Abstract

Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, βc, can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase-shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, αc, which leads to an overall reduced figure of merit βc/αc for nonlinear absorption. For thin (<1 µm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. Chem. Phys. 3, 4965-4971 (2001).
    [CrossRef]
  2. L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).
    [CrossRef]
  3. F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "India ink/carbon disulfide creates laser safety device," Laser Focus World 37, 125 (2001).
  4. F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "Viscosity dependence of optical limiting in carbon black suspensions," Appl. Opt. 41, 1103-1107 (2002).
    [CrossRef] [PubMed]
  5. F. E. Hernandez, S. S. Yang, V. Dubikovskiy, I. W. Shensky, E. W. Van Stryland, and D. J. Hagan, "Dual Focal Plane Visible Optical Limiter," J. Nonlinear Opt. Phys. Mater. 9, 423 (2000).
    [CrossRef]
  6. X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, "Broadband optical limiting with multiwalled carbon nanotubes," Appl. Phys. Lett. 73, 3632-3634 (1998).
    [CrossRef]
  7. Y. P. Sun and J. E. Riggs, "Organic and inorganic optical limiting materials. From fullerenes to nanoparticles," Int. Rev. Phys. Chem. 18, 43-90 (1999).
    [CrossRef]
  8. G. Wang and W. F. Sun, "Optical limiting of gold nanoparticle aggregates induced by electrolytes," J. Phys. Chem. B 110, 20901-20905 (2006).
    [CrossRef] [PubMed]
  9. J. E. Sipe and R. W. Boyd, "Nonlinear Susceptibility of Composite Optical-Materials in the Maxwell Garnett Model," Phys. Rev. A 46, 1614-1629 (1992).
    [CrossRef] [PubMed]
  10. M. I. Stockman, K. B. Kurlayev, and T. F. George, "Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory," Phys. Rev. B 60, 17071-17083 (1999).
    [CrossRef]
  11. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, "Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects," J. Opt. Soc. Am. B 14, 1625-1631 (1997).
    [CrossRef]
  12. A. E. Neeves and M. H. Birnboim, "Composite structures for the enhancement of nonlinear-optical susceptibility," J. Opt. Soc. Am. B 6, 787-796 (1989).
    [CrossRef]
  13. A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
    [CrossRef]
  14. S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, "Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands," Chem. Phys. Lett. 356, 403-408 (2002).
    [CrossRef]
  15. S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
    [CrossRef]
  16. Y. Hosoya, T. Suga, T. Yanagawa, and Y. Kurokawa, "Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina," J. Appl. Phys. 81, 1475-1480 (1997).
    [CrossRef]
  17. H. B. Liao, R. F. Xiao, J. S. Fu, H. Wang, K. S. Wong, and G. K. L. Wong, "Origin of third-order optical nonlinearity in Au:SiO2 composite films on femtosecond and picosecond time scales," Opt. Lett. 23, 388-390 (1998).
    [CrossRef]
  18. E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, "Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index," Appl. Surf. Sci. 247, 390-395 (2005).
    [CrossRef]
  19. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A. J. Ikushima, T. Tokizaki, and A. Nakamura, "Optical nonlinearities of a high concentration of small metal particles dispersed in glass: copper and silver particles," J. Opt. Soc. Am. B 11, 1236-1243 (1994).
    [CrossRef]
  20. O. Maruyama, Y. Senda, and S. Omi, "Non-linear optical properties of titanium dioxide films containing dispersed gold particles," J. Non-Cryst. Solids 259, 100-106 (1999).
    [CrossRef]
  21. C. Flytzanis, F. Hache, M. C. Klein, D. Ricard, and R. Roussignol, "Nonlinear Optics In Composite Materials," in Progress In Optics 29, E. Wolf, ed. (Elsevier Science Publishers B.V., 1991), pp. 321-411.
  22. F. Hache, D. Ricard, and C. Flytzanis, "Optical Nonlinearities of Small Metal Particles - Surface-Mediated Resonance and Quantum Size Effects," J. Opt. Soc. Am. B 3, 1647-1655 (1986).
    [CrossRef]
  23. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The Optical Kerr Effect in Small Metal Particles and Metal Colloids - the Case of Gold," Appl. Phys. A: Mater. Sci. Proces. 47, 347-357 (1988).
    [CrossRef]
  24. D. Ricard, P. Roussignol, and C. Flytzanis, "Surface-mediated enhancement of optical phase conjugation in metal colloids," Opt. Lett. 10, 511-513 (1985).
    [CrossRef] [PubMed]
  25. R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D 34, 1602-1611 (2001).
    [CrossRef]
  26. A. Samoc, "Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared," J. Appl. Phys. 94, 6167-6174 (2003).
    [CrossRef]
  27. Dr. Scott Webster, CREOL and FPCE: The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816 (personal communication, 2007).
  28. P. B. Johnson and R. W. Christy, "Optical-Constants of Noble-Metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  29. R. del Coso and J. Solis, "Relation between nonlinear refractive index and third-order susceptibility in absorbing media," J. Opt. Soc. Am. B 21, 640-644 (2004).
    [CrossRef]

2006 (1)

G. Wang and W. F. Sun, "Optical limiting of gold nanoparticle aggregates induced by electrolytes," J. Phys. Chem. B 110, 20901-20905 (2006).
[CrossRef] [PubMed]

2005 (1)

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, "Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index," Appl. Surf. Sci. 247, 390-395 (2005).
[CrossRef]

2004 (2)

A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
[CrossRef]

R. del Coso and J. Solis, "Relation between nonlinear refractive index and third-order susceptibility in absorbing media," J. Opt. Soc. Am. B 21, 640-644 (2004).
[CrossRef]

2003 (1)

A. Samoc, "Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared," J. Appl. Phys. 94, 6167-6174 (2003).
[CrossRef]

2002 (2)

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, "Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands," Chem. Phys. Lett. 356, 403-408 (2002).
[CrossRef]

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "Viscosity dependence of optical limiting in carbon black suspensions," Appl. Opt. 41, 1103-1107 (2002).
[CrossRef] [PubMed]

2001 (3)

L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. Chem. Phys. 3, 4965-4971 (2001).
[CrossRef]

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "India ink/carbon disulfide creates laser safety device," Laser Focus World 37, 125 (2001).

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D 34, 1602-1611 (2001).
[CrossRef]

2000 (3)

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).
[CrossRef]

F. E. Hernandez, S. S. Yang, V. Dubikovskiy, I. W. Shensky, E. W. Van Stryland, and D. J. Hagan, "Dual Focal Plane Visible Optical Limiter," J. Nonlinear Opt. Phys. Mater. 9, 423 (2000).
[CrossRef]

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

1999 (3)

M. I. Stockman, K. B. Kurlayev, and T. F. George, "Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory," Phys. Rev. B 60, 17071-17083 (1999).
[CrossRef]

Y. P. Sun and J. E. Riggs, "Organic and inorganic optical limiting materials. From fullerenes to nanoparticles," Int. Rev. Phys. Chem. 18, 43-90 (1999).
[CrossRef]

O. Maruyama, Y. Senda, and S. Omi, "Non-linear optical properties of titanium dioxide films containing dispersed gold particles," J. Non-Cryst. Solids 259, 100-106 (1999).
[CrossRef]

1998 (2)

1997 (2)

D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, "Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects," J. Opt. Soc. Am. B 14, 1625-1631 (1997).
[CrossRef]

Y. Hosoya, T. Suga, T. Yanagawa, and Y. Kurokawa, "Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina," J. Appl. Phys. 81, 1475-1480 (1997).
[CrossRef]

1994 (1)

1992 (1)

J. E. Sipe and R. W. Boyd, "Nonlinear Susceptibility of Composite Optical-Materials in the Maxwell Garnett Model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

1989 (1)

1988 (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The Optical Kerr Effect in Small Metal Particles and Metal Colloids - the Case of Gold," Appl. Phys. A: Mater. Sci. Proces. 47, 347-357 (1988).
[CrossRef]

1986 (1)

1985 (1)

1972 (1)

P. B. Johnson and R. W. Christy, "Optical-Constants of Noble-Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Asahara, Y.

Battaglin, G.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, "Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index," Appl. Surf. Sci. 247, 390-395 (2005).
[CrossRef]

Belloni, J.

L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. Chem. Phys. 3, 4965-4971 (2001).
[CrossRef]

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).
[CrossRef]

Birnboim, M. H.

Boyd, R. W.

Cattaruzza, E.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, "Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index," Appl. Surf. Sci. 247, 390-395 (2005).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical-Constants of Noble-Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Cohanoschi, I.

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "Viscosity dependence of optical limiting in carbon black suspensions," Appl. Opt. 41, 1103-1107 (2002).
[CrossRef] [PubMed]

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "India ink/carbon disulfide creates laser safety device," Laser Focus World 37, 125 (2001).

Compagnini, G.

A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
[CrossRef]

Debrus, S.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

del Coso, R.

Delaire, J.

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).
[CrossRef]

Delaire, J. A.

L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. Chem. Phys. 3, 4965-4971 (2001).
[CrossRef]

Delouis, J. F.

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).
[CrossRef]

Du, C.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, "Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands," Chem. Phys. Lett. 356, 403-408 (2002).
[CrossRef]

Dubikovskiy, V.

F. E. Hernandez, S. S. Yang, V. Dubikovskiy, I. W. Shensky, E. W. Van Stryland, and D. J. Hagan, "Dual Focal Plane Visible Optical Limiter," J. Nonlinear Opt. Phys. Mater. 9, 423 (2000).
[CrossRef]

D'Urso, L.

A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
[CrossRef]

Feneyrou, P.

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).
[CrossRef]

Fischer, G.

Flytzanis, C.

Francois, L.

L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. Chem. Phys. 3, 4965-4971 (2001).
[CrossRef]

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).
[CrossRef]

Fu, J. S.

Ganeev, R. A.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D 34, 1602-1611 (2001).
[CrossRef]

Gao, Y.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, "Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands," Chem. Phys. Lett. 356, 403-408 (2002).
[CrossRef]

George, T. F.

M. I. Stockman, K. B. Kurlayev, and T. F. George, "Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory," Phys. Rev. B 60, 17071-17083 (1999).
[CrossRef]

Gonella, F.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, "Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index," Appl. Surf. Sci. 247, 390-395 (2005).
[CrossRef]

Gregory, D. A.

Hache, F.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The Optical Kerr Effect in Small Metal Particles and Metal Colloids - the Case of Gold," Appl. Phys. A: Mater. Sci. Proces. 47, 347-357 (1988).
[CrossRef]

F. Hache, D. Ricard, and C. Flytzanis, "Optical Nonlinearities of Small Metal Particles - Surface-Mediated Resonance and Quantum Size Effects," J. Opt. Soc. Am. B 3, 1647-1655 (1986).
[CrossRef]

Hagan, D. J.

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "Viscosity dependence of optical limiting in carbon black suspensions," Appl. Opt. 41, 1103-1107 (2002).
[CrossRef] [PubMed]

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "India ink/carbon disulfide creates laser safety device," Laser Focus World 37, 125 (2001).

F. E. Hernandez, S. S. Yang, V. Dubikovskiy, I. W. Shensky, E. W. Van Stryland, and D. J. Hagan, "Dual Focal Plane Visible Optical Limiter," J. Nonlinear Opt. Phys. Mater. 9, 423 (2000).
[CrossRef]

Hata, C.

Hernandez, F. E.

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "Viscosity dependence of optical limiting in carbon black suspensions," Appl. Opt. 41, 1103-1107 (2002).
[CrossRef] [PubMed]

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "India ink/carbon disulfide creates laser safety device," Laser Focus World 37, 125 (2001).

F. E. Hernandez, S. S. Yang, V. Dubikovskiy, I. W. Shensky, E. W. Van Stryland, and D. J. Hagan, "Dual Focal Plane Visible Optical Limiter," J. Nonlinear Opt. Phys. Mater. 9, 423 (2000).
[CrossRef]

Hor, T. S. A.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, "Broadband optical limiting with multiwalled carbon nanotubes," Appl. Phys. Lett. 73, 3632-3634 (1998).
[CrossRef]

Hosoya, Y.

Y. Hosoya, T. Suga, T. Yanagawa, and Y. Kurokawa, "Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina," J. Appl. Phys. 81, 1475-1480 (1997).
[CrossRef]

Ikushima, A. J.

Ji, W.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, "Broadband optical limiting with multiwalled carbon nanotubes," Appl. Phys. Lett. 73, 3632-3634 (1998).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical-Constants of Noble-Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kamalov, S. R.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D 34, 1602-1611 (2001).
[CrossRef]

Kaneko, S.

Kodirov, M. K.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D 34, 1602-1611 (2001).
[CrossRef]

Kreibig, U.

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The Optical Kerr Effect in Small Metal Particles and Metal Colloids - the Case of Gold," Appl. Phys. A: Mater. Sci. Proces. 47, 347-357 (1988).
[CrossRef]

Kurlayev, K. B.

M. I. Stockman, K. B. Kurlayev, and T. F. George, "Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory," Phys. Rev. B 60, 17071-17083 (1999).
[CrossRef]

Kurokawa, Y.

Y. Hosoya, T. Suga, T. Yanagawa, and Y. Kurokawa, "Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina," J. Appl. Phys. 81, 1475-1480 (1997).
[CrossRef]

Lafait, J.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Li, Y.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, "Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands," Chem. Phys. Lett. 356, 403-408 (2002).
[CrossRef]

Liao, H. B.

Liu, S.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, "Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands," Chem. Phys. Lett. 356, 403-408 (2002).
[CrossRef]

Maruyama, O.

O. Maruyama, Y. Senda, and S. Omi, "Non-linear optical properties of titanium dioxide films containing dispersed gold particles," J. Non-Cryst. Solids 259, 100-106 (1999).
[CrossRef]

Mattei, G.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, "Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index," Appl. Surf. Sci. 247, 390-395 (2005).
[CrossRef]

May, M.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Mazzoldi, P.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, "Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index," Appl. Surf. Sci. 247, 390-395 (2005).
[CrossRef]

Mostafavi, M.

L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. Chem. Phys. 3, 4965-4971 (2001).
[CrossRef]

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).
[CrossRef]

Nakamura, A.

Neeves, A. E.

Omi, S.

Pincon, N.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Polloni, R.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, "Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index," Appl. Surf. Sci. 247, 390-395 (2005).
[CrossRef]

Prot, D.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Puglisi, O.

A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
[CrossRef]

Qu, S.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, "Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands," Chem. Phys. Lett. 356, 403-408 (2002).
[CrossRef]

Ricard, D.

Riggs, J. E.

Y. P. Sun and J. E. Riggs, "Organic and inorganic optical limiting materials. From fullerenes to nanoparticles," Int. Rev. Phys. Chem. 18, 43-90 (1999).
[CrossRef]

Roussignol, P.

Ryasnyansky, A. I.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D 34, 1602-1611 (2001).
[CrossRef]

Samoc, A.

A. Samoc, "Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared," J. Appl. Phys. 94, 6167-6174 (2003).
[CrossRef]

Scalisi, A. A.

A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
[CrossRef]

Scremin, B. F.

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, "Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index," Appl. Surf. Sci. 247, 390-395 (2005).
[CrossRef]

Sella, C.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Senda, Y.

O. Maruyama, Y. Senda, and S. Omi, "Non-linear optical properties of titanium dioxide films containing dispersed gold particles," J. Non-Cryst. Solids 259, 100-106 (1999).
[CrossRef]

Shensky, I. W.

F. E. Hernandez, S. S. Yang, V. Dubikovskiy, I. W. Shensky, E. W. Van Stryland, and D. J. Hagan, "Dual Focal Plane Visible Optical Limiter," J. Nonlinear Opt. Phys. Mater. 9, 423 (2000).
[CrossRef]

Shensky, W.

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "Viscosity dependence of optical limiting in carbon black suspensions," Appl. Opt. 41, 1103-1107 (2002).
[CrossRef] [PubMed]

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "India ink/carbon disulfide creates laser safety device," Laser Focus World 37, 125 (2001).

Sipe, J. E.

J. E. Sipe and R. W. Boyd, "Nonlinear Susceptibility of Composite Optical-Materials in the Maxwell Garnett Model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

Smith, D. D.

Solis, J.

Song, Y.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, "Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands," Chem. Phys. Lett. 356, 403-408 (2002).
[CrossRef]

Stockman, M. I.

M. I. Stockman, K. B. Kurlayev, and T. F. George, "Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory," Phys. Rev. B 60, 17071-17083 (1999).
[CrossRef]

Suga, T.

Y. Hosoya, T. Suga, T. Yanagawa, and Y. Kurokawa, "Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina," J. Appl. Phys. 81, 1475-1480 (1997).
[CrossRef]

Sun, W. F.

G. Wang and W. F. Sun, "Optical limiting of gold nanoparticle aggregates induced by electrolytes," J. Phys. Chem. B 110, 20901-20905 (2006).
[CrossRef] [PubMed]

Sun, X.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, "Broadband optical limiting with multiwalled carbon nanotubes," Appl. Phys. Lett. 73, 3632-3634 (1998).
[CrossRef]

Sun, Y. P.

Y. P. Sun and J. E. Riggs, "Organic and inorganic optical limiting materials. From fullerenes to nanoparticles," Int. Rev. Phys. Chem. 18, 43-90 (1999).
[CrossRef]

Tanji, H.

Tokizaki, T.

Uchida, K.

Usmanov, T.

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D 34, 1602-1611 (2001).
[CrossRef]

Van Stryland, E. W.

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "Viscosity dependence of optical limiting in carbon black suspensions," Appl. Opt. 41, 1103-1107 (2002).
[CrossRef] [PubMed]

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "India ink/carbon disulfide creates laser safety device," Laser Focus World 37, 125 (2001).

F. E. Hernandez, S. S. Yang, V. Dubikovskiy, I. W. Shensky, E. W. Van Stryland, and D. J. Hagan, "Dual Focal Plane Visible Optical Limiter," J. Nonlinear Opt. Phys. Mater. 9, 423 (2000).
[CrossRef]

Venturini, J.

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Wang, G.

G. Wang and W. F. Sun, "Optical limiting of gold nanoparticle aggregates induced by electrolytes," J. Phys. Chem. B 110, 20901-20905 (2006).
[CrossRef] [PubMed]

Wang, H.

Wang, Y.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, "Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands," Chem. Phys. Lett. 356, 403-408 (2002).
[CrossRef]

Wong, G. K. L.

Wong, K. S.

Xiao, R. F.

Xu, G. Q.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, "Broadband optical limiting with multiwalled carbon nanotubes," Appl. Phys. Lett. 73, 3632-3634 (1998).
[CrossRef]

Yanagawa, T.

Y. Hosoya, T. Suga, T. Yanagawa, and Y. Kurokawa, "Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina," J. Appl. Phys. 81, 1475-1480 (1997).
[CrossRef]

Yang, S. S.

F. E. Hernandez, S. S. Yang, V. Dubikovskiy, I. W. Shensky, E. W. Van Stryland, and D. J. Hagan, "Dual Focal Plane Visible Optical Limiter," J. Nonlinear Opt. Phys. Mater. 9, 423 (2000).
[CrossRef]

Yu, R. Q.

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, "Broadband optical limiting with multiwalled carbon nanotubes," Appl. Phys. Lett. 73, 3632-3634 (1998).
[CrossRef]

Zhu, D.

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, "Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands," Chem. Phys. Lett. 356, 403-408 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. A: Mater. Sci. Proces. (1)

F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, "The Optical Kerr Effect in Small Metal Particles and Metal Colloids - the Case of Gold," Appl. Phys. A: Mater. Sci. Proces. 47, 347-357 (1988).
[CrossRef]

Appl. Phys. Lett. (1)

X. Sun, R. Q. Yu, G. Q. Xu, T. S. A. Hor, and W. Ji, "Broadband optical limiting with multiwalled carbon nanotubes," Appl. Phys. Lett. 73, 3632-3634 (1998).
[CrossRef]

Appl. Surf. Sci. (2)

A. A. Scalisi, G. Compagnini, L. D'Urso, and O. Puglisi, "Nonlinear optical activity in Ag-SiO2 nanocomposite thin films with different silver concentration," Appl. Surf. Sci. 226, 237-241 (2004).
[CrossRef]

E. Cattaruzza, G. Battaglin, F. Gonella, G. Mattei, P. Mazzoldi, R. Polloni, and B. F. Scremin, "Fast third-order optical nonlinearities in metal alloy nanocluster composite glass: negative sign of the nonlinear refractive index," Appl. Surf. Sci. 247, 390-395 (2005).
[CrossRef]

Chem. Phys. Lett. (1)

S. Qu, C. Du, Y. Song, Y. Wang, Y. Gao, S. Liu, Y. Li, and D. Zhu, "Optical nonlinearities and optical limiting properties in gold nanoparticles protected by ligands," Chem. Phys. Lett. 356, 403-408 (2002).
[CrossRef]

Int. Rev. Phys. Chem. (1)

Y. P. Sun and J. E. Riggs, "Organic and inorganic optical limiting materials. From fullerenes to nanoparticles," Int. Rev. Phys. Chem. 18, 43-90 (1999).
[CrossRef]

J. Appl. Phys. (3)

S. Debrus, J. Lafait, M. May, N. Pincon, D. Prot, C. Sella, and J. Venturini, "Z-scan determination of the third-order optical nonlinearity of gold:silica nanocomposites," J. Appl. Phys. 88, 4469-4475 (2000).
[CrossRef]

Y. Hosoya, T. Suga, T. Yanagawa, and Y. Kurokawa, "Linear and nonlinear optical properties of sol-gel-derived Au nanometer-particle-doped alumina," J. Appl. Phys. 81, 1475-1480 (1997).
[CrossRef]

A. Samoc, "Dispersion of refractive properties of solvents: Chloroform, toluene, benzene, and carbon disulfide in ultraviolet, visible, and near-infrared," J. Appl. Phys. 94, 6167-6174 (2003).
[CrossRef]

J. Non-Cryst. Solids (1)

O. Maruyama, Y. Senda, and S. Omi, "Non-linear optical properties of titanium dioxide films containing dispersed gold particles," J. Non-Cryst. Solids 259, 100-106 (1999).
[CrossRef]

J. Nonlinear Opt. Phys. Mater. (1)

F. E. Hernandez, S. S. Yang, V. Dubikovskiy, I. W. Shensky, E. W. Van Stryland, and D. J. Hagan, "Dual Focal Plane Visible Optical Limiter," J. Nonlinear Opt. Phys. Mater. 9, 423 (2000).
[CrossRef]

J. Opt. Soc. Am. B (5)

J. Phys. Chem. B (2)

L. Francois, M. Mostafavi, J. Belloni, J. F. Delouis, J. Delaire, and P. Feneyrou, "Optical limitation induced by gold clusters. 1. Size effect," J. Phys. Chem. B 104, 6133-6137 (2000).
[CrossRef]

G. Wang and W. F. Sun, "Optical limiting of gold nanoparticle aggregates induced by electrolytes," J. Phys. Chem. B 110, 20901-20905 (2006).
[CrossRef] [PubMed]

J. Phys. D (1)

R. A. Ganeev, A. I. Ryasnyansky, S. R. Kamalov, M. K. Kodirov, and T. Usmanov, "Nonlinear susceptibilities, absorption coefficients and refractive indices of colloidal metals," J. Phys. D 34, 1602-1611 (2001).
[CrossRef]

Laser Focus World (1)

F. E. Hernandez, W. Shensky, I. Cohanoschi, D. J. Hagan, and E. W. Van Stryland, "India ink/carbon disulfide creates laser safety device," Laser Focus World 37, 125 (2001).

Opt. Lett. (2)

Phys. Chem. Chem. Phys. (1)

L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, "Optical limitation induced by gold clusters: Mechanism and efficiency," Phys. Chem. Chem. Phys. 3, 4965-4971 (2001).
[CrossRef]

Phys. Rev. A (1)

J. E. Sipe and R. W. Boyd, "Nonlinear Susceptibility of Composite Optical-Materials in the Maxwell Garnett Model," Phys. Rev. A 46, 1614-1629 (1992).
[CrossRef] [PubMed]

Phys. Rev. B (2)

M. I. Stockman, K. B. Kurlayev, and T. F. George, "Linear and nonlinear optical susceptibilities of Maxwell Garnett composites: Dipolar spectral theory," Phys. Rev. B 60, 17071-17083 (1999).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical-Constants of Noble-Metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Other (2)

C. Flytzanis, F. Hache, M. C. Klein, D. Ricard, and R. Roussignol, "Nonlinear Optics In Composite Materials," in Progress In Optics 29, E. Wolf, ed. (Elsevier Science Publishers B.V., 1991), pp. 321-411.

Dr. Scott Webster, CREOL and FPCE: The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816 (personal communication, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

(a) Real and imaginary parts of the local field correction factor and (b) composite linear absorption.

Fig. 2.
Fig. 2.

Real and imaginary parts of the nonlinear refractive index enhancement factor g2 of 10 nm diameter Ag particles embedded in CS2.

Fig. 3.
Fig. 3.

(a) Calculated nonlinear refractive index and (b) nonlinear absorption coefficient of a Ag-CS2 nanocomposite. The separate contributions from the host nonlinear refractive index and host nonlinear absorption are indicated by the dashed and dotted curves respectively.

Fig. 4.
Fig. 4.

(a) Calculated linear absorption of a Ag-CS2 composite with and without a small increase in the host refractive index. (b) Calculated composite nonlinear absorption coefficient considering only the nonlinear refractive index contribution of the host. (c) Calculated linear absorption of a Ag-CS2 composite with and without a small increase in the absorption coefficient of the host. (d) Calculated composite nonlinear absorption coefficient considering only the nonlinear absorption contribution of the host.

Fig. 5.
Fig. 5.

(a) Nonlinear absorption coefficient βc of a silver-CS2 composite for several silver filling fractions and (b) corresponding figure of merit.

Fig. 6.
Fig. 6.

Transmitted irradiance as a function of incident irradiance at a wavelength of 435 nm for different filling fractions for an Ag-CS2 composite with a thickness of (a) 100nm (thin layer limit) and (b) 10 µm. The dashed line represents a linear response with zero absorption.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

ε i = ε ω p 2 [ ω 2 + i ( Γ 0 + Γ s ) ω ]
ε c = ( 1 + 2 f γ 1 f γ ) ε h γ = ε i ε h ε i 2 ε h
g ( 3 ) χ c ( 3 ) χ h ( 3 ) = 1 5 ε c + 2 ε h 3 ε h 2 ( ε c + 2 ε h 3 ε h ) 2 ( 1 f ) [ 8 f ( 1 + f + f 2 ) γ 2 γ 2
+ 6 f ( 1 + f ) γ 2 γ + 2 f ( 1 + f ) γ 3 + 18 f ( γ 2 + γ 2 ) + 5 ]
g ( 3 ) χ c ( 3 ) χ h ( 3 ) = 1 + f 5 [ 8 γ 2 γ 2 + 6 γ 2 γ + 2 γ 3 + 18 ( γ 2 + γ 2 ) ] .
η 2 [ m 2 W ] = 3 4 ε 0 c η 2 ( 1 i κ n ) χ ( 3 )
g 2 = η 2 , c η 2 , h = η h 2 η c 2 1 i ( κ c n c ) 1 i ( κ h n h ) g ( 3 )
I out = α c I in β c I in ( α c β c I in ) e α c L

Metrics