Abstract

Up to 4.8 W, ∼10 MHz, 1178 nm laser is obtained by Raman amplification of a distributed feedback diode laser in standard single mode fibers pumped by an 1120 nm Yb fiber laser. More than 10% efficiency and 27 dB amplification is achieved, limited by onset of stimulated Brillouin scattering. The ratio of Raman to Brillouin gain coefficient of a fiber is defined as a figure of merit for building a narrow linewidth fiber Raman amplifier.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. B. Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Astronomical Telescopes and Instrumentation, SPIE Orlando, 6272–55 (2006).
  2. Y. Feng, L. Taylor, W. Hackenberg, D. Bonaccini Calia, and S. Chernikov, “Multi-watt 589nm laser by frequency doubling of a fibre Raman MOPA, ” EPS-QEOD Europhoton Conference 2006, Pisa, 2006, WeE6.
  3. S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gapontsev, “High-Power CW Linearly Polarized All-Fiber Raman Laser,” IEEE Photon. Tech. Lett. 16, 1014–1016 (2004).
    [CrossRef]
  4. S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L 1439–L 1441 (2003).
    [CrossRef]
  5. Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J.Appl. Phys. 43, L722–L724, (2004).
    [CrossRef]
  6. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13, 6772–6776 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-18-6772.
    [CrossRef] [PubMed]
  7. H. Masuda, K.-I. Suzuki, S. Kawai, and K. Aida, “Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain-equalised two-stage erbium-doped fibre amplifier and Raman amplification,” Electron. Lett. 33, 753–754 (1997).
    [CrossRef]
  8. P. C. Reeves-Hall, D. A. Chestnut, C. J. S. d. Matos, and J. R. Taylor, “Dual wavelength pumped L- and U-band Raman amplifier,” Electron. Lett. 37, 883–884 (2001).
    [CrossRef]
  9. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).
  10. M. -J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,“ Opt. Express 15, 8290–8299 (2007).
    [CrossRef] [PubMed]
  11. J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
    [CrossRef]
  12. J. M. Chávez Boggio, J. D. Marconi, and H. L. Fragnito, “8 dB increase of SBS thresold in an optical fiber by applying a stair ramp strain distribution,” CLEO 2004 - San Francisco USA, (2004) CTh30.

2007 (1)

2006 (1)

D. B. Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Astronomical Telescopes and Instrumentation, SPIE Orlando, 6272–55 (2006).

2005 (1)

2004 (2)

S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gapontsev, “High-Power CW Linearly Polarized All-Fiber Raman Laser,” IEEE Photon. Tech. Lett. 16, 1014–1016 (2004).
[CrossRef]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J.Appl. Phys. 43, L722–L724, (2004).
[CrossRef]

2003 (1)

S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L 1439–L 1441 (2003).
[CrossRef]

2001 (2)

P. C. Reeves-Hall, D. A. Chestnut, C. J. S. d. Matos, and J. R. Taylor, “Dual wavelength pumped L- and U-band Raman amplifier,” Electron. Lett. 37, 883–884 (2001).
[CrossRef]

J. Hansryd, F. Dross, M. Westlund, P. A. Andrekson, and S. N. Knudsen, “Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution,” J. Lightwave Technol. 19, 1691–1697 (2001).
[CrossRef]

1997 (1)

H. Masuda, K.-I. Suzuki, S. Kawai, and K. Aida, “Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain-equalised two-stage erbium-doped fibre amplifier and Raman amplification,” Electron. Lett. 33, 753–754 (1997).
[CrossRef]

Agrawal, G.P.

G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).

Aida, K.

H. Masuda, K.-I. Suzuki, S. Kawai, and K. Aida, “Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain-equalised two-stage erbium-doped fibre amplifier and Raman amplification,” Electron. Lett. 33, 753–754 (1997).
[CrossRef]

Andrekson, P. A.

Bonaccini Calia, D.

Y. Feng, L. Taylor, W. Hackenberg, D. Bonaccini Calia, and S. Chernikov, “Multi-watt 589nm laser by frequency doubling of a fibre Raman MOPA, ” EPS-QEOD Europhoton Conference 2006, Pisa, 2006, WeE6.

Calia, D. B.

D. B. Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Astronomical Telescopes and Instrumentation, SPIE Orlando, 6272–55 (2006).

Chávez Boggio, J. M.

J. M. Chávez Boggio, J. D. Marconi, and H. L. Fragnito, “8 dB increase of SBS thresold in an optical fiber by applying a stair ramp strain distribution,” CLEO 2004 - San Francisco USA, (2004) CTh30.

Chen, X.

Chernikov, S.

D. B. Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Astronomical Telescopes and Instrumentation, SPIE Orlando, 6272–55 (2006).

Y. Feng, L. Taylor, W. Hackenberg, D. Bonaccini Calia, and S. Chernikov, “Multi-watt 589nm laser by frequency doubling of a fibre Raman MOPA, ” EPS-QEOD Europhoton Conference 2006, Pisa, 2006, WeE6.

Chestnut, D. A.

P. C. Reeves-Hall, D. A. Chestnut, C. J. S. d. Matos, and J. R. Taylor, “Dual wavelength pumped L- and U-band Raman amplifier,” Electron. Lett. 37, 883–884 (2001).
[CrossRef]

Crowley, A. M.

Demeritt, J. A.

Dronov, A. G.

Dross, F.

Feng, Y.

D. B. Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Astronomical Telescopes and Instrumentation, SPIE Orlando, 6272–55 (2006).

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J.Appl. Phys. 43, L722–L724, (2004).
[CrossRef]

S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L 1439–L 1441 (2003).
[CrossRef]

Y. Feng, L. Taylor, W. Hackenberg, D. Bonaccini Calia, and S. Chernikov, “Multi-watt 589nm laser by frequency doubling of a fibre Raman MOPA, ” EPS-QEOD Europhoton Conference 2006, Pisa, 2006, WeE6.

Fragnito, H. L.

J. M. Chávez Boggio, J. D. Marconi, and H. L. Fragnito, “8 dB increase of SBS thresold in an optical fiber by applying a stair ramp strain distribution,” CLEO 2004 - San Francisco USA, (2004) CTh30.

Gapontsev, D. V.

S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gapontsev, “High-Power CW Linearly Polarized All-Fiber Raman Laser,” IEEE Photon. Tech. Lett. 16, 1014–1016 (2004).
[CrossRef]

Gapontsev, V. P.

Georgiev, D.

Gray, S.

Hackenberg, W.

D. B. Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Astronomical Telescopes and Instrumentation, SPIE Orlando, 6272–55 (2006).

Y. Feng, L. Taylor, W. Hackenberg, D. Bonaccini Calia, and S. Chernikov, “Multi-watt 589nm laser by frequency doubling of a fibre Raman MOPA, ” EPS-QEOD Europhoton Conference 2006, Pisa, 2006, WeE6.

Hansryd, J.

Huang, S.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J.Appl. Phys. 43, L722–L724, (2004).
[CrossRef]

S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L 1439–L 1441 (2003).
[CrossRef]

Kawai, S.

H. Masuda, K.-I. Suzuki, S. Kawai, and K. Aida, “Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain-equalised two-stage erbium-doped fibre amplifier and Raman amplification,” Electron. Lett. 33, 753–754 (1997).
[CrossRef]

Knudsen, S. N.

Li, M. -J.

Liu, A.

Marconi, J. D.

J. M. Chávez Boggio, J. D. Marconi, and H. L. Fragnito, “8 dB increase of SBS thresold in an optical fiber by applying a stair ramp strain distribution,” CLEO 2004 - San Francisco USA, (2004) CTh30.

Masuda, H.

H. Masuda, K.-I. Suzuki, S. Kawai, and K. Aida, “Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain-equalised two-stage erbium-doped fibre amplifier and Raman amplification,” Electron. Lett. 33, 753–754 (1997).
[CrossRef]

Matos, C. J. S. d.

P. C. Reeves-Hall, D. A. Chestnut, C. J. S. d. Matos, and J. R. Taylor, “Dual wavelength pumped L- and U-band Raman amplifier,” Electron. Lett. 37, 883–884 (2001).
[CrossRef]

Popov, S. V.

Reeves-Hall, P. C.

P. C. Reeves-Hall, D. A. Chestnut, C. J. S. d. Matos, and J. R. Taylor, “Dual wavelength pumped L- and U-band Raman amplifier,” Electron. Lett. 37, 883–884 (2001).
[CrossRef]

Ruffin, A. B.

Rulkov, A. B.

Shirakawa, A.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J.Appl. Phys. 43, L722–L724, (2004).
[CrossRef]

S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L 1439–L 1441 (2003).
[CrossRef]

Skubchenko, S. A.

S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gapontsev, “High-Power CW Linearly Polarized All-Fiber Raman Laser,” IEEE Photon. Tech. Lett. 16, 1014–1016 (2004).
[CrossRef]

Suzuki, K.-I.

H. Masuda, K.-I. Suzuki, S. Kawai, and K. Aida, “Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain-equalised two-stage erbium-doped fibre amplifier and Raman amplification,” Electron. Lett. 33, 753–754 (1997).
[CrossRef]

Taylor, J. R.

Taylor, L.

D. B. Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Astronomical Telescopes and Instrumentation, SPIE Orlando, 6272–55 (2006).

Y. Feng, L. Taylor, W. Hackenberg, D. Bonaccini Calia, and S. Chernikov, “Multi-watt 589nm laser by frequency doubling of a fibre Raman MOPA, ” EPS-QEOD Europhoton Conference 2006, Pisa, 2006, WeE6.

Ueda, K.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J.Appl. Phys. 43, L722–L724, (2004).
[CrossRef]

S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L 1439–L 1441 (2003).
[CrossRef]

Vyatkin, M. Y.

Walton, D. T.

Wang, J.

Westlund, M.

Zenteno, L. A.

Electron. Lett. (2)

H. Masuda, K.-I. Suzuki, S. Kawai, and K. Aida, “Ultra-wideband optical amplification with 3 dB bandwidth of 65 nm using a gain-equalised two-stage erbium-doped fibre amplifier and Raman amplification,” Electron. Lett. 33, 753–754 (1997).
[CrossRef]

P. C. Reeves-Hall, D. A. Chestnut, C. J. S. d. Matos, and J. R. Taylor, “Dual wavelength pumped L- and U-band Raman amplifier,” Electron. Lett. 37, 883–884 (2001).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

S. A. Skubchenko, M. Y. Vyatkin, and D. V. Gapontsev, “High-Power CW Linearly Polarized All-Fiber Raman Laser,” IEEE Photon. Tech. Lett. 16, 1014–1016 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

S. Huang, Y. Feng, A. Shirakawa, and K. Ueda, “Generation of 10.5 W, 1178 nm laser based on phosphosilicate Raman fiber laser,” Jpn. J. Appl. Phys. 42, L 1439–L 1441 (2003).
[CrossRef]

Jpn. J.Appl. Phys. (1)

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J.Appl. Phys. 43, L722–L724, (2004).
[CrossRef]

Opt. Express (2)

Other (4)

D. B. Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Astronomical Telescopes and Instrumentation, SPIE Orlando, 6272–55 (2006).

Y. Feng, L. Taylor, W. Hackenberg, D. Bonaccini Calia, and S. Chernikov, “Multi-watt 589nm laser by frequency doubling of a fibre Raman MOPA, ” EPS-QEOD Europhoton Conference 2006, Pisa, 2006, WeE6.

G.P. Agrawal, Nonlinear Fiber Optics (Academic Press, 1995).

J. M. Chávez Boggio, J. D. Marconi, and H. L. Fragnito, “8 dB increase of SBS thresold in an optical fiber by applying a stair ramp strain distribution,” CLEO 2004 - San Francisco USA, (2004) CTh30.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Schematic diagram of a back pumped DFB diode laser seeded fiber Raman amplifier.

Fig. 2.
Fig. 2.

(left) Amplifier output power versus pump power with 3 different fibers: (A) 100m Nufern 1060XP, (B) 150m Nufern 1060XP and (C) 200m Corning HI1060; (right) corresponding backward light.

Fig. 3.
Fig. 3.

(left) A spectrum of backward light for the amplifier with fiber B at 4.25 W output. (right) dependence of backward light power on pump power, for amplifiers with different seed linewidth.

Fig. 4.
Fig. 4.

(left) linewidth versus output power for the case of fiber B; (right) a spectrum taken at 4.25 W CW fiber output power at 1178nm

Fig. 5.
Fig. 5.

(left) shows a numerical fit to the fiber B results; (right) calculated signal power distribution inside the amplifier fiber for the case of fiber B at full power.

Metrics