Abstract

This paper proposed a novel distributed feedback (DFB) laser by incorporating a dispersive grating, whose coupling strength is dependent on the operating wavelength. Analysis of the laser threshold conditions shows that the proposed structure guarantees single-mode operation due to the inherent threshold gain discrimination on the two otherwise degenerated lasing modes.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Total dispersion in graded index single-mode fibers," Electron. Lett. 15, 474-476 (1979).
    [CrossRef]
  2. J. P. Laude, Wavelength Division Multiplexing (Prentice Hall, New York, 1993).
  3. H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).
    [CrossRef]
  4. J. Buus, "Mode selectivity in DFB lasers with cleaved facets," Electron. Lett. 21, 179-180 (1985).
    [CrossRef]
  5. H. A. Haus and C. V. Shank, "Antisymmetric taper of distributed feedback lasers," IEEE J. Quantum Electron. 12, 532-539 (1976).
    [CrossRef]
  6. H. Soda, Y. Kotaki, H. Ishikawa, and H. Imai, "Stability in single longitudinal mode operation GaInAsP/InP phase-adjusted DFB laser," IEEE J. Quantum Electron. 23, 804-814 (1987).
    [CrossRef]
  7. E. Kapon, A. Hardy, and A. Katzir, "The effects of complex coupling coefficients on distributed feedback lasers," IEEE J. Quantum Electron. 18, 66-71 (1982).
    [CrossRef]
  8. K. David, G. Morthier, P. Vankwikelberge, and R. Baets, "Yield analysis of non-AR-coated DFB lasers with combined index and gain coupling," Electron. Lett. 26, 238-239 (1990).
    [CrossRef]
  9. J. Zoz and B. Borchert, "Dynamic behavior of complex-coupled DFB lasers with in-phase absorptive grating," Electron. Lett. 30, 39-40 (1994).
    [CrossRef]
  10. L. Olofsson and T. G. Brown, "The influence of resonator structure on the linewidth enhancement factor of semiconductor lasers," IEEE J. Quantum Electron. 28, 1450-1458 (1992).
    [CrossRef]
  11. P. Yeh, "Christiansen-Bragg filters," Opt. Commun. 35, 9-14 (1980).
    [CrossRef]
  12. X. Li, Y. Xi, and W.-P. Huang, "Threshold analysis of a novel dispersive grating distributed feedback laser diode," presented at the Asia Optical Fiber Communication & Optoelelctronic Exposition & Conference, Shanghai, China, Oct. 2007.
  13. S. M. Sadeghi and W. Li, "Electromagnetically induced distributed feedback intersubband lasers," IEEE J. Quantum Electron. 41, 1227-1234 (2005).
    [CrossRef]
  14. S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, "Tunable infrared semiconductor lasers based on electromagnetically induced optical defects," IEEE J. Sel. Top. Quantum Electron. 13, 1046-1053 (2007).
    [CrossRef]
  15. T. L. Koch and U. Koren, "Semiconductor lasers for coherent optical fiber communications," IEEE J. Lightwave Technol. 8, 274-292 (1990).
    [CrossRef]
  16. W. Streifer, R. D. Burnham, and D. R. Scifres, "Effect of external reflectors on longitudinal modes of distributed feedback lasers," IEEE J. Quantum Electron. 11, 154-161 (1975).
    [CrossRef]

2007 (1)

S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, "Tunable infrared semiconductor lasers based on electromagnetically induced optical defects," IEEE J. Sel. Top. Quantum Electron. 13, 1046-1053 (2007).
[CrossRef]

2005 (1)

S. M. Sadeghi and W. Li, "Electromagnetically induced distributed feedback intersubband lasers," IEEE J. Quantum Electron. 41, 1227-1234 (2005).
[CrossRef]

1994 (1)

J. Zoz and B. Borchert, "Dynamic behavior of complex-coupled DFB lasers with in-phase absorptive grating," Electron. Lett. 30, 39-40 (1994).
[CrossRef]

1992 (1)

L. Olofsson and T. G. Brown, "The influence of resonator structure on the linewidth enhancement factor of semiconductor lasers," IEEE J. Quantum Electron. 28, 1450-1458 (1992).
[CrossRef]

1990 (2)

K. David, G. Morthier, P. Vankwikelberge, and R. Baets, "Yield analysis of non-AR-coated DFB lasers with combined index and gain coupling," Electron. Lett. 26, 238-239 (1990).
[CrossRef]

T. L. Koch and U. Koren, "Semiconductor lasers for coherent optical fiber communications," IEEE J. Lightwave Technol. 8, 274-292 (1990).
[CrossRef]

1987 (1)

H. Soda, Y. Kotaki, H. Ishikawa, and H. Imai, "Stability in single longitudinal mode operation GaInAsP/InP phase-adjusted DFB laser," IEEE J. Quantum Electron. 23, 804-814 (1987).
[CrossRef]

1985 (1)

J. Buus, "Mode selectivity in DFB lasers with cleaved facets," Electron. Lett. 21, 179-180 (1985).
[CrossRef]

1982 (1)

E. Kapon, A. Hardy, and A. Katzir, "The effects of complex coupling coefficients on distributed feedback lasers," IEEE J. Quantum Electron. 18, 66-71 (1982).
[CrossRef]

1980 (1)

P. Yeh, "Christiansen-Bragg filters," Opt. Commun. 35, 9-14 (1980).
[CrossRef]

1979 (1)

W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Total dispersion in graded index single-mode fibers," Electron. Lett. 15, 474-476 (1979).
[CrossRef]

1976 (1)

H. A. Haus and C. V. Shank, "Antisymmetric taper of distributed feedback lasers," IEEE J. Quantum Electron. 12, 532-539 (1976).
[CrossRef]

1975 (1)

W. Streifer, R. D. Burnham, and D. R. Scifres, "Effect of external reflectors on longitudinal modes of distributed feedback lasers," IEEE J. Quantum Electron. 11, 154-161 (1975).
[CrossRef]

1972 (1)

H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

Baets, R.

K. David, G. Morthier, P. Vankwikelberge, and R. Baets, "Yield analysis of non-AR-coated DFB lasers with combined index and gain coupling," Electron. Lett. 26, 238-239 (1990).
[CrossRef]

Borchert, B.

J. Zoz and B. Borchert, "Dynamic behavior of complex-coupled DFB lasers with in-phase absorptive grating," Electron. Lett. 30, 39-40 (1994).
[CrossRef]

Brown, T. G.

L. Olofsson and T. G. Brown, "The influence of resonator structure on the linewidth enhancement factor of semiconductor lasers," IEEE J. Quantum Electron. 28, 1450-1458 (1992).
[CrossRef]

Burnham, R. D.

W. Streifer, R. D. Burnham, and D. R. Scifres, "Effect of external reflectors on longitudinal modes of distributed feedback lasers," IEEE J. Quantum Electron. 11, 154-161 (1975).
[CrossRef]

Buus, J.

J. Buus, "Mode selectivity in DFB lasers with cleaved facets," Electron. Lett. 21, 179-180 (1985).
[CrossRef]

David, K.

K. David, G. Morthier, P. Vankwikelberge, and R. Baets, "Yield analysis of non-AR-coated DFB lasers with combined index and gain coupling," Electron. Lett. 26, 238-239 (1990).
[CrossRef]

Gambling, W. A.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Total dispersion in graded index single-mode fibers," Electron. Lett. 15, 474-476 (1979).
[CrossRef]

Hardy, A.

E. Kapon, A. Hardy, and A. Katzir, "The effects of complex coupling coefficients on distributed feedback lasers," IEEE J. Quantum Electron. 18, 66-71 (1982).
[CrossRef]

Haus, H. A.

H. A. Haus and C. V. Shank, "Antisymmetric taper of distributed feedback lasers," IEEE J. Quantum Electron. 12, 532-539 (1976).
[CrossRef]

Huang, W.-P.

S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, "Tunable infrared semiconductor lasers based on electromagnetically induced optical defects," IEEE J. Sel. Top. Quantum Electron. 13, 1046-1053 (2007).
[CrossRef]

Imai, H.

H. Soda, Y. Kotaki, H. Ishikawa, and H. Imai, "Stability in single longitudinal mode operation GaInAsP/InP phase-adjusted DFB laser," IEEE J. Quantum Electron. 23, 804-814 (1987).
[CrossRef]

Ishikawa, H.

H. Soda, Y. Kotaki, H. Ishikawa, and H. Imai, "Stability in single longitudinal mode operation GaInAsP/InP phase-adjusted DFB laser," IEEE J. Quantum Electron. 23, 804-814 (1987).
[CrossRef]

Kapon, E.

E. Kapon, A. Hardy, and A. Katzir, "The effects of complex coupling coefficients on distributed feedback lasers," IEEE J. Quantum Electron. 18, 66-71 (1982).
[CrossRef]

Katzir, A.

E. Kapon, A. Hardy, and A. Katzir, "The effects of complex coupling coefficients on distributed feedback lasers," IEEE J. Quantum Electron. 18, 66-71 (1982).
[CrossRef]

Koch, T. L.

T. L. Koch and U. Koren, "Semiconductor lasers for coherent optical fiber communications," IEEE J. Lightwave Technol. 8, 274-292 (1990).
[CrossRef]

Kogelnik, H.

H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

Koren, U.

T. L. Koch and U. Koren, "Semiconductor lasers for coherent optical fiber communications," IEEE J. Lightwave Technol. 8, 274-292 (1990).
[CrossRef]

Kotaki, Y.

H. Soda, Y. Kotaki, H. Ishikawa, and H. Imai, "Stability in single longitudinal mode operation GaInAsP/InP phase-adjusted DFB laser," IEEE J. Quantum Electron. 23, 804-814 (1987).
[CrossRef]

Li, W.

S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, "Tunable infrared semiconductor lasers based on electromagnetically induced optical defects," IEEE J. Sel. Top. Quantum Electron. 13, 1046-1053 (2007).
[CrossRef]

S. M. Sadeghi and W. Li, "Electromagnetically induced distributed feedback intersubband lasers," IEEE J. Quantum Electron. 41, 1227-1234 (2005).
[CrossRef]

Li, X.

S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, "Tunable infrared semiconductor lasers based on electromagnetically induced optical defects," IEEE J. Sel. Top. Quantum Electron. 13, 1046-1053 (2007).
[CrossRef]

Matsumura, H.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Total dispersion in graded index single-mode fibers," Electron. Lett. 15, 474-476 (1979).
[CrossRef]

Morthier, G.

K. David, G. Morthier, P. Vankwikelberge, and R. Baets, "Yield analysis of non-AR-coated DFB lasers with combined index and gain coupling," Electron. Lett. 26, 238-239 (1990).
[CrossRef]

Olofsson, L.

L. Olofsson and T. G. Brown, "The influence of resonator structure on the linewidth enhancement factor of semiconductor lasers," IEEE J. Quantum Electron. 28, 1450-1458 (1992).
[CrossRef]

Ragdale, C. M.

W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Total dispersion in graded index single-mode fibers," Electron. Lett. 15, 474-476 (1979).
[CrossRef]

Sadeghi, S. M.

S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, "Tunable infrared semiconductor lasers based on electromagnetically induced optical defects," IEEE J. Sel. Top. Quantum Electron. 13, 1046-1053 (2007).
[CrossRef]

S. M. Sadeghi and W. Li, "Electromagnetically induced distributed feedback intersubband lasers," IEEE J. Quantum Electron. 41, 1227-1234 (2005).
[CrossRef]

Scifres, D. R.

W. Streifer, R. D. Burnham, and D. R. Scifres, "Effect of external reflectors on longitudinal modes of distributed feedback lasers," IEEE J. Quantum Electron. 11, 154-161 (1975).
[CrossRef]

Shank, C. V.

H. A. Haus and C. V. Shank, "Antisymmetric taper of distributed feedback lasers," IEEE J. Quantum Electron. 12, 532-539 (1976).
[CrossRef]

H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

Soda, H.

H. Soda, Y. Kotaki, H. Ishikawa, and H. Imai, "Stability in single longitudinal mode operation GaInAsP/InP phase-adjusted DFB laser," IEEE J. Quantum Electron. 23, 804-814 (1987).
[CrossRef]

Streifer, W.

W. Streifer, R. D. Burnham, and D. R. Scifres, "Effect of external reflectors on longitudinal modes of distributed feedback lasers," IEEE J. Quantum Electron. 11, 154-161 (1975).
[CrossRef]

Vankwikelberge, P.

K. David, G. Morthier, P. Vankwikelberge, and R. Baets, "Yield analysis of non-AR-coated DFB lasers with combined index and gain coupling," Electron. Lett. 26, 238-239 (1990).
[CrossRef]

Yeh, P.

P. Yeh, "Christiansen-Bragg filters," Opt. Commun. 35, 9-14 (1980).
[CrossRef]

Zoz, J.

J. Zoz and B. Borchert, "Dynamic behavior of complex-coupled DFB lasers with in-phase absorptive grating," Electron. Lett. 30, 39-40 (1994).
[CrossRef]

Electron. Lett. (4)

J. Buus, "Mode selectivity in DFB lasers with cleaved facets," Electron. Lett. 21, 179-180 (1985).
[CrossRef]

K. David, G. Morthier, P. Vankwikelberge, and R. Baets, "Yield analysis of non-AR-coated DFB lasers with combined index and gain coupling," Electron. Lett. 26, 238-239 (1990).
[CrossRef]

J. Zoz and B. Borchert, "Dynamic behavior of complex-coupled DFB lasers with in-phase absorptive grating," Electron. Lett. 30, 39-40 (1994).
[CrossRef]

W. A. Gambling, H. Matsumura, and C. M. Ragdale, "Total dispersion in graded index single-mode fibers," Electron. Lett. 15, 474-476 (1979).
[CrossRef]

IEEE J. Lightwave Technol. (1)

T. L. Koch and U. Koren, "Semiconductor lasers for coherent optical fiber communications," IEEE J. Lightwave Technol. 8, 274-292 (1990).
[CrossRef]

IEEE J. Quantum Electron. (6)

W. Streifer, R. D. Burnham, and D. R. Scifres, "Effect of external reflectors on longitudinal modes of distributed feedback lasers," IEEE J. Quantum Electron. 11, 154-161 (1975).
[CrossRef]

S. M. Sadeghi and W. Li, "Electromagnetically induced distributed feedback intersubband lasers," IEEE J. Quantum Electron. 41, 1227-1234 (2005).
[CrossRef]

L. Olofsson and T. G. Brown, "The influence of resonator structure on the linewidth enhancement factor of semiconductor lasers," IEEE J. Quantum Electron. 28, 1450-1458 (1992).
[CrossRef]

H. A. Haus and C. V. Shank, "Antisymmetric taper of distributed feedback lasers," IEEE J. Quantum Electron. 12, 532-539 (1976).
[CrossRef]

H. Soda, Y. Kotaki, H. Ishikawa, and H. Imai, "Stability in single longitudinal mode operation GaInAsP/InP phase-adjusted DFB laser," IEEE J. Quantum Electron. 23, 804-814 (1987).
[CrossRef]

E. Kapon, A. Hardy, and A. Katzir, "The effects of complex coupling coefficients on distributed feedback lasers," IEEE J. Quantum Electron. 18, 66-71 (1982).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. M. Sadeghi, W. Li, X. Li, and W.-P. Huang, "Tunable infrared semiconductor lasers based on electromagnetically induced optical defects," IEEE J. Sel. Top. Quantum Electron. 13, 1046-1053 (2007).
[CrossRef]

J. Appl. Phys. (1)

H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys. 43, 2327-2335 (1972).
[CrossRef]

Opt. Commun. (1)

P. Yeh, "Christiansen-Bragg filters," Opt. Commun. 35, 9-14 (1980).
[CrossRef]

Other (2)

X. Li, Y. Xi, and W.-P. Huang, "Threshold analysis of a novel dispersive grating distributed feedback laser diode," presented at the Asia Optical Fiber Communication & Optoelelctronic Exposition & Conference, Shanghai, China, Oct. 2007.

J. P. Laude, Wavelength Division Multiplexing (Prentice Hall, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(a) Schematic view of electromagnetically Induced Transparency; (b) Variations of refractive indices of QW regions and trenches with wavelength

Fig. 2.
Fig. 2.

Threshold condition of dispersive grating DFB lasers with different η under normalized background coupling strength (a) κ 0 L=2 and (b) κ 0 L=4.

Fig. 3.
Fig. 3.

Change of the magnitude of the normalized gain margin with that of the relative change of the coupling strength for the different detuning coefficient.

Fig. 4.
Fig. 4.

Transmission spectrum of dispersive grating DFB lasers with η=5% (solid line) and η=-5% (dashed line).

Fig. 5.
Fig. 5.

Illustration of a dispersive grating with n 10=n 20, dn 1/dn 2/.

Fig. 6.
Fig. 6.

Threshold condition of dispersive grating DFB lasers with different η under κ 0 L=0.

Fig. 7.
Fig. 7.

Transmission spectrum of dispersive grating DFB lasers with η=-10% under κ 0 L=0.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

α j δ = γ cosh γ L sinh γ L
γ 2 = ( α j δ ) 2 + κ 2
δ = β β 0 = 2 π n eff λ π Λ
α + j δ = γ * ( cosh γ * L sinh γ * L )
( γ * ) 2 = ( ( α j δ ) 2 ) * + ( κ 2 ) * = ( α + j δ ) 2 + κ 2 .
γ 2 κ 2 = γ cosh γ L sinh γ L .
κ = κ 0 + η δ
n 1 ( 2 ) = n 10 ( 20 ) + dn 1 ( 2 ) d λ ( λ λ 0 ) ,
κ = ( π λ ) ( n 1 n 2 ) .
κ 0 ( π λ ) ( n 10 n 20 ) ,
η [ d ( n 1 n 2 ) d λ ] Λ .
ξ = η δ κ 0 .

Metrics