Abstract

We have demonstrated a tunable single frequency source of continuous-wave (CW) coherent ultraviolet (UV) radiation at λ3ω=326 nm. Laser light of a tunable diode laser at λω=977 nm was split and injected into two independent fiber amplifiers yielding 1 W and 0.4 W, respectively. The 1 W branch was resonantly frequency doubled, resulting in 120 mW of useful power at λ2ω=488 nm. The third harmonic was generated by summation of the second branch of λω and λ2ω which were enhanced by a doubly resonant cavity. This light source has TEM00 character and can be continuously tuned over more than 18 GHz. It is of interest for efficient laser cooling of In and potentially other applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Meschede and H. Metcalf, "Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces," J. Phys. D 36, R17-38 (2003).
    [CrossRef]
  2. E. S. Polzik and H. J. Kimble, "Frequency doubling with KNbO3 in an external cavity," Opt. Lett. 16,1400-14021991).
    [CrossRef] [PubMed]
  3. S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, "Efficient frequency doubling of a continuous wavetitanium:sapphire laser in an external enhancement cavity," Opt. Commun. 99, 89-94 (1993).
    [CrossRef]
  4. S. Sayama and M. Ohtsu, "Tunable UV CW generation by frequency tripling of a Ti:sapphire laser," Opt. Commun. 137, 295-298 (1997).
    [CrossRef]
  5. J. Mes, E. J. van Duijin, R. Zinkstok, S. Witte, and W. Hogervorst, "Third-harmonic generation of a continuouswave Ti:Sapphire laser in external resonant cavities," Appl. Phys. Lett. 82, 4423-4425 (2003).
    [CrossRef]
  6. H. Kumagai, and K. Midorikawa, T. Iwane, and M. Obara, "Efficient sum-frequency generation of continuouswave single-frequency coherent light at 252 nm with dual wavelength enhancement," Opt. Lett. 28, 1969-1971 (2003).
    [CrossRef] [PubMed]
  7. A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, and T. W. Hänsch, and T. Schätz,"High power all solid state laser system near 280 nm," Appl. Phys. B. 84, 371-373 (2006).
    [CrossRef]
  8. P. Herskind, J. Lindballe, C. Clausen, J. L. Sorensen, and M. Drewsen, "Second-harmonic generation of light at 544 and 272 nm from an ytterbium-doped distributed-feedback fiber laser," Opt. Lett. 32, 268-270 (2007).
    [CrossRef] [PubMed]
  9. T. Sädmeyer, Y. Imai, H. Masuda, N. Eguchi, M. Saito, and S. Kubota, "Efficient 2nd and 4th harmonic generation of a single-frequency, continuous-wave fiber amplifier," Opt. Express 16, 1546-1551 (2008).
    [CrossRef] [PubMed]
  10. J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, "Ring-doped cladding-pumped singlemode three-level fiber laser," Opt. Lett..  23, 355-357 (1997).
    [CrossRef]
  11. S. Jetschke, S. Unger, U. R¨opke, and J. Kirchhof, "Photodarkening in Yb doped fibers: experimental evidence of equilibrium state depending on the pump power," Opt. Express 15, 14838-14843 (2007).
    [CrossRef] [PubMed]
  12. R. Paschotta, J. Nillson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
    [CrossRef]
  13. G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
    [CrossRef]
  14. T. W. Hänsch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
    [CrossRef]
  15. J. Hald, "Second harmonic generation in an external ring cavity with a Brewster-cut nonlinear crystal: theoretical considerations," Opt. Commun. 197, 169-173 (2001).
    [CrossRef]
  16. Y. Kaneda, and S. Kubota, "Theoretical treatment, simulation, and experiments of doubly resonant sumfrequency mixing in an external resonator," Appl. Opt. 36, 7766-7775 (1997).
    [CrossRef]

2008 (1)

2007 (2)

2006 (1)

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, and T. W. Hänsch, and T. Schätz,"High power all solid state laser system near 280 nm," Appl. Phys. B. 84, 371-373 (2006).
[CrossRef]

2003 (3)

J. Mes, E. J. van Duijin, R. Zinkstok, S. Witte, and W. Hogervorst, "Third-harmonic generation of a continuouswave Ti:Sapphire laser in external resonant cavities," Appl. Phys. Lett. 82, 4423-4425 (2003).
[CrossRef]

H. Kumagai, and K. Midorikawa, T. Iwane, and M. Obara, "Efficient sum-frequency generation of continuouswave single-frequency coherent light at 252 nm with dual wavelength enhancement," Opt. Lett. 28, 1969-1971 (2003).
[CrossRef] [PubMed]

D. Meschede and H. Metcalf, "Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces," J. Phys. D 36, R17-38 (2003).
[CrossRef]

2001 (1)

J. Hald, "Second harmonic generation in an external ring cavity with a Brewster-cut nonlinear crystal: theoretical considerations," Opt. Commun. 197, 169-173 (2001).
[CrossRef]

1997 (4)

Y. Kaneda, and S. Kubota, "Theoretical treatment, simulation, and experiments of doubly resonant sumfrequency mixing in an external resonator," Appl. Opt. 36, 7766-7775 (1997).
[CrossRef]

R. Paschotta, J. Nillson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, "Ring-doped cladding-pumped singlemode three-level fiber laser," Opt. Lett..  23, 355-357 (1997).
[CrossRef]

S. Sayama and M. Ohtsu, "Tunable UV CW generation by frequency tripling of a Ti:sapphire laser," Opt. Commun. 137, 295-298 (1997).
[CrossRef]

1993 (1)

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, "Efficient frequency doubling of a continuous wavetitanium:sapphire laser in an external enhancement cavity," Opt. Commun. 99, 89-94 (1993).
[CrossRef]

1991 (1)

1980 (1)

T. W. Hänsch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

1968 (1)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Biraben, F.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, "Efficient frequency doubling of a continuous wavetitanium:sapphire laser in an external enhancement cavity," Opt. Commun. 99, 89-94 (1993).
[CrossRef]

Bourzeix, S.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, "Efficient frequency doubling of a continuous wavetitanium:sapphire laser in an external enhancement cavity," Opt. Commun. 99, 89-94 (1993).
[CrossRef]

Boyd, G. D.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Clausen, C.

Couillaud, B.

T. W. Hänsch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

Drewsen, M.

Eguchi, N.

Friedenauer, A.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, and T. W. Hänsch, and T. Schätz,"High power all solid state laser system near 280 nm," Appl. Phys. B. 84, 371-373 (2006).
[CrossRef]

Hald, J.

J. Hald, "Second harmonic generation in an external ring cavity with a Brewster-cut nonlinear crystal: theoretical considerations," Opt. Commun. 197, 169-173 (2001).
[CrossRef]

Hanna, D. C.

R. Paschotta, J. Nillson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, "Ring-doped cladding-pumped singlemode three-level fiber laser," Opt. Lett..  23, 355-357 (1997).
[CrossRef]

Hänsch, T. W.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, and T. W. Hänsch, and T. Schätz,"High power all solid state laser system near 280 nm," Appl. Phys. B. 84, 371-373 (2006).
[CrossRef]

T. W. Hänsch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

Herrmann, M.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, and T. W. Hänsch, and T. Schätz,"High power all solid state laser system near 280 nm," Appl. Phys. B. 84, 371-373 (2006).
[CrossRef]

Herskind, P.

Hogervorst, W.

J. Mes, E. J. van Duijin, R. Zinkstok, S. Witte, and W. Hogervorst, "Third-harmonic generation of a continuouswave Ti:Sapphire laser in external resonant cavities," Appl. Phys. Lett. 82, 4423-4425 (2003).
[CrossRef]

Imai, Y.

Iwane, T.

Jetschke, S.

Julien, L.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, "Efficient frequency doubling of a continuous wavetitanium:sapphire laser in an external enhancement cavity," Opt. Commun. 99, 89-94 (1993).
[CrossRef]

Kahra, S.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, and T. W. Hänsch, and T. Schätz,"High power all solid state laser system near 280 nm," Appl. Phys. B. 84, 371-373 (2006).
[CrossRef]

Kaneda, Y.

Kimble, H. J.

Kirchhof, J.

Kleinman, D. A.

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

Kubota, S.

Kumagai, H.

Lindballe, J.

Markert, F.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, and T. W. Hänsch, and T. Schätz,"High power all solid state laser system near 280 nm," Appl. Phys. B. 84, 371-373 (2006).
[CrossRef]

Masuda, H.

Mes, J.

J. Mes, E. J. van Duijin, R. Zinkstok, S. Witte, and W. Hogervorst, "Third-harmonic generation of a continuouswave Ti:Sapphire laser in external resonant cavities," Appl. Phys. Lett. 82, 4423-4425 (2003).
[CrossRef]

Meschede, D.

D. Meschede and H. Metcalf, "Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces," J. Phys. D 36, R17-38 (2003).
[CrossRef]

Metcalf, H.

D. Meschede and H. Metcalf, "Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces," J. Phys. D 36, R17-38 (2003).
[CrossRef]

Midorikawa, K.

Minelly, J. D.

Nez, F.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, "Efficient frequency doubling of a continuous wavetitanium:sapphire laser in an external enhancement cavity," Opt. Commun. 99, 89-94 (1993).
[CrossRef]

Nillson, J.

R. Paschotta, J. Nillson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Nilsson, J.

Obara, M.

Ohtsu, M.

S. Sayama and M. Ohtsu, "Tunable UV CW generation by frequency tripling of a Ti:sapphire laser," Opt. Commun. 137, 295-298 (1997).
[CrossRef]

Paschotta, R.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, "Ring-doped cladding-pumped singlemode three-level fiber laser," Opt. Lett..  23, 355-357 (1997).
[CrossRef]

R. Paschotta, J. Nillson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Petersen, L.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, and T. W. Hänsch, and T. Schätz,"High power all solid state laser system near 280 nm," Appl. Phys. B. 84, 371-373 (2006).
[CrossRef]

Plimmer, M. D.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, "Efficient frequency doubling of a continuous wavetitanium:sapphire laser in an external enhancement cavity," Opt. Commun. 99, 89-94 (1993).
[CrossRef]

Polzik, E. S.

R¨opke, U.

Sädmeyer, T.

Saito, M.

Sayama, S.

S. Sayama and M. Ohtsu, "Tunable UV CW generation by frequency tripling of a Ti:sapphire laser," Opt. Commun. 137, 295-298 (1997).
[CrossRef]

Schätz, T.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, and T. W. Hänsch, and T. Schätz,"High power all solid state laser system near 280 nm," Appl. Phys. B. 84, 371-373 (2006).
[CrossRef]

Schmitz, H.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, and T. W. Hänsch, and T. Schätz,"High power all solid state laser system near 280 nm," Appl. Phys. B. 84, 371-373 (2006).
[CrossRef]

Sorensen, J. L.

Tropper, A. C.

J. Nilsson, J. D. Minelly, R. Paschotta, A. C. Tropper, and D. C. Hanna, "Ring-doped cladding-pumped singlemode three-level fiber laser," Opt. Lett..  23, 355-357 (1997).
[CrossRef]

R. Paschotta, J. Nillson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

Udem, Th.

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, and T. W. Hänsch, and T. Schätz,"High power all solid state laser system near 280 nm," Appl. Phys. B. 84, 371-373 (2006).
[CrossRef]

Unger, S.

van Duijin, E. J.

J. Mes, E. J. van Duijin, R. Zinkstok, S. Witte, and W. Hogervorst, "Third-harmonic generation of a continuouswave Ti:Sapphire laser in external resonant cavities," Appl. Phys. Lett. 82, 4423-4425 (2003).
[CrossRef]

Witte, S.

J. Mes, E. J. van Duijin, R. Zinkstok, S. Witte, and W. Hogervorst, "Third-harmonic generation of a continuouswave Ti:Sapphire laser in external resonant cavities," Appl. Phys. Lett. 82, 4423-4425 (2003).
[CrossRef]

Zinkstok, R.

J. Mes, E. J. van Duijin, R. Zinkstok, S. Witte, and W. Hogervorst, "Third-harmonic generation of a continuouswave Ti:Sapphire laser in external resonant cavities," Appl. Phys. Lett. 82, 4423-4425 (2003).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B. (1)

A. Friedenauer, F. Markert, H. Schmitz, L. Petersen, S. Kahra, M. Herrmann, Th. Udem, and T. W. Hänsch, and T. Schätz,"High power all solid state laser system near 280 nm," Appl. Phys. B. 84, 371-373 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

J. Mes, E. J. van Duijin, R. Zinkstok, S. Witte, and W. Hogervorst, "Third-harmonic generation of a continuouswave Ti:Sapphire laser in external resonant cavities," Appl. Phys. Lett. 82, 4423-4425 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Paschotta, J. Nillson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum Electron. 33, 1049-1056 (1997).
[CrossRef]

J. Appl. Phys. (1)

G. D. Boyd and D. A. Kleinman, "Parametric interaction of focused Gaussian light beams," J. Appl. Phys. 39, 3597-3639 (1968).
[CrossRef]

J. Phys. D (1)

D. Meschede and H. Metcalf, "Atomic nanofabrication: atomic deposition and lithography by laser and magnetic forces," J. Phys. D 36, R17-38 (2003).
[CrossRef]

Opt. Commun. (4)

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, and F. Biraben, "Efficient frequency doubling of a continuous wavetitanium:sapphire laser in an external enhancement cavity," Opt. Commun. 99, 89-94 (1993).
[CrossRef]

S. Sayama and M. Ohtsu, "Tunable UV CW generation by frequency tripling of a Ti:sapphire laser," Opt. Commun. 137, 295-298 (1997).
[CrossRef]

T. W. Hänsch and B. Couillaud, "Laser frequency stabilization by polarization spectroscopy of a reflecting reference cavity," Opt. Commun. 35, 441-444 (1980).
[CrossRef]

J. Hald, "Second harmonic generation in an external ring cavity with a Brewster-cut nonlinear crystal: theoretical considerations," Opt. Commun. 197, 169-173 (2001).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Experimental setup. Our system uses a diode laser system (ECDL), two fiber amplifiers (FA) and two external cavities (EC) for upconversion, λ ω →{λ ω 2ω }→λ3ω . ECDL, external cavity diode laser; EC, external cavity; YDCF, Yb-doped double clad fiber; HC, Hänsch-Couillaud method; OI, optical isolator; DM, dichroic mirror; M, mirror; CL, cylindrical lens; ML, mode-matching lens; IF, interference filter; PZT, piezo-electric transducer; BS, beam splitter; P, polarizer; QP, quartz plate.

Fig. 2.
Fig. 2.

Experimental output powers of FA1 (rectangles) and FA2 (circles) at 977 nm as a function of the launched pump power at ~920 nm. The solid lines show the theoretical output powers. Suppression of ASE is more than 33 dB below the carriers as measured with an optical spectrum analyzer.

Fig. 3.
Fig. 3.

Experimental (rectangles) and theoretical (solid line) second harmonic power at 488 nm as a function of the input power at 977 nm.

Fig. 4.
Fig. 4.

Experimental (rectangles) and theoretical (solid line) third harmonic power at 325 nm as a function of the input power at 977 nm. Blue light power at 488 nm is fixed at 120 mW.

Metrics