Abstract

As channels rates in optical networks are expected to exceed 100Gb/s in the near future, new optical techniques for clock recovery will have to be developed for optical regeneration. This paper describes an optical clock recovery method based on a mode-locked laser diode. Experimental results show that a 42GHz high quality optical clock can be retrieved from a 170Gb/s OTDM data signal. Chirp transfer between the incident signal and the recovered clock signal is investigated using the SHG-FROG method. Results demonstrate that this clock recovery technique is invariant to input dispersion varying between ±75ps/nm, making it ideal for use in 3R regenerators.

©2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
40Gbits/s all-optical clock recovery for degraded signals using an amplified feedback laser

Li Wang, Xiaofan Zhao, Caiyun Lou, Dan Lu, Yu Sun, Lingjuan Zhao, and Wei Wang
Appl. Opt. 49(34) 6577-6581 (2010)

80Gb/s clock recovery with phase locked loop based on LiNbO3 modulators

G. Zhu, Q. Wang, H. Dong, H. Sun, and N.K. Dutta
Opt. Express 12(15) 3488-3492 (2004)

Baud-rate flexible clock recovery and channel identification in OTDM realized by pulse position modulation

Takayuki Kurosu, Ken Tanizawa, Dexiang Wang, Sze Yun Set, and Shu Namiki
Opt. Express 21(4) 4447-4455 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Hamilton, B. S. Robinson, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100Gb/s Optical Time-Division Multiplexed Networks,” J. Lightwave Technol. 20, 2086–2100 (2002).
    [Crossref]
  2. J. Renaudier, B. Lavigne, M. Jourdran, P. Gallion, F. Lelarge, B. Dagens, A. Accard, O. Legouezigou, and G. H. Duan, “First demonstration of all-optical clock recovery at 40GHz with standard-compliant jitter characteristics based on quantum-dots self-pulsating semiconductor laser” in Proceedings of 31st European Conference on Optical Communications (Glasgow, Scotland, 2005), pp.31–32.
  3. K. Y. Lau, “Short-Pulse and High-Frequency Signal Generation in Semiconductor Lasers,” J. Lightwave Technol. 7, 400–419 (1989).
    [Crossref]
  4. M. Saruwatari “All-Optical Signal Processing for Terabit/Second Optical Transmission,” IEEE J. Sel. Top. Quantum Electron. 6, 1363–1374 (2000).
    [Crossref]
  5. O. Kamantani and S. Kawanishi, “Ultrahight-Speed Clock Recovery with Phase Lock Loop Based in Four-Wave Mixing in a Traveling-Wave Laser Diode Amplifier,” J. Lightwave Technol. 14, 1757–1767 (1996).
    [Crossref]
  6. J. P. Turkiewicz, E. Tangdiongga, G. D. Khoe, and H.de Waardt, “Clock Recovery and Demultiplexing Performance of 160-Gb/s OTDM Field Experiment,” IEEE Photon. Technol. Lett. 16, 1555–1557 (2004).
    [Crossref]
  7. R. Salem, A. A. Ahamdi, G. E. Tudury, G. M. Carter, and T. E. Murphy, “Two-Photon Absorption for Optical Clock Recovery in OTDM Networks,” J. Lightwave Technol. 243353–3362 (2006).
    [Crossref]
  8. Z. Hu, H-F. Chou, K. Nishimura, M. Usami, J. E. Bowers, and D. J. Blumenthal, “Optical Clock Recovery Circuits Using Traveling-Wave Electroabsorption Modulator-Based Ring Oscillators for 3R Regeneration,” IEEE J. Sel. Top. Quantum Electron. 11, 329–337 (2005).
    [Crossref]
  9. P. Rees, P. McEvoy, A. Valle, J. O’Gorman, S. Lynch, P. L,ais, L. Pesquera, and J. Hegarty, “A Theoretical Analysis of Optical Clock Extraction Using a Self-Pulsating Laser Diode,” IEEE J. Quantum Electron. 35, 221–227 (1999).
    [Crossref]
  10. K. Smith and J. K. Lucek, “All-optical clock recovery using a mode-locked laser,” Electron. Lett. 28, 1814–1816 (1992).
    [Crossref]
  11. V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
    [Crossref]
  12. V. Roncin, S. Lobo, L. Bramerie, P. Rochard, A. Shen, F. Van Dijk, G.-H. Duan, and J. C. Simon, “Demonstration of Chromatic Dispersion and Optical Noise insensitivity of a Quantum-Dash based Fabry-Perot Laser in All-Optical Clock Recovery at 40Gbit/s,” in Proceedings of 33rd European Conference on Optical Communications (Berlin, Germany, 2007), pp.165–166.
  13. M. Jinno and T. Matsumoto, “All-optical timing extraction using a 1.5μm self-pulsating multielectrode DFB LD,” Electron. Lett. 24, 1426–1427 (1988).
    [Crossref]
  14. S. Arahira and Y. Ogawa, ”Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937–944 (2005).
    [Crossref]
  15. I. Kim, C. Kim, G. Li, P. LiKamWa, and J. Hong, “180-GHz clock recovery using a multisection gain-coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 17, 1295–1297 (2005).
    [Crossref]
  16. T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160Gbit/s data using regeneratively modelocked semiconductor laser,” Electron. Lett. 39, 453–454 (2003).
    [Crossref]
  17. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum - American Institute of Physics 68, 3277–3295 (1997).

2007 (1)

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

2006 (1)

2005 (3)

Z. Hu, H-F. Chou, K. Nishimura, M. Usami, J. E. Bowers, and D. J. Blumenthal, “Optical Clock Recovery Circuits Using Traveling-Wave Electroabsorption Modulator-Based Ring Oscillators for 3R Regeneration,” IEEE J. Sel. Top. Quantum Electron. 11, 329–337 (2005).
[Crossref]

S. Arahira and Y. Ogawa, ”Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937–944 (2005).
[Crossref]

I. Kim, C. Kim, G. Li, P. LiKamWa, and J. Hong, “180-GHz clock recovery using a multisection gain-coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 17, 1295–1297 (2005).
[Crossref]

2004 (1)

J. P. Turkiewicz, E. Tangdiongga, G. D. Khoe, and H.de Waardt, “Clock Recovery and Demultiplexing Performance of 160-Gb/s OTDM Field Experiment,” IEEE Photon. Technol. Lett. 16, 1555–1557 (2004).
[Crossref]

2003 (1)

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160Gbit/s data using regeneratively modelocked semiconductor laser,” Electron. Lett. 39, 453–454 (2003).
[Crossref]

2002 (1)

2000 (1)

M. Saruwatari “All-Optical Signal Processing for Terabit/Second Optical Transmission,” IEEE J. Sel. Top. Quantum Electron. 6, 1363–1374 (2000).
[Crossref]

1999 (1)

P. Rees, P. McEvoy, A. Valle, J. O’Gorman, S. Lynch, P. L,ais, L. Pesquera, and J. Hegarty, “A Theoretical Analysis of Optical Clock Extraction Using a Self-Pulsating Laser Diode,” IEEE J. Quantum Electron. 35, 221–227 (1999).
[Crossref]

1997 (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum - American Institute of Physics 68, 3277–3295 (1997).

1996 (1)

O. Kamantani and S. Kawanishi, “Ultrahight-Speed Clock Recovery with Phase Lock Loop Based in Four-Wave Mixing in a Traveling-Wave Laser Diode Amplifier,” J. Lightwave Technol. 14, 1757–1767 (1996).
[Crossref]

1992 (1)

K. Smith and J. K. Lucek, “All-optical clock recovery using a mode-locked laser,” Electron. Lett. 28, 1814–1816 (1992).
[Crossref]

1989 (1)

K. Y. Lau, “Short-Pulse and High-Frequency Signal Generation in Semiconductor Lasers,” J. Lightwave Technol. 7, 400–419 (1989).
[Crossref]

1988 (1)

M. Jinno and T. Matsumoto, “All-optical timing extraction using a 1.5μm self-pulsating multielectrode DFB LD,” Electron. Lett. 24, 1426–1427 (1988).
[Crossref]

Accard, A.

J. Renaudier, B. Lavigne, M. Jourdran, P. Gallion, F. Lelarge, B. Dagens, A. Accard, O. Legouezigou, and G. H. Duan, “First demonstration of all-optical clock recovery at 40GHz with standard-compliant jitter characteristics based on quantum-dots self-pulsating semiconductor laser” in Proceedings of 31st European Conference on Optical Communications (Glasgow, Scotland, 2005), pp.31–32.

Ahamdi, A. A.

Arahira, S.

S. Arahira and Y. Ogawa, ”Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937–944 (2005).
[Crossref]

Blumenthal, D. J.

Z. Hu, H-F. Chou, K. Nishimura, M. Usami, J. E. Bowers, and D. J. Blumenthal, “Optical Clock Recovery Circuits Using Traveling-Wave Electroabsorption Modulator-Based Ring Oscillators for 3R Regeneration,” IEEE J. Sel. Top. Quantum Electron. 11, 329–337 (2005).
[Crossref]

Bowers, J. E.

Z. Hu, H-F. Chou, K. Nishimura, M. Usami, J. E. Bowers, and D. J. Blumenthal, “Optical Clock Recovery Circuits Using Traveling-Wave Electroabsorption Modulator-Based Ring Oscillators for 3R Regeneration,” IEEE J. Sel. Top. Quantum Electron. 11, 329–337 (2005).
[Crossref]

Bramerie, L.

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

V. Roncin, S. Lobo, L. Bramerie, P. Rochard, A. Shen, F. Van Dijk, G.-H. Duan, and J. C. Simon, “Demonstration of Chromatic Dispersion and Optical Noise insensitivity of a Quantum-Dash based Fabry-Perot Laser in All-Optical Clock Recovery at 40Gbit/s,” in Proceedings of 33rd European Conference on Optical Communications (Berlin, Germany, 2007), pp.165–166.

Carter, G. M.

Chou, H-F.

Z. Hu, H-F. Chou, K. Nishimura, M. Usami, J. E. Bowers, and D. J. Blumenthal, “Optical Clock Recovery Circuits Using Traveling-Wave Electroabsorption Modulator-Based Ring Oscillators for 3R Regeneration,” IEEE J. Sel. Top. Quantum Electron. 11, 329–337 (2005).
[Crossref]

Dagens, B.

J. Renaudier, B. Lavigne, M. Jourdran, P. Gallion, F. Lelarge, B. Dagens, A. Accard, O. Legouezigou, and G. H. Duan, “First demonstration of all-optical clock recovery at 40GHz with standard-compliant jitter characteristics based on quantum-dots self-pulsating semiconductor laser” in Proceedings of 31st European Conference on Optical Communications (Glasgow, Scotland, 2005), pp.31–32.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum - American Institute of Physics 68, 3277–3295 (1997).

Dijk, F. Van

V. Roncin, S. Lobo, L. Bramerie, P. Rochard, A. Shen, F. Van Dijk, G.-H. Duan, and J. C. Simon, “Demonstration of Chromatic Dispersion and Optical Noise insensitivity of a Quantum-Dash based Fabry-Perot Laser in All-Optical Clock Recovery at 40Gbit/s,” in Proceedings of 33rd European Conference on Optical Communications (Berlin, Germany, 2007), pp.165–166.

Duan, G. H.

J. Renaudier, B. Lavigne, M. Jourdran, P. Gallion, F. Lelarge, B. Dagens, A. Accard, O. Legouezigou, and G. H. Duan, “First demonstration of all-optical clock recovery at 40GHz with standard-compliant jitter characteristics based on quantum-dots self-pulsating semiconductor laser” in Proceedings of 31st European Conference on Optical Communications (Glasgow, Scotland, 2005), pp.31–32.

Duan, G.-H.

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

V. Roncin, S. Lobo, L. Bramerie, P. Rochard, A. Shen, F. Van Dijk, G.-H. Duan, and J. C. Simon, “Demonstration of Chromatic Dispersion and Optical Noise insensitivity of a Quantum-Dash based Fabry-Perot Laser in All-Optical Clock Recovery at 40Gbit/s,” in Proceedings of 33rd European Conference on Optical Communications (Berlin, Germany, 2007), pp.165–166.

E., Jacquette

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum - American Institute of Physics 68, 3277–3295 (1997).

Furuta, T.

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160Gbit/s data using regeneratively modelocked semiconductor laser,” Electron. Lett. 39, 453–454 (2003).
[Crossref]

Gallion, P.

J. Renaudier, B. Lavigne, M. Jourdran, P. Gallion, F. Lelarge, B. Dagens, A. Accard, O. Legouezigou, and G. H. Duan, “First demonstration of all-optical clock recovery at 40GHz with standard-compliant jitter characteristics based on quantum-dots self-pulsating semiconductor laser” in Proceedings of 31st European Conference on Optical Communications (Glasgow, Scotland, 2005), pp.31–32.

Gay, M.

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

Hamilton, S. A.

Hegarty, J.

P. Rees, P. McEvoy, A. Valle, J. O’Gorman, S. Lynch, P. L,ais, L. Pesquera, and J. Hegarty, “A Theoretical Analysis of Optical Clock Extraction Using a Self-Pulsating Laser Diode,” IEEE J. Quantum Electron. 35, 221–227 (1999).
[Crossref]

Hong, J.

I. Kim, C. Kim, G. Li, P. LiKamWa, and J. Hong, “180-GHz clock recovery using a multisection gain-coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 17, 1295–1297 (2005).
[Crossref]

Hu, Z.

Z. Hu, H-F. Chou, K. Nishimura, M. Usami, J. E. Bowers, and D. J. Blumenthal, “Optical Clock Recovery Circuits Using Traveling-Wave Electroabsorption Modulator-Based Ring Oscillators for 3R Regeneration,” IEEE J. Sel. Top. Quantum Electron. 11, 329–337 (2005).
[Crossref]

Ippen, E. P.

Ito, H.

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160Gbit/s data using regeneratively modelocked semiconductor laser,” Electron. Lett. 39, 453–454 (2003).
[Crossref]

Jinno, M.

M. Jinno and T. Matsumoto, “All-optical timing extraction using a 1.5μm self-pulsating multielectrode DFB LD,” Electron. Lett. 24, 1426–1427 (1988).
[Crossref]

Jourdran, M.

J. Renaudier, B. Lavigne, M. Jourdran, P. Gallion, F. Lelarge, B. Dagens, A. Accard, O. Legouezigou, and G. H. Duan, “First demonstration of all-optical clock recovery at 40GHz with standard-compliant jitter characteristics based on quantum-dots self-pulsating semiconductor laser” in Proceedings of 31st European Conference on Optical Communications (Glasgow, Scotland, 2005), pp.31–32.

Kamantani, O.

O. Kamantani and S. Kawanishi, “Ultrahight-Speed Clock Recovery with Phase Lock Loop Based in Four-Wave Mixing in a Traveling-Wave Laser Diode Amplifier,” J. Lightwave Technol. 14, 1757–1767 (1996).
[Crossref]

Kawanishi, S.

O. Kamantani and S. Kawanishi, “Ultrahight-Speed Clock Recovery with Phase Lock Loop Based in Four-Wave Mixing in a Traveling-Wave Laser Diode Amplifier,” J. Lightwave Technol. 14, 1757–1767 (1996).
[Crossref]

Khoe, G. D.

J. P. Turkiewicz, E. Tangdiongga, G. D. Khoe, and H.de Waardt, “Clock Recovery and Demultiplexing Performance of 160-Gb/s OTDM Field Experiment,” IEEE Photon. Technol. Lett. 16, 1555–1557 (2004).
[Crossref]

Kim, C.

I. Kim, C. Kim, G. Li, P. LiKamWa, and J. Hong, “180-GHz clock recovery using a multisection gain-coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 17, 1295–1297 (2005).
[Crossref]

Kim, I.

I. Kim, C. Kim, G. Li, P. LiKamWa, and J. Hong, “180-GHz clock recovery using a multisection gain-coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 17, 1295–1297 (2005).
[Crossref]

Krumbugel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum - American Institute of Physics 68, 3277–3295 (1997).

L,ais, P.

P. Rees, P. McEvoy, A. Valle, J. O’Gorman, S. Lynch, P. L,ais, L. Pesquera, and J. Hegarty, “A Theoretical Analysis of Optical Clock Extraction Using a Self-Pulsating Laser Diode,” IEEE J. Quantum Electron. 35, 221–227 (1999).
[Crossref]

Lau, K. Y.

K. Y. Lau, “Short-Pulse and High-Frequency Signal Generation in Semiconductor Lasers,” J. Lightwave Technol. 7, 400–419 (1989).
[Crossref]

Lavigne, B.

J. Renaudier, B. Lavigne, M. Jourdran, P. Gallion, F. Lelarge, B. Dagens, A. Accard, O. Legouezigou, and G. H. Duan, “First demonstration of all-optical clock recovery at 40GHz with standard-compliant jitter characteristics based on quantum-dots self-pulsating semiconductor laser” in Proceedings of 31st European Conference on Optical Communications (Glasgow, Scotland, 2005), pp.31–32.

Le, W.-T.

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

Legouezigou, O.

J. Renaudier, B. Lavigne, M. Jourdran, P. Gallion, F. Lelarge, B. Dagens, A. Accard, O. Legouezigou, and G. H. Duan, “First demonstration of all-optical clock recovery at 40GHz with standard-compliant jitter characteristics based on quantum-dots self-pulsating semiconductor laser” in Proceedings of 31st European Conference on Optical Communications (Glasgow, Scotland, 2005), pp.31–32.

Lelarge, F.

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

J. Renaudier, B. Lavigne, M. Jourdran, P. Gallion, F. Lelarge, B. Dagens, A. Accard, O. Legouezigou, and G. H. Duan, “First demonstration of all-optical clock recovery at 40GHz with standard-compliant jitter characteristics based on quantum-dots self-pulsating semiconductor laser” in Proceedings of 31st European Conference on Optical Communications (Glasgow, Scotland, 2005), pp.31–32.

Li, G.

I. Kim, C. Kim, G. Li, P. LiKamWa, and J. Hong, “180-GHz clock recovery using a multisection gain-coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 17, 1295–1297 (2005).
[Crossref]

LiKamWa, P.

I. Kim, C. Kim, G. Li, P. LiKamWa, and J. Hong, “180-GHz clock recovery using a multisection gain-coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 17, 1295–1297 (2005).
[Crossref]

Lobo, S.

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

V. Roncin, S. Lobo, L. Bramerie, P. Rochard, A. Shen, F. Van Dijk, G.-H. Duan, and J. C. Simon, “Demonstration of Chromatic Dispersion and Optical Noise insensitivity of a Quantum-Dash based Fabry-Perot Laser in All-Optical Clock Recovery at 40Gbit/s,” in Proceedings of 33rd European Conference on Optical Communications (Berlin, Germany, 2007), pp.165–166.

Lucek, J. K.

K. Smith and J. K. Lucek, “All-optical clock recovery using a mode-locked laser,” Electron. Lett. 28, 1814–1816 (1992).
[Crossref]

Lynch, S.

P. Rees, P. McEvoy, A. Valle, J. O’Gorman, S. Lynch, P. L,ais, L. Pesquera, and J. Hegarty, “A Theoretical Analysis of Optical Clock Extraction Using a Self-Pulsating Laser Diode,” IEEE J. Quantum Electron. 35, 221–227 (1999).
[Crossref]

Matsumoto, T.

M. Jinno and T. Matsumoto, “All-optical timing extraction using a 1.5μm self-pulsating multielectrode DFB LD,” Electron. Lett. 24, 1426–1427 (1988).
[Crossref]

McEvoy, P.

P. Rees, P. McEvoy, A. Valle, J. O’Gorman, S. Lynch, P. L,ais, L. Pesquera, and J. Hegarty, “A Theoretical Analysis of Optical Clock Extraction Using a Self-Pulsating Laser Diode,” IEEE J. Quantum Electron. 35, 221–227 (1999).
[Crossref]

Murphy, T. E.

Nishimura, K.

Z. Hu, H-F. Chou, K. Nishimura, M. Usami, J. E. Bowers, and D. J. Blumenthal, “Optical Clock Recovery Circuits Using Traveling-Wave Electroabsorption Modulator-Based Ring Oscillators for 3R Regeneration,” IEEE J. Sel. Top. Quantum Electron. 11, 329–337 (2005).
[Crossref]

O’Gorman, J.

P. Rees, P. McEvoy, A. Valle, J. O’Gorman, S. Lynch, P. L,ais, L. Pesquera, and J. Hegarty, “A Theoretical Analysis of Optical Clock Extraction Using a Self-Pulsating Laser Diode,” IEEE J. Quantum Electron. 35, 221–227 (1999).
[Crossref]

O’Hare, A.

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

Ogawa, Y.

S. Arahira and Y. Ogawa, ”Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937–944 (2005).
[Crossref]

Ohno, T.

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160Gbit/s data using regeneratively modelocked semiconductor laser,” Electron. Lett. 39, 453–454 (2003).
[Crossref]

Pesquera, L.

P. Rees, P. McEvoy, A. Valle, J. O’Gorman, S. Lynch, P. L,ais, L. Pesquera, and J. Hegarty, “A Theoretical Analysis of Optical Clock Extraction Using a Self-Pulsating Laser Diode,” IEEE J. Quantum Electron. 35, 221–227 (1999).
[Crossref]

Rees, P.

P. Rees, P. McEvoy, A. Valle, J. O’Gorman, S. Lynch, P. L,ais, L. Pesquera, and J. Hegarty, “A Theoretical Analysis of Optical Clock Extraction Using a Self-Pulsating Laser Diode,” IEEE J. Quantum Electron. 35, 221–227 (1999).
[Crossref]

Renaudier, J.

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

J. Renaudier, B. Lavigne, M. Jourdran, P. Gallion, F. Lelarge, B. Dagens, A. Accard, O. Legouezigou, and G. H. Duan, “First demonstration of all-optical clock recovery at 40GHz with standard-compliant jitter characteristics based on quantum-dots self-pulsating semiconductor laser” in Proceedings of 31st European Conference on Optical Communications (Glasgow, Scotland, 2005), pp.31–32.

Richman, B. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum - American Institute of Physics 68, 3277–3295 (1997).

Robinson, B. S.

Rochard, P.

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

V. Roncin, S. Lobo, L. Bramerie, P. Rochard, A. Shen, F. Van Dijk, G.-H. Duan, and J. C. Simon, “Demonstration of Chromatic Dispersion and Optical Noise insensitivity of a Quantum-Dash based Fabry-Perot Laser in All-Optical Clock Recovery at 40Gbit/s,” in Proceedings of 33rd European Conference on Optical Communications (Berlin, Germany, 2007), pp.165–166.

Roncin, V.

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

V. Roncin, S. Lobo, L. Bramerie, P. Rochard, A. Shen, F. Van Dijk, G.-H. Duan, and J. C. Simon, “Demonstration of Chromatic Dispersion and Optical Noise insensitivity of a Quantum-Dash based Fabry-Perot Laser in All-Optical Clock Recovery at 40Gbit/s,” in Proceedings of 33rd European Conference on Optical Communications (Berlin, Germany, 2007), pp.165–166.

Salem, R.

Saruwatari, M.

M. Saruwatari “All-Optical Signal Processing for Terabit/Second Optical Transmission,” IEEE J. Sel. Top. Quantum Electron. 6, 1363–1374 (2000).
[Crossref]

Sato, K.

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160Gbit/s data using regeneratively modelocked semiconductor laser,” Electron. Lett. 39, 453–454 (2003).
[Crossref]

Savage, S. J.

Shen, A.

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

V. Roncin, S. Lobo, L. Bramerie, P. Rochard, A. Shen, F. Van Dijk, G.-H. Duan, and J. C. Simon, “Demonstration of Chromatic Dispersion and Optical Noise insensitivity of a Quantum-Dash based Fabry-Perot Laser in All-Optical Clock Recovery at 40Gbit/s,” in Proceedings of 33rd European Conference on Optical Communications (Berlin, Germany, 2007), pp.165–166.

Shimizu, T.

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160Gbit/s data using regeneratively modelocked semiconductor laser,” Electron. Lett. 39, 453–454 (2003).
[Crossref]

Simon, J. C.

V. Roncin, S. Lobo, L. Bramerie, P. Rochard, A. Shen, F. Van Dijk, G.-H. Duan, and J. C. Simon, “Demonstration of Chromatic Dispersion and Optical Noise insensitivity of a Quantum-Dash based Fabry-Perot Laser in All-Optical Clock Recovery at 40Gbit/s,” in Proceedings of 33rd European Conference on Optical Communications (Berlin, Germany, 2007), pp.165–166.

Simon, J.-C.

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

Smith, K.

K. Smith and J. K. Lucek, “All-optical clock recovery using a mode-locked laser,” Electron. Lett. 28, 1814–1816 (1992).
[Crossref]

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum - American Institute of Physics 68, 3277–3295 (1997).

Tangdiongga, E.

J. P. Turkiewicz, E. Tangdiongga, G. D. Khoe, and H.de Waardt, “Clock Recovery and Demultiplexing Performance of 160-Gb/s OTDM Field Experiment,” IEEE Photon. Technol. Lett. 16, 1555–1557 (2004).
[Crossref]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum - American Institute of Physics 68, 3277–3295 (1997).

Tudury, G. E.

Turkiewicz, J. P.

J. P. Turkiewicz, E. Tangdiongga, G. D. Khoe, and H.de Waardt, “Clock Recovery and Demultiplexing Performance of 160-Gb/s OTDM Field Experiment,” IEEE Photon. Technol. Lett. 16, 1555–1557 (2004).
[Crossref]

Usami, M.

Z. Hu, H-F. Chou, K. Nishimura, M. Usami, J. E. Bowers, and D. J. Blumenthal, “Optical Clock Recovery Circuits Using Traveling-Wave Electroabsorption Modulator-Based Ring Oscillators for 3R Regeneration,” IEEE J. Sel. Top. Quantum Electron. 11, 329–337 (2005).
[Crossref]

Valle, A.

P. Rees, P. McEvoy, A. Valle, J. O’Gorman, S. Lynch, P. L,ais, L. Pesquera, and J. Hegarty, “A Theoretical Analysis of Optical Clock Extraction Using a Self-Pulsating Laser Diode,” IEEE J. Quantum Electron. 35, 221–227 (1999).
[Crossref]

Waardt, H.de

J. P. Turkiewicz, E. Tangdiongga, G. D. Khoe, and H.de Waardt, “Clock Recovery and Demultiplexing Performance of 160-Gb/s OTDM Field Experiment,” IEEE Photon. Technol. Lett. 16, 1555–1557 (2004).
[Crossref]

Electron. Lett. (3)

K. Smith and J. K. Lucek, “All-optical clock recovery using a mode-locked laser,” Electron. Lett. 28, 1814–1816 (1992).
[Crossref]

M. Jinno and T. Matsumoto, “All-optical timing extraction using a 1.5μm self-pulsating multielectrode DFB LD,” Electron. Lett. 24, 1426–1427 (1988).
[Crossref]

T. Ohno, K. Sato, T. Shimizu, T. Furuta, and H. Ito, “Recovery of 40 GHz optical clock from 160Gbit/s data using regeneratively modelocked semiconductor laser,” Electron. Lett. 39, 453–454 (2003).
[Crossref]

IEEE J. Quantum Electron. (2)

P. Rees, P. McEvoy, A. Valle, J. O’Gorman, S. Lynch, P. L,ais, L. Pesquera, and J. Hegarty, “A Theoretical Analysis of Optical Clock Extraction Using a Self-Pulsating Laser Diode,” IEEE J. Quantum Electron. 35, 221–227 (1999).
[Crossref]

S. Arahira and Y. Ogawa, ”Retiming and reshaping function of all-optical clock extraction at 160 Gb/s in monolithic mode-locked laser diode,” IEEE J. Quantum Electron. 41, 937–944 (2005).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

M. Saruwatari “All-Optical Signal Processing for Terabit/Second Optical Transmission,” IEEE J. Sel. Top. Quantum Electron. 6, 1363–1374 (2000).
[Crossref]

Z. Hu, H-F. Chou, K. Nishimura, M. Usami, J. E. Bowers, and D. J. Blumenthal, “Optical Clock Recovery Circuits Using Traveling-Wave Electroabsorption Modulator-Based Ring Oscillators for 3R Regeneration,” IEEE J. Sel. Top. Quantum Electron. 11, 329–337 (2005).
[Crossref]

IEEE Photon. Technol. Lett. (3)

J. P. Turkiewicz, E. Tangdiongga, G. D. Khoe, and H.de Waardt, “Clock Recovery and Demultiplexing Performance of 160-Gb/s OTDM Field Experiment,” IEEE Photon. Technol. Lett. 16, 1555–1557 (2004).
[Crossref]

I. Kim, C. Kim, G. Li, P. LiKamWa, and J. Hong, “180-GHz clock recovery using a multisection gain-coupled distributed feedback laser,” IEEE Photon. Technol. Lett. 17, 1295–1297 (2005).
[Crossref]

V. Roncin, A. O’Hare, S. Lobo, Jacquette E., L. Bramerie, P. Rochard, W.-T. Le, M. Gay, J.-C. Simon, A. Shen, J. Renaudier, F. Lelarge, and G.-H. Duan, “Multi-Data-Rate System Performance of a 40-GHz All-Optical Recovery Based on a Quantum-Dot Fabry-Perot Laser,” IEEE Photon. Technol. Lett. 19, 1409–1411 (2007).
[Crossref]

J. Lightwave Technol. (4)

R. Salem, A. A. Ahamdi, G. E. Tudury, G. M. Carter, and T. E. Murphy, “Two-Photon Absorption for Optical Clock Recovery in OTDM Networks,” J. Lightwave Technol. 243353–3362 (2006).
[Crossref]

K. Y. Lau, “Short-Pulse and High-Frequency Signal Generation in Semiconductor Lasers,” J. Lightwave Technol. 7, 400–419 (1989).
[Crossref]

O. Kamantani and S. Kawanishi, “Ultrahight-Speed Clock Recovery with Phase Lock Loop Based in Four-Wave Mixing in a Traveling-Wave Laser Diode Amplifier,” J. Lightwave Technol. 14, 1757–1767 (1996).
[Crossref]

S. A. Hamilton, B. S. Robinson, T. E. Murphy, S. J. Savage, and E. P. Ippen, “100Gb/s Optical Time-Division Multiplexed Networks,” J. Lightwave Technol. 20, 2086–2100 (2002).
[Crossref]

Rev. Sci. Instrum - American Institute of Physics (1)

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbugel, and B. A. Richman, “Measuring ultrashort laser pulses in the time-frequency domain using frequency-resolved optical gating,” Rev. Sci. Instrum - American Institute of Physics 68, 3277–3295 (1997).

Other (2)

V. Roncin, S. Lobo, L. Bramerie, P. Rochard, A. Shen, F. Van Dijk, G.-H. Duan, and J. C. Simon, “Demonstration of Chromatic Dispersion and Optical Noise insensitivity of a Quantum-Dash based Fabry-Perot Laser in All-Optical Clock Recovery at 40Gbit/s,” in Proceedings of 33rd European Conference on Optical Communications (Berlin, Germany, 2007), pp.165–166.

J. Renaudier, B. Lavigne, M. Jourdran, P. Gallion, F. Lelarge, B. Dagens, A. Accard, O. Legouezigou, and G. H. Duan, “First demonstration of all-optical clock recovery at 40GHz with standard-compliant jitter characteristics based on quantum-dots self-pulsating semiconductor laser” in Proceedings of 31st European Conference on Optical Communications (Glasgow, Scotland, 2005), pp.31–32.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Principle of optical clock recovery using a passively mode-locked laser diode.
Fig. 2.
Fig. 2. 170.72Gb/s OTDM transmitter used in the OCR experiments.
Fig. 3.
Fig. 3. Optical clock recovery circuitry used to extract 42.68GHz clock from 170.72Gb/s OTDM data signal.
Fig. 4.
Fig. 4. RF spectrum measured at the clock recovery output (ML-QD-FP): (a) no injected signal free running laser) and (b) when the laser is locked to the injected signal is by the sub-harmonic process.
Fig.5.
Fig.5. Experimental setup for chirp transfer characterisation of the OCR process.
Fig. 6.
Fig. 6. Eye diagrams of the 170.72GHz pulse steam incident on the OCR circuitry for: (a) Zero (0ps/nm) dispersion; (b) −75ps/nm dispersion.
Fig. 7.
Fig. 7. Recovered optical clock signal as monitored using the OSO for (a) Zero dispersion; (b) −75ps/nm dispersion imparted on the 170.72GHz data stream.
Fig. 8.
Fig. 8. Retrieved FROG measurement of the (a) temporal profile and (b) chirp profile of the clock signal at zero dispersion (0ps/nm) and −75ps/nm dispersion.
Fig. 9.
Fig. 9. Plot of the dispersion imparted on the input signal (ps/nm) as a function of: (a) clock signal pulse width; (b) clock signal group delay.
Fig. 10.
Fig. 10. Plot of the bit-error rate versus incident optical power for different level of imparted dispersion on the input OTDM data signal when the clock signal was re-modulated at 40Gb/s.

Metrics