Abstract

We demonstrate by 3D numerical calculations that the interaction of a single quantum emitter with the electromagnetic field is both enhanced and directed by a nano-optical Yagi-Uda antenna. The single emitter is coupled in the near field to the resonant plasmon mode of the feed element, enhancing both excitation and emission rates. The angular emission of the coupled system is highly directed and determined by the antenna mode. Arbitrary control over the main direction of emission is obtained, regardless of the orientation of the emitter. The directivity is even more increased by the presence of a dielectric substrate, making such antennas a promising candidate for compact easy-to-address planar sensors.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-J. Greffet, "Nanoantennas for Light Emission," Science 308, 1561-1563 (2005).
    [CrossRef] [PubMed]
  2. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
    [CrossRef]
  3. S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef] [PubMed]
  4. P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
    [CrossRef] [PubMed]
  5. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
    [CrossRef]
  6. T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
    [CrossRef] [PubMed]
  7. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
    [CrossRef]
  8. M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem. 6, 2190-2196 (2005).
    [CrossRef] [PubMed]
  9. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
    [CrossRef] [PubMed]
  10. A. Hakansson, H. T. Miyazaki, and J. Sanchez-Dehesa, "Inverse Design for Full Control of Spontaneous Emission Using Light Emitting Scattering Optical Elements," Phys. Rev. Lett. 96, 153902 (2006).
    [CrossRef] [PubMed]
  11. L. Novotny, "Effective Wavelength Scaling for Optical Antennas," Phys. Rev. Lett. 98, 266802 (2007).
    [CrossRef] [PubMed]
  12. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
    [CrossRef]
  13. T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, "A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements," IEEE Trans. Antennas Propag. 55, 3010-3017 (2007).
    [CrossRef]
  14. O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. GomezRivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
    [CrossRef] [PubMed]
  15. L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623-1625 (2007).
    [CrossRef] [PubMed]
  16. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
    [CrossRef] [PubMed]
  17. C. A. Balanis, Antenna Theory: Analyses and Design (John Wiley and Sons, Inc., Hoboken, New Jersey, 2005).
  18. H. Yagi, "Beam transmission of ultra short waves," Proc. IRE 16, 715-741 (1928).
    [CrossRef]
  19. H. F. Hofmann, T. Kosako, and Y. Kadoya, "Design parameters for a nano-optical Yagi-Uda antenna," New J. Phys. 9, 217 (2007).
    [CrossRef]
  20. J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B 76, 245403-245407 (2007).
    [CrossRef]
  21. CST-Microwave-Studio, www.cst.com.
  22. T. Weiland, "Discretization method for solution of Maxwells equations for 6-component fields," AEU, Int. J. Electron. Commun. 31, 116-120 (1977).
  23. T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A: Pure Appl. Opt. 9, S315-S321 (2007).
    [CrossRef]
  24. G. Hass, and J. E. Waylonis, "Optical constants of evaporated Aluminum in the visible and ultraviolet," J. Opt. Soc. Am. 50, 1133 (1960).
  25. W. Lukosz, "Light-emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation.," J. Opt. Soc. Am. 69, 1495-1503 (1979).
    [CrossRef]

2008

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

2007

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

L. Novotny, "Effective Wavelength Scaling for Optical Antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, "A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements," IEEE Trans. Antennas Propag. 55, 3010-3017 (2007).
[CrossRef]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. GomezRivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

H. F. Hofmann, T. Kosako, and Y. Kadoya, "Design parameters for a nano-optical Yagi-Uda antenna," New J. Phys. 9, 217 (2007).
[CrossRef]

J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B 76, 245403-245407 (2007).
[CrossRef]

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A: Pure Appl. Opt. 9, S315-S321 (2007).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

2006

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

A. Hakansson, H. T. Miyazaki, and J. Sanchez-Dehesa, "Inverse Design for Full Control of Spontaneous Emission Using Light Emitting Scattering Optical Elements," Phys. Rev. Lett. 96, 153902 (2006).
[CrossRef] [PubMed]

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

2005

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

J.-J. Greffet, "Nanoantennas for Light Emission," Science 308, 1561-1563 (2005).
[CrossRef] [PubMed]

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem. 6, 2190-2196 (2005).
[CrossRef] [PubMed]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

2004

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

2003

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

1979

1977

T. Weiland, "Discretization method for solution of Maxwells equations for 6-component fields," AEU, Int. J. Electron. Commun. 31, 116-120 (1977).

1960

G. Hass, and J. E. Waylonis, "Optical constants of evaporated Aluminum in the visible and ultraviolet," J. Opt. Soc. Am. 50, 1133 (1960).

Agio, M.

Aizpurua, J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Atature, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Bryant, G. W.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Eisler, H. J.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Engheta, N.

J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B 76, 245403-245407 (2007).
[CrossRef]

Failla, A. V.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem. 6, 2190-2196 (2005).
[CrossRef] [PubMed]

Falt, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Garcia de Abajo, F. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Giannini, V.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. GomezRivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

GomezRivas, J.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. GomezRivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Greffet, J.-J.

J.-J. Greffet, "Nanoantennas for Light Emission," Science 308, 1561-1563 (2005).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Hakanson, U.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Hakansson, A.

A. Hakansson, H. T. Miyazaki, and J. Sanchez-Dehesa, "Inverse Design for Full Control of Spontaneous Emission Using Light Emitting Scattering Optical Elements," Phys. Rev. Lett. 96, 153902 (2006).
[CrossRef] [PubMed]

Hartschuh, A.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem. 6, 2190-2196 (2005).
[CrossRef] [PubMed]

Hass, G.

G. Hass, and J. E. Waylonis, "Optical constants of evaporated Aluminum in the visible and ultraviolet," J. Opt. Soc. Am. 50, 1133 (1960).

Hecht, B.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Hofmann, H. F.

H. F. Hofmann, T. Kosako, and Y. Kadoya, "Design parameters for a nano-optical Yagi-Uda antenna," New J. Phys. 9, 217 (2007).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

Kadoya, Y.

H. F. Hofmann, T. Kosako, and Y. Kadoya, "Design parameters for a nano-optical Yagi-Uda antenna," New J. Phys. 9, 217 (2007).
[CrossRef]

Kaminski, F.

Kelley, B. K.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Kosako, T.

H. F. Hofmann, T. Kosako, and Y. Kadoya, "Design parameters for a nano-optical Yagi-Uda antenna," New J. Phys. 9, 217 (2007).
[CrossRef]

Kuhn, S.

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Kuipers, L.

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A: Pure Appl. Opt. 9, S315-S321 (2007).
[CrossRef]

Li, J.

J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B 76, 245403-245407 (2007).
[CrossRef]

Lukosz, W.

Mallouk, T.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Martin, O. J. F.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Meixner, A. J.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem. 6, 2190-2196 (2005).
[CrossRef] [PubMed]

Miyazaki, H. T.

A. Hakansson, H. T. Miyazaki, and J. Sanchez-Dehesa, "Inverse Design for Full Control of Spontaneous Emission Using Light Emitting Scattering Optical Elements," Phys. Rev. Lett. 96, 153902 (2006).
[CrossRef] [PubMed]

Moerland, R. J.

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A: Pure Appl. Opt. 9, S315-S321 (2007).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

Moerner, W. E.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Muhlschlegel, P.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Muskens, O. L.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. GomezRivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, "Effective Wavelength Scaling for Optical Antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

Pohl, D. W.

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Richter, L. J.

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Rogobete, L.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Salandrino, A.

J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B 76, 245403-245407 (2007).
[CrossRef]

Sanchez-Dehesa, J.

A. Hakansson, H. T. Miyazaki, and J. Sanchez-Dehesa, "Inverse Design for Full Control of Spontaneous Emission Using Light Emitting Scattering Optical Elements," Phys. Rev. Lett. 96, 153902 (2006).
[CrossRef] [PubMed]

Sanchez-Gil, J. A.

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. GomezRivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Sandoghdar, V.

L. Rogobete, F. Kaminski, M. Agio, and V. Sandoghdar, "Design of plasmonic nanoantennae for enhancing spontaneous emission," Opt. Lett. 32, 1623-1625 (2007).
[CrossRef] [PubMed]

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Schleifenbaum, F.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem. 6, 2190-2196 (2005).
[CrossRef] [PubMed]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, "A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements," IEEE Trans. Antennas Propag. 55, 3010-3017 (2007).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A: Pure Appl. Opt. 9, S315-S321 (2007).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Steiner, M.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem. 6, 2190-2196 (2005).
[CrossRef] [PubMed]

Stupperich, C.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem. 6, 2190-2196 (2005).
[CrossRef] [PubMed]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, "A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements," IEEE Trans. Antennas Propag. 55, 3010-3017 (2007).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A: Pure Appl. Opt. 9, S315-S321 (2007).
[CrossRef]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, "A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements," IEEE Trans. Antennas Propag. 55, 3010-3017 (2007).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A: Pure Appl. Opt. 9, S315-S321 (2007).
[CrossRef]

Waylonis, J. E.

G. Hass, and J. E. Waylonis, "Optical constants of evaporated Aluminum in the visible and ultraviolet," J. Opt. Soc. Am. 50, 1133 (1960).

Weiland, T.

T. Weiland, "Discretization method for solution of Maxwells equations for 6-component fields," AEU, Int. J. Electron. Commun. 31, 116-120 (1977).

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

AEU, Int. J. Electron. Commun.

T. Weiland, "Discretization method for solution of Maxwells equations for 6-component fields," AEU, Int. J. Electron. Commun. 31, 116-120 (1977).

ChemPhysChem.

M. Steiner, F. Schleifenbaum, C. Stupperich, A. V. Failla, A. Hartschuh, and A. J. Meixner, "Microcavity-Controlled Single-Molecule Fluorescence," ChemPhysChem. 6, 2190-2196 (2005).
[CrossRef] [PubMed]

IEEE Trans. Antennas Propag.

T. H. Taminiau, F. B. Segerink, and N. F. van Hulst, "A Monopole Antenna at Optical Frequencies: Single-Molecule Near-Field Measurements," IEEE Trans. Antennas Propag. 55, 3010-3017 (2007).
[CrossRef]

J. Appl. Phys.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

T. H. Taminiau, F. B. Segerink, R. J. Moerland, L. Kuipers, and N. F. van Hulst, "Near-field driving of a optical monopole antenna," J. Opt. A: Pure Appl. Opt. 9, S315-S321 (2007).
[CrossRef]

J. Opt. Soc. Am.

Nano Lett.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, "Gap-Dependent Optical Coupling of Single "Bowtie" Nanoantennas Resonant in the Visible," Nano Lett. 4, 957-961 (2004).
[CrossRef]

T. H. Taminiau, R. J. Moerland, F. B. Segerink, L. Kuipers, and N. F. van Hulst, "Lambda/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence," Nano Lett. 7, 28-33 (2007).
[CrossRef] [PubMed]

O. L. Muskens, V. Giannini, J. A. Sanchez-Gil, and J. GomezRivas, "Strong Enhancement of the Radiative Decay Rate of Emitters by Single Plasmonic Nanoantennas," Nano Lett. 7, 2871-2875 (2007).
[CrossRef] [PubMed]

Nat. Photonics

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Nature

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E. L. Hu, and A. Imamoglu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature 445, 896-899 (2007).
[CrossRef] [PubMed]

New J. Phys.

H. F. Hofmann, T. Kosako, and Y. Kadoya, "Design parameters for a nano-optical Yagi-Uda antenna," New J. Phys. 9, 217 (2007).
[CrossRef]

Opt. Lett.

Phys. Rev. B

J. Li, A. Salandrino, and N. Engheta, "Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain," Phys. Rev. B 76, 245403-245407 (2007).
[CrossRef]

J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. Garcia de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005).
[CrossRef]

Phys. Rev. Lett.

P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 113002 (2006).
[CrossRef] [PubMed]

A. Hakansson, H. T. Miyazaki, and J. Sanchez-Dehesa, "Inverse Design for Full Control of Spontaneous Emission Using Light Emitting Scattering Optical Elements," Phys. Rev. Lett. 96, 153902 (2006).
[CrossRef] [PubMed]

L. Novotny, "Effective Wavelength Scaling for Optical Antennas," Phys. Rev. Lett. 98, 266802 (2007).
[CrossRef] [PubMed]

S. Kuhn, U. Hakanson, L. Rogobete, and V. Sandoghdar, "Enhancement of Single-Molecule Fluorescence using a Gold Nanoparticle as an Optical Nanoantenna," Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef] [PubMed]

Science

P. Muhlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

J.-J. Greffet, "Nanoantennas for Light Emission," Science 308, 1561-1563 (2005).
[CrossRef] [PubMed]

Other

CST-Microwave-Studio, www.cst.com.

C. A. Balanis, Antenna Theory: Analyses and Design (John Wiley and Sons, Inc., Hoboken, New Jersey, 2005).

H. Yagi, "Beam transmission of ultra short waves," Proc. IRE 16, 715-741 (1928).
[CrossRef]

Supplementary Material (1)

» Media 1: AVI (549 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Overview of the nano-optical Yagi-Uda antenna. For an operating wavelength of 570 nm and an aluminum antenna (ε=-38.0+i10.9), the feed element is resonant for Lf=160 nm. The director length (Ld) is 0.9Lf, the reflector length (Lr) is 1.25Lf. The director spacing (ad) is λ/4, the reflector spacing (ar) is λ/4.4. Red arrows represent x-, y- and z-oriented dipolar emitters and are placed at the location of efficient coupling to the feed element.

Fig. 2.
Fig. 2.

Directivity for a y-oriented dipolar emitter in (a) free space and (b) coupled to a Yagi-Uda antenna. (c), (d) the directivity in the two major planes. As a reference the emitter coupled to a dipole antenna is added. The schematics show the location of the emitter and the orientation of the emitter and Yagi-Uda antenna relative to the image plane. The distance between the emitter and the antenna element is 4 nm. The emission of the emitter coupled to the Yagi-Uda antenna is highly directed.

Fig. 3.
Fig. 3.

Directivity for a z-oriented emitter in (a) free space and (b) coupled to a Yagi-Uda antenna (distance 3 nm). (c), (d) directivity in the major planes. The schematics show the position of the emitter and the orientation of the emitter and antenna relative to the image plane. The emission of the coupled system is highly directed and rotated by 90 degrees.

Fig. 4.
Fig. 4.

The distance dependence of the excitation, Kexc(0,0), radiative, Krad , and non-radiative, Knr , rates and the efficiency, η, for a y-oriented dipole coupled to a dipole and to a Yagi-Uda antenna. The insets show the position and orientation of the emitter relative to the dipole respectively Yagi-Uda antenna.

Fig. 5.
Fig. 5.

A y-oriented emitter coupled to a lossless Yagi-Uda antenna (distance 4 nm, Lf=187 nm) placed on a dielectric substrate (ε=2.25). (a) Snapshot of the local field (xz plane). Movie of full cycle is available as supporting information. (b) The angular directivity. The substrate fills the half-space from θ=180° to 360°. The situation without antenna is shown as a reference. The emission is directed in a single lobe into the substrate. [Media 1]

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

D ( φ , θ ) = 4 π P ( φ , θ ) P ( φ , θ ) d Ω
K exc ( φ , θ ) = ( E ( φ , θ ) p ) 2 ( E 0 p ) 2
K rad = P ( φ , θ ) d Ω P 0 ( φ , θ ) d Ω
η = K rad K tot
K exc ( φ , θ ) = D ( φ , θ ) D 0 K rad

Metrics