Abstract

In this paper we use spatially variant metamaterial substrate to manipulate the directivity of antennas. We show theoretically that by embedding a dipole at different locations inside this substrate, the emitted rays can be directed to different orientations as required. As a result, spatial multiplexing can be realized by carefully selecting proper parameters of this substrate. It can also be observed that the electric field received in this antenna system is enhanced when it is used for reception. Simulations based on finite element method are used to validate our theoretical analysis, showing a controllable high directive property. In order to simplify the physical realization process, we propose the reduced parameters for practical design and also study it with numerical simulations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
    [CrossRef]
  2. D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000).
    [CrossRef] [PubMed]
  3. R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
    [CrossRef] [PubMed]
  4. Z. Weng, Y. Jiao, G. Zhao, and F. Zhang, "Design and Experiment of One Dimension and Two Dimension Metamaterial Structures for Directive Emission," Progress In Electromagnetics Research-PIER 70, 199 (2007).
    [CrossRef]
  5. N. Engheta and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Microwave Theory Tech. 53, 1535 (2005).
    [CrossRef]
  6. A. Yu, F. Yang, and A. Z. Elsherbeni, "A Dual Band Circularly Polarized Ring Antenna Based on Composite Right and Left Handed Metamaterials," Progress In Electromagnetics Research-PIER 77, 285(2007).
  7. S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett. 89, 213902 (2002).
    [CrossRef] [PubMed]
  8. R. W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E 70, 046608 (2004).
    [CrossRef]
  9. J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress in Electromagnetics Research-PIER 81, 437 (2008).
    [CrossRef]
  10. R. W. Ziolkowski and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag. 54, 2113, July 2006.
    [CrossRef]
  11. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 (2006).
    [CrossRef] [PubMed]
  12. F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069 (2007).
    [CrossRef] [PubMed]
  13. D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794 (2006).
    [CrossRef] [PubMed]
  14. S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
    [CrossRef]
  15. H. Chen, B-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
    [CrossRef] [PubMed]
  16. R. Weder, "A rigorous analysis of high-order electromagnetic invisibility cloaks," J. Phys. A: Math. Theor. 41, 065207 (2008).
    [CrossRef]
  17. Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133 (2007).
    [CrossRef] [PubMed]
  18. A. V. Kildishev and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett. 32, 3432 (2007).
    [CrossRef] [PubMed]
  19. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444 (2008).
    [CrossRef] [PubMed]
  20. R. Weder, "The Boundary Conditions for Electromagnetic Invisibility Cloaks," arXiv 0801.3611 (2008).

2008 (3)

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress in Electromagnetics Research-PIER 81, 437 (2008).
[CrossRef]

R. Weder, "A rigorous analysis of high-order electromagnetic invisibility cloaks," J. Phys. A: Math. Theor. 41, 065207 (2008).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444 (2008).
[CrossRef] [PubMed]

2007 (6)

H. Chen, B-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133 (2007).
[CrossRef] [PubMed]

A. V. Kildishev and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett. 32, 3432 (2007).
[CrossRef] [PubMed]

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069 (2007).
[CrossRef] [PubMed]

Z. Weng, Y. Jiao, G. Zhao, and F. Zhang, "Design and Experiment of One Dimension and Two Dimension Metamaterial Structures for Directive Emission," Progress In Electromagnetics Research-PIER 70, 199 (2007).
[CrossRef]

A. Yu, F. Yang, and A. Z. Elsherbeni, "A Dual Band Circularly Polarized Ring Antenna Based on Composite Right and Left Handed Metamaterials," Progress In Electromagnetics Research-PIER 77, 285(2007).

2006 (4)

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

R. W. Ziolkowski and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag. 54, 2113, July 2006.
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 (2006).
[CrossRef] [PubMed]

2005 (1)

N. Engheta and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Microwave Theory Tech. 53, 1535 (2005).
[CrossRef]

2004 (1)

R. W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E 70, 046608 (2004).
[CrossRef]

2002 (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

2000 (1)

D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
[CrossRef]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444 (2008).
[CrossRef] [PubMed]

Chen, H.

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress in Electromagnetics Research-PIER 81, 437 (2008).
[CrossRef]

H. Chen, B-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444 (2008).
[CrossRef] [PubMed]

Cummer, S. A.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Elsherbeni, A. Z.

A. Yu, F. Yang, and A. Z. Elsherbeni, "A Dual Band Circularly Polarized Ring Antenna Based on Composite Right and Left Handed Metamaterials," Progress In Electromagnetics Research-PIER 77, 285(2007).

Engheta, N.

N. Engheta and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Microwave Theory Tech. 53, 1535 (2005).
[CrossRef]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Erentok, A.

R. W. Ziolkowski and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag. 54, 2113, July 2006.
[CrossRef]

Feng, Y.

Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133 (2007).
[CrossRef] [PubMed]

Guenneau, S.

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069 (2007).
[CrossRef] [PubMed]

Guerin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
[CrossRef]

Huang, Y.

Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133 (2007).
[CrossRef] [PubMed]

Jiang, T.

Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133 (2007).
[CrossRef] [PubMed]

Jiao, Y.

Z. Weng, Y. Jiao, G. Zhao, and F. Zhang, "Design and Experiment of One Dimension and Two Dimension Metamaterial Structures for Directive Emission," Progress In Electromagnetics Research-PIER 70, 199 (2007).
[CrossRef]

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444 (2008).
[CrossRef] [PubMed]

A. V. Kildishev and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett. 32, 3432 (2007).
[CrossRef] [PubMed]

Kong, J. A.

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress in Electromagnetics Research-PIER 81, 437 (2008).
[CrossRef]

H. Chen, B-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Luo, Y.

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress in Electromagnetics Research-PIER 81, 437 (2008).
[CrossRef]

Narimanov, E. E.

A. V. Kildishev and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett. 32, 3432 (2007).
[CrossRef] [PubMed]

Nicolet, A.

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069 (2007).
[CrossRef] [PubMed]

Pendry, J. B.

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069 (2007).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 (2006).
[CrossRef] [PubMed]

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
[CrossRef]

Popa, B.-I.

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

Ran, L.

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress in Electromagnetics Research-PIER 81, 437 (2008).
[CrossRef]

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
[CrossRef]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444 (2008).
[CrossRef] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 (2006).
[CrossRef] [PubMed]

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794 (2006).
[CrossRef] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
[CrossRef]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

Weder, R.

R. Weder, "A rigorous analysis of high-order electromagnetic invisibility cloaks," J. Phys. A: Math. Theor. 41, 065207 (2008).
[CrossRef]

Weng, Z.

Z. Weng, Y. Jiao, G. Zhao, and F. Zhang, "Design and Experiment of One Dimension and Two Dimension Metamaterial Structures for Directive Emission," Progress In Electromagnetics Research-PIER 70, 199 (2007).
[CrossRef]

Willie, D. R.

D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

Wu, B.-I.

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress in Electromagnetics Research-PIER 81, 437 (2008).
[CrossRef]

Wu, B-I.

H. Chen, B-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Xi, S.

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress in Electromagnetics Research-PIER 81, 437 (2008).
[CrossRef]

Yang, F.

A. Yu, F. Yang, and A. Z. Elsherbeni, "A Dual Band Circularly Polarized Ring Antenna Based on Composite Right and Left Handed Metamaterials," Progress In Electromagnetics Research-PIER 77, 285(2007).

Yu, A.

A. Yu, F. Yang, and A. Z. Elsherbeni, "A Dual Band Circularly Polarized Ring Antenna Based on Composite Right and Left Handed Metamaterials," Progress In Electromagnetics Research-PIER 77, 285(2007).

Zhang, B.

H. Chen, B-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Zhang, F.

Z. Weng, Y. Jiao, G. Zhao, and F. Zhang, "Design and Experiment of One Dimension and Two Dimension Metamaterial Structures for Directive Emission," Progress In Electromagnetics Research-PIER 70, 199 (2007).
[CrossRef]

Zhang, J.

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress in Electromagnetics Research-PIER 81, 437 (2008).
[CrossRef]

Zhao, G.

Z. Weng, Y. Jiao, G. Zhao, and F. Zhang, "Design and Experiment of One Dimension and Two Dimension Metamaterial Structures for Directive Emission," Progress In Electromagnetics Research-PIER 70, 199 (2007).
[CrossRef]

Ziolkowski, R. W.

R. W. Ziolkowski and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag. 54, 2113, July 2006.
[CrossRef]

N. Engheta and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Microwave Theory Tech. 53, 1535 (2005).
[CrossRef]

R. W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E 70, 046608 (2004).
[CrossRef]

Zolla, F.

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069 (2007).
[CrossRef] [PubMed]

IEEE Microwave Theory Tech. (1)

N. Engheta and R. W. Ziolkowski, "A positive future for double negative metamaterials," IEEE Microwave Theory Tech. 53, 1535 (2005).
[CrossRef]

IEEE Trans. Antennas Propag. (1)

R. W. Ziolkowski and A. Erentok, "Metamaterial-based efficient electrically small antennas," IEEE Trans. Antennas Propag. 54, 2113, July 2006.
[CrossRef]

IEEE Trans. Microwave Theory Technol. (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Technol. 47, 2075 (1999).
[CrossRef]

J. Phys. A: Math. Theor. (1)

R. Weder, "A rigorous analysis of high-order electromagnetic invisibility cloaks," J. Phys. A: Math. Theor. 41, 065207 (2008).
[CrossRef]

Opt. Express (3)

Y. Huang, Y. Feng, and T. Jiang, "Electromagnetic cloaking by layered structure of homogeneous isotropic materials," Opt. Express 15, 11133 (2007).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444 (2008).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express 14, 9794 (2006).
[CrossRef] [PubMed]

Opt. Lett. (2)

A. V. Kildishev and E. E. Narimanov, "Impedance-matched hyperlens," Opt. Lett. 32, 3432 (2007).
[CrossRef] [PubMed]

F. Zolla, S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Opt. Lett. 32, 1069 (2007).
[CrossRef] [PubMed]

Phys. Rev. E (2)

S. A. Cummer, B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E 74, 036621 (2006).
[CrossRef]

R. W. Ziolkowski, "Propagation in and scattering from a matched metamaterial having a zero index of refraction," Phys. Rev. E 70, 046608 (2004).
[CrossRef]

Phys. Rev. Lett. (3)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guerin, and P. Vincent, "A metamaterial for directive emission," Phys. Rev. Lett. 89, 213902 (2002).
[CrossRef] [PubMed]

D. R. Smith, WillieJ. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite Medium with Simultaneously Negative Permeability and Permittivity," Phys. Rev. Lett. 84, 4184 (2000).
[CrossRef] [PubMed]

H. Chen, B-I. Wu, B. Zhang, and J. A. Kong, "Electromagnetic Wave Interactions with a Metamaterial Cloak," Phys. Rev. Lett. 99, 063903 (2007).
[CrossRef] [PubMed]

Progress In Electromagnetics Research-PIER (2)

A. Yu, F. Yang, and A. Z. Elsherbeni, "A Dual Band Circularly Polarized Ring Antenna Based on Composite Right and Left Handed Metamaterials," Progress In Electromagnetics Research-PIER 77, 285(2007).

Z. Weng, Y. Jiao, G. Zhao, and F. Zhang, "Design and Experiment of One Dimension and Two Dimension Metamaterial Structures for Directive Emission," Progress In Electromagnetics Research-PIER 70, 199 (2007).
[CrossRef]

J. Zhang, Y. Luo, S. Xi, H. Chen, L. Ran, B.-I. Wu, and J. A. Kong, "Directive emission obtained by coordinate transformation," Progress in Electromagnetics Research-PIER 81, 437 (2008).
[CrossRef]

Science (2)

R. A. Shelby, D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science 292, 77 (2001).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling Electromagnetic Fields," Science 312, 1780 (2006).
[CrossRef] [PubMed]

Other (1)

R. Weder, "The Boundary Conditions for Electromagnetic Invisibility Cloaks," arXiv 0801.3611 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Incidence of a TE wave at the boundary at x = d. Here x = 0 and x = d are two boundaries separating three regions.

Fig. 2.
Fig. 2.

(a-c) E z field distributions of a metamaterial slab with TE polarized incidences of three different angles: (a) 0°, (b) 8°, (c) 30°. (d) Magnitudes of TE waves inside the metamaterial slab in terms of the normalized position, where black solid line, red dashdot line, and blue dot line correspond to 0° , 8°, and 30° incidences respectively.

Fig. 4.
Fig. 4.

(a) E distribution when the metamaterial substrate with ideal parameters is fed by z-polarized line source located at the left boundary. (b) E distribution when the metamaterial substrate is fed by z-polarized line source located 0.02 m from the left boundary. (c) Normalized power density in the far field region with different locations of sources. The black solid line and red dashed correspond to the cases when the source embedded at the left boundary and 0.02 m from the left boundary, respectively.

Fig. 4.
Fig. 4.

(a) E z distribution when the metamaterial substrate with reduced parameters is fed by z-polarized line source located at the left boundary. (b) E z distribution when the metamaterial substrate is fed by z-polarized line source located 0.04 m from the left boundary. (c) Normalized power density in the far field region with different locations of sources. The black solid line and red dashed correspond to the cases when the source embedded at the left boundary and 0.04 m from the left boundary, respectively.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ε = = μ = = x l x ̂ x ̂ + l x y ̂ y ̂ + α 2 x l z ̂ z ̂ ,
α 1 x x x x E z + ( l x ) 2 2 y 2 E z + α 2 k 0 2 E z = 0 .
E z R = R E 0 e i k x x + i k y y ,
E z T = T E 0 e i k x x + i k y y ,
E z Slab = E 0 ( A J k y l ( α k 0 x ) + B N k y l ( α k 0 x ) ) e i k y y ,
R = a ib a + ib e i k x d , A = 2 a + ib e i k x d , B = T = 0 ,
ε z = α 2 , μ x = x 2 l 2 , μ y = 1 .

Metrics