Abstract

Cylindrical vector beams were produced from laser diode end-pumped Nd:YAG ceramic microchip laser by use of two types of subwavelength multilayer gratings as the axisymmetric-polarization output couplers respectively. The grating mirrors are composed of high- and low-refractive- index (Nb2O5/SiO2) layers alternately while each layer is shaped into triangle and concentric corrugations. For radially polarized laser output, the beam power reached 610mW with a polarization extinction ratio (PER) of 61:1 and a slope efficiency of 68.2%; for azimuthally polarized laser output, the beam power reached 626mW with a PER of 58:1 and a slope efficiency of 47.6%. In both cases, the laser beams had near-diffraction limited quality. Small differences of beam power, PER and slope efficiency between radially and azimuthally polarized laser outputs were not critical, and could be minimized by further optimized adjustment to laser cavity and the reflectances of respective grating mirrors. The results manifested, by use of the photonic crystal gratings mirrors and end-pumped microchip laser configuration, CVBs can be generated efficiently with high modal symmetry and polarization purity.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Pohl, "Operation of a ruby laser in the purely transverse electric mode TE01," Appl. Phys. Lett. 20, 266-267 (1972).
    [CrossRef]
  2. R. Oron, S. Blit, N. Davidson, A A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
    [CrossRef]
  3. T. Moser, J. Balmer, D. Delbeke, P. Muys, S. Verstuyft, and R. Baets, "Intracavity generation of radially polarized CO2 laser beams based on a simple binary dielectric diffraction grating," Appl. Opt. 45, 8517-8522 (2006).
    [CrossRef] [PubMed]
  4. Y. Kozawa and S. Sato, "Generation of a radially polarized laser beam by use of a conical Brewster prism," Opt. Lett. 30, 3063-3065 (2005).
    [CrossRef] [PubMed]
  5. A. Ashkin, "History of optical trapping and manipulation of small-neutral particle, atoms, and molecules," IEEE J. Sel. Top. Quantum Electron. 6, 841-856 (2000).
    [CrossRef]
  6. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, "Calculation of optical trapping forces on a dielectric sphere in the ray optics regime produced by a radially polarized laser beam," Opt. Lett. 32, 1839-1841 (2007).
    [CrossRef] [PubMed]
  7. Q. Zhan and J. R. Leger, "Microellipsometer with Radial Symmetry," Appl. Opt. 41, 4630-4637 (2002).
    [CrossRef] [PubMed]
  8. G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
    [CrossRef]
  9. V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999).
    [CrossRef]
  10. J. -l. Li, K. -i. Ueda, M. Musha, A. Shirakawa, and L. -x. Zhong, "Generation of radially polarized mode in Yb fiber laser by using a dual conical prism," Opt. Lett. 31, 2969-2971 (2006).
    [CrossRef] [PubMed]
  11. J. -l. Li, K. -i. Ueda, M. Musha, A. Shirakawa, and Z. -m. Zhang, "Converging-axicon-based radially polarized ytterbium fiber laser and evidence on the mode profile inside the gain fiber," Opt. Lett. 32, 1360-1362 (2007).
    [CrossRef] [PubMed]
  12. S.  Kawakami, T.  Kawashima, and T.  Sato, "Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering," Appl. Phys. Lett.  74, 463-465 (1999).
    [CrossRef]
  13. Mehta, J. D. Brown, P. Srinivasan, R. C. Rumpf, and E. G. Johnson, "Spatially polarizing autocloned elements," Opt. Lett. 32, 1935-1937 (2007).
    [CrossRef] [PubMed]
  14. Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarisation splitters" Electron. Lett. 35, 1271-1272 (1999).
    [CrossRef]
  15. S. Kawakami, "Fabrication of submicrometer 3D periodic structure composed of Si/SiO2," Electron. Lett. 33, 1260-1261 (1997).
    [CrossRef]
  16. K. Yonezawa, Y. Kozawa, and S. Sato, "Generation of a radially polarized laser beam by use of the birefringence of a c-cut Nd:YVO4 crystal," Opt. Lett. 31, 2151-2153 (2006).
    [CrossRef] [PubMed]
  17. R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Chen, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, abrication, and characterisation of form-birefringent multilayer polarising beam splitter," J. Opt Soc. Am. A 14, 1627-1636 (1997).
    [CrossRef]
  18. R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, "Polarizing beam splitter based on anisotropic spectral reflectivity characteristics of form-birefringent multilayer gratings," Opt. Lett. 21, 761-763 (1996).
    [CrossRef] [PubMed]
  19. F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett.  20, 2457- (1995).
    [CrossRef] [PubMed]
  20. W. Koechner, Solid State Laser Engineering (Springer, Berlin, 2005), Chap. 5.

2007

2006

2005

2002

2000

A. Ashkin, "History of optical trapping and manipulation of small-neutral particle, atoms, and molecules," IEEE J. Sel. Top. Quantum Electron. 6, 841-856 (2000).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

1999

G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarisation splitters" Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

S.  Kawakami, T.  Kawashima, and T.  Sato, "Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering," Appl. Phys. Lett.  74, 463-465 (1999).
[CrossRef]

1997

S. Kawakami, "Fabrication of submicrometer 3D periodic structure composed of Si/SiO2," Electron. Lett. 33, 1260-1261 (1997).
[CrossRef]

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Chen, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, abrication, and characterisation of form-birefringent multilayer polarising beam splitter," J. Opt Soc. Am. A 14, 1627-1636 (1997).
[CrossRef]

1996

1972

D. Pohl, "Operation of a ruby laser in the purely transverse electric mode TE01," Appl. Phys. Lett. 20, 266-267 (1972).
[CrossRef]

Baets, R.

Balmer, J.

Blit, S.

R. Oron, S. Blit, N. Davidson, A A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Chen, C. C.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Chen, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, abrication, and characterisation of form-birefringent multilayer polarising beam splitter," J. Opt Soc. Am. A 14, 1627-1636 (1997).
[CrossRef]

Chou, H. P.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Chen, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, abrication, and characterisation of form-birefringent multilayer polarising beam splitter," J. Opt Soc. Am. A 14, 1627-1636 (1997).
[CrossRef]

Davidson, N.

R. Oron, S. Blit, N. Davidson, A A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Delbeke, D.

Fainman, Y.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Chen, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, abrication, and characterisation of form-birefringent multilayer polarising beam splitter," J. Opt Soc. Am. A 14, 1627-1636 (1997).
[CrossRef]

R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, "Polarizing beam splitter based on anisotropic spectral reflectivity characteristics of form-birefringent multilayer gratings," Opt. Lett. 21, 761-763 (1996).
[CrossRef] [PubMed]

Friesem, A A.

R. Oron, S. Blit, N. Davidson, A A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Hasman, E.

R. Oron, S. Blit, N. Davidson, A A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Kawakami, S.

S.  Kawakami, T.  Kawashima, and T.  Sato, "Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering," Appl. Phys. Lett.  74, 463-465 (1999).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarisation splitters" Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

S. Kawakami, "Fabrication of submicrometer 3D periodic structure composed of Si/SiO2," Electron. Lett. 33, 1260-1261 (1997).
[CrossRef]

Kawashima, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarisation splitters" Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

S.  Kawakami, T.  Kawashima, and T.  Sato, "Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering," Appl. Phys. Lett.  74, 463-465 (1999).
[CrossRef]

Kawauchi, H.

Kozawa, Y.

Leger, J. R.

Li, J. -l.

Mehta,

Moser, T.

Musha, M.

Muys, P.

Nesterov, A. V.

G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

Nesterov, V.

V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999).
[CrossRef]

Niziev, G.

G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

Niziev, V. G.

V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999).
[CrossRef]

Ohtera, Y.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarisation splitters" Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Oron, R.

R. Oron, S. Blit, N. Davidson, A A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

Pohl, D.

D. Pohl, "Operation of a ruby laser in the purely transverse electric mode TE01," Appl. Phys. Lett. 20, 266-267 (1972).
[CrossRef]

Salvekar, A. A.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Chen, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, abrication, and characterisation of form-birefringent multilayer polarising beam splitter," J. Opt Soc. Am. A 14, 1627-1636 (1997).
[CrossRef]

Sato, S.

Sato, T.

S.  Kawakami, T.  Kawashima, and T.  Sato, "Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering," Appl. Phys. Lett.  74, 463-465 (1999).
[CrossRef]

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarisation splitters" Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Scherer, A.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Chen, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, abrication, and characterisation of form-birefringent multilayer polarising beam splitter," J. Opt Soc. Am. A 14, 1627-1636 (1997).
[CrossRef]

R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, "Polarizing beam splitter based on anisotropic spectral reflectivity characteristics of form-birefringent multilayer gratings," Opt. Lett. 21, 761-763 (1996).
[CrossRef] [PubMed]

Shirakawa, A.

Sun, P. C.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Chen, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, abrication, and characterisation of form-birefringent multilayer polarising beam splitter," J. Opt Soc. Am. A 14, 1627-1636 (1997).
[CrossRef]

R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, "Polarizing beam splitter based on anisotropic spectral reflectivity characteristics of form-birefringent multilayer gratings," Opt. Lett. 21, 761-763 (1996).
[CrossRef] [PubMed]

Tamamura, T.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarisation splitters" Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

Tyan, R. C.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Chen, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, abrication, and characterisation of form-birefringent multilayer polarising beam splitter," J. Opt Soc. Am. A 14, 1627-1636 (1997).
[CrossRef]

R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, "Polarizing beam splitter based on anisotropic spectral reflectivity characteristics of form-birefringent multilayer gratings," Opt. Lett. 21, 761-763 (1996).
[CrossRef] [PubMed]

Ueda, K. -i.

Verstuyft, S.

Xu, F.

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Chen, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, abrication, and characterisation of form-birefringent multilayer polarising beam splitter," J. Opt Soc. Am. A 14, 1627-1636 (1997).
[CrossRef]

Yakunin, V. P.

V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999).
[CrossRef]

Yonezawa, K.

Zhan, Q.

Zhang, Z. -m.

Zhong, L. -x.

Appl. Opt.

Appl. Phys. Lett.

D. Pohl, "Operation of a ruby laser in the purely transverse electric mode TE01," Appl. Phys. Lett. 20, 266-267 (1972).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A A. Friesem, Z. Bomzon, and E. Hasman, "The formation of laser beams with pure azimuthal or radial polarization," Appl. Phys. Lett. 77, 3322-3324 (2000).
[CrossRef]

S.  Kawakami, T.  Kawashima, and T.  Sato, "Mechanism of shape formation of three-dimensional periodic nanostructures by bias sputtering," Appl. Phys. Lett.  74, 463-465 (1999).
[CrossRef]

Electron. Lett.

Y. Ohtera, T. Sato, T. Kawashima, T. Tamamura, and S. Kawakami, "Photonic crystal polarisation splitters" Electron. Lett. 35, 1271-1272 (1999).
[CrossRef]

S. Kawakami, "Fabrication of submicrometer 3D periodic structure composed of Si/SiO2," Electron. Lett. 33, 1260-1261 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Ashkin, "History of optical trapping and manipulation of small-neutral particle, atoms, and molecules," IEEE J. Sel. Top. Quantum Electron. 6, 841-856 (2000).
[CrossRef]

J. Opt Soc. Am. A

R. C. Tyan, A. A. Salvekar, H. P. Chou, C. C. Chen, A. Scherer, P. C. Sun, F. Xu, and Y. Fainman, "Design, abrication, and characterisation of form-birefringent multilayer polarising beam splitter," J. Opt Soc. Am. A 14, 1627-1636 (1997).
[CrossRef]

J. Phys. D

G. Niziev and A. V. Nesterov, "Influence of beam polarization on laser cutting efficiency," J. Phys. D 32, 1455-1461 (1999).
[CrossRef]

V. Nesterov, V. G. Niziev, and V. P. Yakunin, "Generation of high-power radially polarized beam," J. Phys. D 32, 2871-2875 (1999).
[CrossRef]

Opt. Lett.

Other

F. Xu, R. C. Tyan, P. C. Sun, Y. Fainman, C. C. Cheng, and A. Scherer, "Fabrication, modeling, and characterization of form-birefringent nanostructures," Opt. Lett.  20, 2457- (1995).
[CrossRef] [PubMed]

W. Koechner, Solid State Laser Engineering (Springer, Berlin, 2005), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experiment setup of an end-pumped microchip laser with a PCG as the output coupler. The gain microchip is water-cooled on its rear surface.

Fig. 2.
Fig. 2.

The paradigmatic images of PCG mirror obtained by use of scanning electron microscope (SEM): (a) cross section and (b) surface view. The pitch of concentric corrugations in (b) is 466 nm.

Fig. 3.
Fig. 3.

The measured reflectances of (a) TE-and (b) TM-wave PCGs for different polarizations.

Fig. 4.
Fig. 4.

Output power of the laser as a function of the absorbed pump power.

Fig. 5.
Fig. 5.

Measured laser spectrum at Pabs =3.7W when TE-wave PCG output coupler was used.

Fig. 6.
Fig. 6.

(a) Far-field and (b) near-field intensity distributions of the laser beam profile, and (c)-(f) variations of far-field intensity distributions of the passage beam through the polarizer analyzer with different orientations of the polarizer (White arrows indict the directions of polarizer analyzer’s axis).

Fig. 7.
Fig. 7.

(a) Far-field and (b) near-field intensity distributions of the laser beam profile, and (c)-(f) variations of far-field intensity distributions of the passage beam through the polarizer analyzer with different orientations of the polarizer (White arrows indict the directions of polarizer analyzer’s axis).

Metrics