan, "Static two-dimensional aperture coding for multimodal, multiplex spectroscopy," Appl. Opt. 45, 2965-2974 (2006).
    [CrossRef] [PubMed]
  12. S. McCain, M. Gehm, Y. Wang, N. Pitsianis, and D. Brady, "Coded Aperture Raman Spectroscopy for Quantitative Measurements of Ethanol in a Tissue Phantom," Appl. Spect. 60, 663-671 (2006).
    [CrossRef]
  13. M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, "Single-shot compressive spectral imaging with a dualdisperser architecture," Opt. Express 15, 14013-14027 (2007).
    [CrossRef] [PubMed]
  14. A. Wagadarikar, R. John, R. Willett, and D. Brady, "Single disperser design for coded aperture snapshot spectral imaging," Appl. Opt. 47, 44-51 (2008).
    [CrossRef]

2008 (1)

A. Wagadarikar, R. John, R. Willett, and D. Brady, "Single disperser design for coded aperture snapshot spectral imaging," Appl. Opt. 47, 44-51 (2008).
[CrossRef]

2007 (1)

M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, "Single-shot compressive spectral imaging with a dualdisperser architecture," Opt. Express 15, 14013-14027 (2007).
[CrossRef] [PubMed]

2006 (2)

M. Gehm, S. McCain, N. Pitsianis, D. Brady, P. Potuluri, and M. Sullivan, "Static two-dimensional aperture coding for multimodal, multiplex spectroscopy," Appl. Opt. 45, 2965-2974 (2006).
[CrossRef] [PubMed]

S. McCain, M. Gehm, Y. Wang, N. Pitsianis, and D. Brady, "Coded Aperture Raman Spectroscopy for Quantitative Measurements of Ethanol in a Tissue Phantom," Appl. Spect. 60, 663-671 (2006).
[CrossRef]

2003 (1)

A. Wuttig and R. Riesenberg, "Sensitive Hadamard transform imaging spectrometer with a simple MEMS," Proc. SPIE 4881, 167-178 (2003).
[CrossRef]

2001 (3)

W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94-102 (2001).
[CrossRef]

C. Stellman, F. Olchowski, and J. Michalowicz, "WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment)," Proc. SPIE 4379, 339-346 (2001).
[CrossRef]

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, "Hyperspectral imaging: A novel approach for microscopic analysis," Cytometry 43, 239 - 247 (2001).
[CrossRef] [PubMed]

2000 (1)

T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engles, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fouriertransform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000).
[CrossRef]

1999 (2)

A. Brodzik and J. Mooney, "Convex projections algorithm for restoration of limited-angle chromotomographic images," J. Opt. Soc. Am. A 16,246-257 (1999).
[CrossRef]

C. Snively, G. Katzenberger, and J. Lauterbach, "Fourier-transform infrared imaging using a rapid-scan spectrometer," Opt. Lett. 24, 1841-1843 (1999).
[CrossRef]

1997 (1)

J. Mooney, V. Vickers, M. An, and A. Brodzik, "High-throughput hyperspectral infrared camera," J. Opt. Soc. Am. A 14, 2951-2961 (1997).
[CrossRef]

1995 (2)

M. Descour and E. Dereniak, "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results," Appl. Opt. 34, 4817-4826 (1995).
[CrossRef] [PubMed]

P. Bernhardt, "Direct reconstruction methods for hyperspectral imaging with rotational spectrotomography," J. Opt. Soc. Am. A 12, 1884-1901 (1995).
[CrossRef]

An, M.

J. Mooney, V. Vickers, M. An, and A. Brodzik, "High-throughput hyperspectral infrared camera," J. Opt. Soc. Am. A 14, 2951-2961 (1997).
[CrossRef]

Andersson-Engles, S.

T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engles, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fouriertransform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000).
[CrossRef]

Bernhardt, P.

P. Bernhardt, "Direct reconstruction methods for hyperspectral imaging with rotational spectrotomography," J. Opt. Soc. Am. A 12, 1884-1901 (1995).
[CrossRef]

Bevilacqua, F.

T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engles, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fouriertransform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000).
[CrossRef]

Brady, D.

A. Wagadarikar, R. John, R. Willett, and D. Brady, "Single disperser design for coded aperture snapshot spectral imaging," Appl. Opt. 47, 44-51 (2008).
[CrossRef]

M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, "Single-shot compressive spectral imaging with a dualdisperser architecture," Opt. Express 15, 14013-14027 (2007).
[CrossRef] [PubMed]

S. McCain, M. Gehm, Y. Wang, N. Pitsianis, and D. Brady, "Coded Aperture Raman Spectroscopy for Quantitative Measurements of Ethanol in a Tissue Phantom," Appl. Spect. 60, 663-671 (2006).
[CrossRef]

M. Gehm, S. McCain, N. Pitsianis, D. Brady, P. Potuluri, and M. Sullivan, "Static two-dimensional aperture coding for multimodal, multiplex spectroscopy," Appl. Opt. 45, 2965-2974 (2006).
[CrossRef] [PubMed]

Brodzik, A.

A. Brodzik and J. Mooney, "Convex projections algorithm for restoration of limited-angle chromotomographic images," J. Opt. Soc. Am. A 16,246-257 (1999).
[CrossRef]

J. Mooney, V. Vickers, M. An, and A. Brodzik, "High-throughput hyperspectral infrared camera," J. Opt. Soc. Am. A 14, 2951-2961 (1997).
[CrossRef]

Dam, J.

T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engles, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fouriertransform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000).
[CrossRef]

Dereniak, E.

M. Descour and E. Dereniak, "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results," Appl. Opt. 34, 4817-4826 (1995).
[CrossRef] [PubMed]

Descour, M.

M. Descour and E. Dereniak, "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results," Appl. Opt. 34, 4817-4826 (1995).
[CrossRef] [PubMed]

Garner, H.

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, "Hyperspectral imaging: A novel approach for microscopic analysis," Cytometry 43, 239 - 247 (2001).
[CrossRef] [PubMed]

Gehm, M.

M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, "Single-shot compressive spectral imaging with a dualdisperser architecture," Opt. Express 15, 14013-14027 (2007).
[CrossRef] [PubMed]

S. McCain, M. Gehm, Y. Wang, N. Pitsianis, and D. Brady, "Coded Aperture Raman Spectroscopy for Quantitative Measurements of Ethanol in a Tissue Phantom," Appl. Spect. 60, 663-671 (2006).
[CrossRef]

M. Gehm, S. McCain, N. Pitsianis, D. Brady, P. Potuluri, and M. Sullivan, "Static two-dimensional aperture coding for multimodal, multiplex spectroscopy," Appl. Opt. 45, 2965-2974 (2006).
[CrossRef] [PubMed]

Harrison, F.

W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94-102 (2001).
[CrossRef]

Huang, A.

W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94-102 (2001).
[CrossRef]

Huang, B.

W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94-102 (2001).
[CrossRef]

John, R.

A. Wagadarikar, R. John, R. Willett, and D. Brady, "Single disperser design for coded aperture snapshot spectral imaging," Appl. Opt. 47, 44-51 (2008).
[CrossRef]

M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, "Single-shot compressive spectral imaging with a dualdisperser architecture," Opt. Express 15, 14013-14027 (2007).
[CrossRef] [PubMed]

Katzenberger, G.

C. Snively, G. Katzenberger, and J. Lauterbach, "Fourier-transform infrared imaging using a rapid-scan spectrometer," Opt. Lett. 24, 1841-1843 (1999).
[CrossRef]

Larar, A.

W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94-102 (2001).
[CrossRef]

Lauterbach, J.

C. Snively, G. Katzenberger, and J. Lauterbach, "Fourier-transform infrared imaging using a rapid-scan spectrometer," Opt. Lett. 24, 1841-1843 (1999).
[CrossRef]

McCain, S.

S. McCain, M. Gehm, Y. Wang, N. Pitsianis, and D. Brady, "Coded Aperture Raman Spectroscopy for Quantitative Measurements of Ethanol in a Tissue Phantom," Appl. Spect. 60, 663-671 (2006).
[CrossRef]

M. Gehm, S. McCain, N. Pitsianis, D. Brady, P. Potuluri, and M. Sullivan, "Static two-dimensional aperture coding for multimodal, multiplex spectroscopy," Appl. Opt. 45, 2965-2974 (2006).
[CrossRef] [PubMed]

Michalowicz, J.

C. Stellman, F. Olchowski, and J. Michalowicz, "WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment)," Proc. SPIE 4379, 339-346 (2001).
[CrossRef]

Mooney, J.

A. Brodzik and J. Mooney, "Convex projections algorithm for restoration of limited-angle chromotomographic images," J. Opt. Soc. Am. A 16,246-257 (1999).
[CrossRef]

J. Mooney, V. Vickers, M. An, and A. Brodzik, "High-throughput hyperspectral infrared camera," J. Opt. Soc. Am. A 14, 2951-2961 (1997).
[CrossRef]

Nielsen, T.

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, "Hyperspectral imaging: A novel approach for microscopic analysis," Cytometry 43, 239 - 247 (2001).
[CrossRef] [PubMed]

Olchowski, F.

C. Stellman, F. Olchowski, and J. Michalowicz, "WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment)," Proc. SPIE 4379, 339-346 (2001).
[CrossRef]

Pham, T.

T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engles, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fouriertransform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000).
[CrossRef]

Pitsianis, N.

M. Gehm, S. McCain, N. Pitsianis, D. Brady, P. Potuluri, and M. Sullivan, "Static two-dimensional aperture coding for multimodal, multiplex spectroscopy," Appl. Opt. 45, 2965-2974 (2006).
[CrossRef] [PubMed]

S. McCain, M. Gehm, Y. Wang, N. Pitsianis, and D. Brady, "Coded Aperture Raman Spectroscopy for Quantitative Measurements of Ethanol in a Tissue Phantom," Appl. Spect. 60, 663-671 (2006).
[CrossRef]

Potuluri, P.

M. Gehm, S. McCain, N. Pitsianis, D. Brady, P. Potuluri, and M. Sullivan, "Static two-dimensional aperture coding for multimodal, multiplex spectroscopy," Appl. Opt. 45, 2965-2974 (2006).
[CrossRef] [PubMed]

Revercomb, H.

W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94-102 (2001).
[CrossRef]

Riesenberg, R.

A. Wuttig and R. Riesenberg, "Sensitive Hadamard transform imaging spectrometer with a simple MEMS," Proc. SPIE 4881, 167-178 (2003).
[CrossRef]

Ruch, R.

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, "Hyperspectral imaging: A novel approach for microscopic analysis," Cytometry 43, 239 - 247 (2001).
[CrossRef] [PubMed]

Schultz, R.

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, "Hyperspectral imaging: A novel approach for microscopic analysis," Cytometry 43, 239 - 247 (2001).
[CrossRef] [PubMed]

Schulz, T.

M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, "Single-shot compressive spectral imaging with a dualdisperser architecture," Opt. Express 15, 14013-14027 (2007).
[CrossRef] [PubMed]

Smith, W.

W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94-102 (2001).
[CrossRef]

Snively, C.

C. Snively, G. Katzenberger, and J. Lauterbach, "Fourier-transform infrared imaging using a rapid-scan spectrometer," Opt. Lett. 24, 1841-1843 (1999).
[CrossRef]

Spott, T.

T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engles, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fouriertransform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000).
[CrossRef]

Stellman, C.

C. Stellman, F. Olchowski, and J. Michalowicz, "WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment)," Proc. SPIE 4379, 339-346 (2001).
[CrossRef]

Sullivan, M.

M. Gehm, S. McCain, N. Pitsianis, D. Brady, P. Potuluri, and M. Sullivan, "Static two-dimensional aperture coding for multimodal, multiplex spectroscopy," Appl. Opt. 45, 2965-2974 (2006).
[CrossRef] [PubMed]

Tromberg, B.

T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engles, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fouriertransform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000).
[CrossRef]

Vickers, V.

J. Mooney, V. Vickers, M. An, and A. Brodzik, "High-throughput hyperspectral infrared camera," J. Opt. Soc. Am. A 14, 2951-2961 (1997).
[CrossRef]

Wagadarikar, A.

A. Wagadarikar, R. John, R. Willett, and D. Brady, "Single disperser design for coded aperture snapshot spectral imaging," Appl. Opt. 47, 44-51 (2008).
[CrossRef]

Wang, Y.

S. McCain, M. Gehm, Y. Wang, N. Pitsianis, and D. Brady, "Coded Aperture Raman Spectroscopy for Quantitative Measurements of Ethanol in a Tissue Phantom," Appl. Spect. 60, 663-671 (2006).
[CrossRef]

Willett, R.

A. Wagadarikar, R. John, R. Willett, and D. Brady, "Single disperser design for coded aperture snapshot spectral imaging," Appl. Opt. 47, 44-51 (2008).
[CrossRef]

M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, "Single-shot compressive spectral imaging with a dualdisperser architecture," Opt. Express 15, 14013-14027 (2007).
[CrossRef] [PubMed]

Wuttig, A.

A. Wuttig and R. Riesenberg, "Sensitive Hadamard transform imaging spectrometer with a simple MEMS," Proc. SPIE 4881, 167-178 (2003).
[CrossRef]

Wyatt, R.

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, "Hyperspectral imaging: A novel approach for microscopic analysis," Cytometry 43, 239 - 247 (2001).
[CrossRef] [PubMed]

Zavaleta, J.

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, "Hyperspectral imaging: A novel approach for microscopic analysis," Cytometry 43, 239 - 247 (2001).
[CrossRef] [PubMed]

Zhou, D.

W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94-102 (2001).
[CrossRef]

Appl. Opt. (4)

T. Pham, F. Bevilacqua, T. Spott, J. Dam, B. Tromberg, and S. Andersson-Engles, "Quantifying the absorption and reduced scattering coefficients of tissuelike turbid media over a broad spectral range with noncontact Fouriertransform hyperspectral imaging," Appl. Opt. 39, 6487-6497 (2000).
[CrossRef]

M. Descour and E. Dereniak, "Computed-tomography imaging spectrometer: experimental calibration and reconstruction results," Appl. Opt. 34, 4817-4826 (1995).
[CrossRef] [PubMed]

M. Gehm, S. McCain, N. Pitsianis, D. Brady, P. Potuluri, and M. Sullivan, "Static two-dimensional aperture coding for multimodal, multiplex spectroscopy," Appl. Opt. 45, 2965-2974 (2006).
[CrossRef] [PubMed]

A. Wagadarikar, R. John, R. Willett, and D. Brady, "Single disperser design for coded aperture snapshot spectral imaging," Appl. Opt. 47, 44-51 (2008).
[CrossRef]

Appl. Spect. (1)

S. McCain, M. Gehm, Y. Wang, N. Pitsianis, and D. Brady, "Coded Aperture Raman Spectroscopy for Quantitative Measurements of Ethanol in a Tissue Phantom," Appl. Spect. 60, 663-671 (2006).
[CrossRef]

Cytometry (1)

R. Schultz, T. Nielsen, J. Zavaleta, R. Ruch, R. Wyatt, and H. Garner, "Hyperspectral imaging: A novel approach for microscopic analysis," Cytometry 43, 239 - 247 (2001).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (3)

P. Bernhardt, "Direct reconstruction methods for hyperspectral imaging with rotational spectrotomography," J. Opt. Soc. Am. A 12, 1884-1901 (1995).
[CrossRef]

J. Mooney, V. Vickers, M. An, and A. Brodzik, "High-throughput hyperspectral infrared camera," J. Opt. Soc. Am. A 14, 2951-2961 (1997).
[CrossRef]

A. Brodzik and J. Mooney, "Convex projections algorithm for restoration of limited-angle chromotomographic images," J. Opt. Soc. Am. A 16,246-257 (1999).
[CrossRef]

Opt. Express (1)

M. Gehm, R. John, D. Brady, R. Willett, and T. Schulz, "Single-shot compressive spectral imaging with a dualdisperser architecture," Opt. Express 15, 14013-14027 (2007).
[CrossRef] [PubMed]

Opt. Lett. (1)

C. Snively, G. Katzenberger, and J. Lauterbach, "Fourier-transform infrared imaging using a rapid-scan spectrometer," Opt. Lett. 24, 1841-1843 (1999).
[CrossRef]

Proc. SPIE (3)

A. Wuttig and R. Riesenberg, "Sensitive Hadamard transform imaging spectrometer with a simple MEMS," Proc. SPIE 4881, 167-178 (2003).
[CrossRef]

W. Smith, D. Zhou, F. Harrison, H. Revercomb, A. Larar, A. Huang, and B. Huang, "Hyperspectral remote sensing of atmospheric profiles from satellites and aircraft," Proc. SPIE 4151, 94-102 (2001).
[CrossRef]

C. Stellman, F. Olchowski, and J. Michalowicz, "WAR HORSE (wide-area reconnaissance: hyperspectral overhead real-time surveillance experiment)," Proc. SPIE 4379, 339-346 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

First prototype HM system. (Left) System schematic. (Right) Photograph of operational prototype.

Fig. 2.
Fig. 2.

(Left) Optical design of the spectrograph. (Right) Aperture mask used in the spectral engine. Black (white) indicates opaque (transparent) regions.

Fig. 3.
Fig. 3.

Transmission pattern used in the test involving a monochromatic source.

Fig. 4.
Fig. 4.

(Left) Intensity image of the source generated by summing all the spectral channels in the reconstructed data cube. (Right) Spectral estimates for “on” (top) and “off” spatial locations.

Fig. 5.
Fig. 5.

(Top left) Baseline image of the quantum dot agglomeration. (Top right) Baseline image, downsampled to expected spatial resolution of HM. (Bottom) Baseline fluorescence spectrum of the quantum dots.

Fig. 6.
Fig. 6.

(Left) Intensity image of the source generated by summing all the spectral channels in the reconstructed data cube. (Right) Spectral estimates for “on” (top) and “off” spatial locations.

Fig. 7.
Fig. 7.

(Left) Second prototype system schematic. (Right) Second prototype system photograph..

Fig. 8.
Fig. 8.

(Left) Baseline image of the microsphere as recorded by the SPOT camera. (Right) Baseline spectrum of the microspheres as recorded by the Ocean Optics USB2000 spectrometer.

Fig. 9.
Fig. 9.

(Left) Intensity image of the source generated by summing all the spectral channels in the reconstructed data cube. (Right) Spectral estimates for “on” (top) and “off” spatial locations.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I ( x′ , y′ ) = dλdxdyδ ( y y′ ) δ ( x x′ + α ( λ λ c ) ) T ( x , y ) S ( x , y ; λ ) .
I ( x′ , y′ ) = dxT ( x , y′ ) S ( x , y′ ; x x′ α + λ c ) .
E ( x″ , x′ ) = y′ min y′ max d y′ T ˜ ( x″ , y′ ) I ( x′ , y′ )
= y′ min y′ max d y′ T ˜ ( x′′ , y′ ) dxT ( x , y′ ) S ( x , y′ ; x x′ α + λ c ) .
S ( x , y ; λ ) I ( y ) S ( x ; λ ) .
E ( x′′ , x′ ) βS ( x″ ; x″ x′ α + λ c ) .
I ( x′ , y′ , Δ ) = dλdxdyδ ( y y′ ) δ ( x x′ + α ( λ λ c ) ) T ( x , y ) S ( x , y Δ ; λ ) .
I ( x′ , y′ , Δ ) = dxT ( x , y′ ) S ( x , y′ Δ ; x x′ α + λ c ) .
I p ( x′ , y′ ) = d Δ δ ( Δ ( y′ p ) ) I ( x′ , y′ , Δ )
= dxT ( x , y′ ) S ( x , p ; x x′ α + λ c ) .
S ( x , p ; x x′ α + λ c ) = I ( p ) S ( x , x x′ α + λ c ) .
E p ( x″ , x′ ) = βS ( x″ ; x″ x′ α + λ c ) .
E ( x″ , p , x′ ) = βS ( x″ , p ; x″ x′ α + λ c ) ,

Metrics