Abstract

We comprehensively investigate three modulation techniques for the generation of millimeter-wave (mm-wave) using optical frequency quadrupling with a dual–electrode Mach-Zehnder modulator (MZM), i.e. Technique-A, Technique-B and Technique-C. For Technique-A, an RF signal drives the two electrodes of the MZM with maximum transmission bias, and this MZM is used for both the mm-wave generation and signal modulation. Technique-B is the same as Technique-A, but 180° phase shift between the two electrodes is applied. Technique-C is the same as Technique-B, but the MZM is only used for the mm-wave generation without signal modulation. It is found that Technique-B and Technique-C are better for frequency quadrupling than frequency doubling, tripling and sextupling. Both theoretical analysis and simulation show that the generated mm-wave suffers from constructive/destructive interaction due to fiber chromatic dispersion in Technique-A. However, the generated mm-wave is almost robust to fiber chromatic dispersion in Technique-B and Technique- C. It is found that Technique-C is the best in the quality of the generated mm-wave, especially when poor optical filtering is used. In addition, we develop a theory for calculation of Q-factor in an mm-wave over fiber system using the three modulation techniques for mm-wave generation. We consider an RF at 7.5 GHz and obtain an mm-wave at 30 GHz as an example, i.e. a frequency quadrupler. We evaluate the generation and distribution in terms of system Q-factor. The impact of RF modulation index, chromatic dispersion, MZM extinction ratio and optical filtering on Q-factor are investigated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bakaul, A. Nirmalathas, and C. Lim, "Multifunctional WDM optical interface for millimeter-wave fiber-radio antenna base station," J. Lightwave Technol. 23, 1210-1218 (2005).
    [CrossRef]
  2. B. Masella and X. Zhang, "A novel single wavelength balanced system for radio over fiber links," IEEE Photon Technol. Lett. 18, 301-303 (2006).
    [CrossRef]
  3. C. Wu and X. Zhang, "Impact of nonlinear distortion in radio over fiber systems with single-side band and tandem single-side band subcarrier modulations," J. Lightwave Technol. 24, 2076-2090 (2006).
    [CrossRef]
  4. G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, "Generation and distribution of a wideband continuously tunable mm-wave signal with an optical external modulation technique," IEEE Trans. on Microwave Theory Tech. 53, 3090-3097 (2005).
    [CrossRef]
  5. J. Yu, J. Gu, X. Liu, Z. Jia, and G. Chang, "Seamless integration of an 8?2.5 Gb/s WDM-PON and radio-over-biber using all- optical up-conversion based on Raman- assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005).
    [CrossRef]
  6. J. Seo, Y. Seo, and W. Choi, "1.244 Gb/s data distribution in 60 GHz remote optical frequency up-conversion systems," IEEE Photon. Technol. Lett. 18, 1389-1391 (2005).
  7. J. Yu, Z. Jia, and G. Chang, "All-optical mixer based on cross-absorption modulation in electroabsorption modulator," IEEE Photon. Technol. Lett. 18, 2421-2423 (2005).
  8. H. Song and J. Lee, "Error-free simultaneous all-optical upconversion of WDM radio-over-fiber signals," IEEE Photon. Technol. Lett. 17, 1731-1733 (2005).
    [CrossRef]
  9. T. Kuri, K. Kitayama, and Y. Takahashi, "A single light-source configuration for full-duplex 60-GHz-band radio-on fiber system," IEEE Trans. Microwave Theory Tech. 51, 431-439 (2003).
    [CrossRef]
  10. J. Yu, Z. Jia, L. Yi, Y. Su, and G. Chang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
    [CrossRef]
  11. J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).
    [CrossRef]
  12. T. Cho and K. Kim, "Effect of third-order intermodulation on radio-over-fiber systems by a dual -electrode Mach-Zehnder modulator with ODSB and OSSB signals," J. Lightwave Technol. 24, 2052-2058 (2006).
    [CrossRef]
  13. M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006).
    [CrossRef]
  14. C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
    [CrossRef]
  15. M. Bakaul, A. Nirmalathas, C. Lim, and D. Novak, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
    [CrossRef]
  16. X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
    [CrossRef]
  17. A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
    [CrossRef]
  18. L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
    [CrossRef]
  19. K. Wu, J. Yao, X. Zhang, and R. Kashyap, "Millimeter-wave photonic techniques for broadband communication and sensor applications," Proceedings of IEEE LEOS annual meeting 2006, 270-271, Montreal.
  20. K. Ikeda, T. Kuri, and K. Kitayama, " Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength," J. Lightwave Technol. 21, 3194-3202 (2003).
    [CrossRef]
  21. M. Attygalle, C. Lim, and A. Nirmalathas, "Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser," J. Lightwave Technol. 23, 295-303 (2005).
    [CrossRef]
  22. T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, "Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source," J. Lightwave Technol. 24, 404-410 (2006).
    [CrossRef]
  23. B. Hraimel, M. O. Tawati, and K. Wu "Closed-form dynamic range expression of dual-electrode Mach-Zehnder modulator in radio over fiber WDM system" J. Lightwave Technol. 24, 2380-2387 (2006).
    [CrossRef]
  24. M. Larrode, A. Koonen, J. Vegas, and A. NgOma, "Bidirectional Radio-Over-Fiber Link Employing Optical Frequency Multiplication," IEEE Photon. Technol. Lett., vol. 18, 241-243 (2006).
    [CrossRef]
  25. M. Larrode, A. Koonen, and J. Olmos, "Fiber-Based Broadband Wireless Access Employing Optical Frequency Multiplication," IEEE J. Sel. Top. Quantum Electron. 12, 875 - 881 (2006).
    [CrossRef]
  26. M. Larrode, A. Koonen, and J. Olmos, "Overcoming modal bandwidth limitation in radio-over-multimode fiber links," IEEE Photon. Technol. Lett. 18, 2428-2430 (2006).
    [CrossRef]
  27. A. Ng??oma, A. Koonen, I. Tafur, H. Boom, and G. Khoe, "Using optical frequency multiplication to deliver a 17 GHz 64 QAM modulated signal a simplified radio access unit fed by multimode fiber," OFC 2005, Anaheim CA.
  28. M. Larrode, A. Koonen, J. Olmos, E. Verdurmen, and J. Turkiewicz, "Dispersion tolerant radio-over-fiber transmission of 16 and 64 QAM radio signals at 40 GHz," IEE Electron. Lett. 42, 872-874 (2006).
    [CrossRef]
  29. M. Mohamed, X. Zhang, B. Hraimel, and K. Wu "Efficient Photonic Generation of Millimeter-Waves Using Optical Frequency Multiplication in Radio-over-fiber Systems," Proceeding IEEE Topic meeting on Microwave Photonics 2007, paper Th.-4.20, Victoria, Canada.
  30. B. Hraimel, R. Kashyap, X. Zhang, J. Yao, and K. Wu "Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach-Zehnder external modulator," Proc. SPIE 6343, 63432L (2006).
    [CrossRef]

2006 (17)

J. Yu, Z. Jia, L. Yi, Y. Su, and G. Chang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).
[CrossRef]

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, and D. Novak, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
[CrossRef]

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
[CrossRef]

L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

M. Larrode, A. Koonen, and J. Olmos, "Fiber-Based Broadband Wireless Access Employing Optical Frequency Multiplication," IEEE J. Sel. Top. Quantum Electron. 12, 875 - 881 (2006).
[CrossRef]

M. Larrode, A. Koonen, and J. Olmos, "Overcoming modal bandwidth limitation in radio-over-multimode fiber links," IEEE Photon. Technol. Lett. 18, 2428-2430 (2006).
[CrossRef]

M. Larrode, A. Koonen, J. Olmos, E. Verdurmen, and J. Turkiewicz, "Dispersion tolerant radio-over-fiber transmission of 16 and 64 QAM radio signals at 40 GHz," IEE Electron. Lett. 42, 872-874 (2006).
[CrossRef]

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, and K. Wu "Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach-Zehnder external modulator," Proc. SPIE 6343, 63432L (2006).
[CrossRef]

B. Masella and X. Zhang, "A novel single wavelength balanced system for radio over fiber links," IEEE Photon Technol. Lett. 18, 301-303 (2006).
[CrossRef]

T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, "Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source," J. Lightwave Technol. 24, 404-410 (2006).
[CrossRef]

T. Cho and K. Kim, "Effect of third-order intermodulation on radio-over-fiber systems by a dual -electrode Mach-Zehnder modulator with ODSB and OSSB signals," J. Lightwave Technol. 24, 2052-2058 (2006).
[CrossRef]

C. Wu and X. Zhang, "Impact of nonlinear distortion in radio over fiber systems with single-side band and tandem single-side band subcarrier modulations," J. Lightwave Technol. 24, 2076-2090 (2006).
[CrossRef]

B. Hraimel, M. O. Tawati, and K. Wu "Closed-form dynamic range expression of dual-electrode Mach-Zehnder modulator in radio over fiber WDM system" J. Lightwave Technol. 24, 2380-2387 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

2005 (7)

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, "Generation and distribution of a wideband continuously tunable mm-wave signal with an optical external modulation technique," IEEE Trans. on Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

J. Yu, J. Gu, X. Liu, Z. Jia, and G. Chang, "Seamless integration of an 8?2.5 Gb/s WDM-PON and radio-over-biber using all- optical up-conversion based on Raman- assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005).
[CrossRef]

J. Seo, Y. Seo, and W. Choi, "1.244 Gb/s data distribution in 60 GHz remote optical frequency up-conversion systems," IEEE Photon. Technol. Lett. 18, 1389-1391 (2005).

J. Yu, Z. Jia, and G. Chang, "All-optical mixer based on cross-absorption modulation in electroabsorption modulator," IEEE Photon. Technol. Lett. 18, 2421-2423 (2005).

H. Song and J. Lee, "Error-free simultaneous all-optical upconversion of WDM radio-over-fiber signals," IEEE Photon. Technol. Lett. 17, 1731-1733 (2005).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, "Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser," J. Lightwave Technol. 23, 295-303 (2005).
[CrossRef]

M. Bakaul, A. Nirmalathas, and C. Lim, "Multifunctional WDM optical interface for millimeter-wave fiber-radio antenna base station," J. Lightwave Technol. 23, 1210-1218 (2005).
[CrossRef]

2003 (2)

T. Kuri, K. Kitayama, and Y. Takahashi, "A single light-source configuration for full-duplex 60-GHz-band radio-on fiber system," IEEE Trans. Microwave Theory Tech. 51, 431-439 (2003).
[CrossRef]

K. Ikeda, T. Kuri, and K. Kitayama, " Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength," J. Lightwave Technol. 21, 3194-3202 (2003).
[CrossRef]

Attygalle, M.

Bakaul, M.

Barry, L.

A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
[CrossRef]

Bélisle, C.

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, "Generation and distribution of a wideband continuously tunable mm-wave signal with an optical external modulation technique," IEEE Trans. on Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Chang, G.

J. Yu, Z. Jia, L. Yi, Y. Su, and G. Chang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).
[CrossRef]

J. Yu, J. Gu, X. Liu, Z. Jia, and G. Chang, "Seamless integration of an 8?2.5 Gb/s WDM-PON and radio-over-biber using all- optical up-conversion based on Raman- assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005).
[CrossRef]

J. Yu, Z. Jia, and G. Chang, "All-optical mixer based on cross-absorption modulation in electroabsorption modulator," IEEE Photon. Technol. Lett. 18, 2421-2423 (2005).

Chen, J.

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Chen, L.

L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).
[CrossRef]

Chi, S.

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Chiou, B.

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Cho, T.

Choi, W.

J. Seo, Y. Seo, and W. Choi, "1.244 Gb/s data distribution in 60 GHz remote optical frequency up-conversion systems," IEEE Photon. Technol. Lett. 18, 1389-1391 (2005).

Gu, J.

J. Yu, J. Gu, X. Liu, Z. Jia, and G. Chang, "Seamless integration of an 8?2.5 Gb/s WDM-PON and radio-over-biber using all- optical up-conversion based on Raman- assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005).
[CrossRef]

Hraimel, B.

B. Hraimel, M. O. Tawati, and K. Wu "Closed-form dynamic range expression of dual-electrode Mach-Zehnder modulator in radio over fiber WDM system" J. Lightwave Technol. 24, 2380-2387 (2006).
[CrossRef]

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, and K. Wu "Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach-Zehnder external modulator," Proc. SPIE 6343, 63432L (2006).
[CrossRef]

Hu, L.

A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
[CrossRef]

Ikeda, K.

Jia, Z.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, and G. Chang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

J. Yu, Z. Jia, and G. Chang, "All-optical mixer based on cross-absorption modulation in electroabsorption modulator," IEEE Photon. Technol. Lett. 18, 2421-2423 (2005).

J. Yu, J. Gu, X. Liu, Z. Jia, and G. Chang, "Seamless integration of an 8?2.5 Gb/s WDM-PON and radio-over-biber using all- optical up-conversion based on Raman- assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005).
[CrossRef]

Kashyap, R.

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, and K. Wu "Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach-Zehnder external modulator," Proc. SPIE 6343, 63432L (2006).
[CrossRef]

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

Kaszubowska, A.

A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
[CrossRef]

Kim, K.

Kitayama, K.

Koonen, A.

M. Larrode, A. Koonen, and J. Olmos, "Overcoming modal bandwidth limitation in radio-over-multimode fiber links," IEEE Photon. Technol. Lett. 18, 2428-2430 (2006).
[CrossRef]

M. Larrode, A. Koonen, J. Olmos, E. Verdurmen, and J. Turkiewicz, "Dispersion tolerant radio-over-fiber transmission of 16 and 64 QAM radio signals at 40 GHz," IEE Electron. Lett. 42, 872-874 (2006).
[CrossRef]

M. Larrode, A. Koonen, and J. Olmos, "Fiber-Based Broadband Wireless Access Employing Optical Frequency Multiplication," IEEE J. Sel. Top. Quantum Electron. 12, 875 - 881 (2006).
[CrossRef]

Kuri, T.

Larrode, M.

M. Larrode, A. Koonen, J. Olmos, E. Verdurmen, and J. Turkiewicz, "Dispersion tolerant radio-over-fiber transmission of 16 and 64 QAM radio signals at 40 GHz," IEE Electron. Lett. 42, 872-874 (2006).
[CrossRef]

M. Larrode, A. Koonen, and J. Olmos, "Overcoming modal bandwidth limitation in radio-over-multimode fiber links," IEEE Photon. Technol. Lett. 18, 2428-2430 (2006).
[CrossRef]

M. Larrode, A. Koonen, and J. Olmos, "Fiber-Based Broadband Wireless Access Employing Optical Frequency Multiplication," IEEE J. Sel. Top. Quantum Electron. 12, 875 - 881 (2006).
[CrossRef]

Lee, J.

H. Song and J. Lee, "Error-free simultaneous all-optical upconversion of WDM radio-over-fiber signals," IEEE Photon. Technol. Lett. 17, 1731-1733 (2005).
[CrossRef]

Lim, C.

Lin, C.

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Liu, B.

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

Liu, X.

J. Yu, J. Gu, X. Liu, Z. Jia, and G. Chang, "Seamless integration of an 8?2.5 Gb/s WDM-PON and radio-over-biber using all- optical up-conversion based on Raman- assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005).
[CrossRef]

Masella, B.

B. Masella and X. Zhang, "A novel single wavelength balanced system for radio over fiber links," IEEE Photon Technol. Lett. 18, 301-303 (2006).
[CrossRef]

Nakasyotani, T.

Nirmalathas, A.

Novak, D.

M. Bakaul, A. Nirmalathas, C. Lim, and D. Novak, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

Olmos, J.

M. Larrode, A. Koonen, and J. Olmos, "Overcoming modal bandwidth limitation in radio-over-multimode fiber links," IEEE Photon. Technol. Lett. 18, 2428-2430 (2006).
[CrossRef]

M. Larrode, A. Koonen, J. Olmos, E. Verdurmen, and J. Turkiewicz, "Dispersion tolerant radio-over-fiber transmission of 16 and 64 QAM radio signals at 40 GHz," IEE Electron. Lett. 42, 872-874 (2006).
[CrossRef]

M. Larrode, A. Koonen, and J. Olmos, "Fiber-Based Broadband Wireless Access Employing Optical Frequency Multiplication," IEEE J. Sel. Top. Quantum Electron. 12, 875 - 881 (2006).
[CrossRef]

Paquet, S.

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, "Generation and distribution of a wideband continuously tunable mm-wave signal with an optical external modulation technique," IEEE Trans. on Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Peng, C.

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Peng, P.

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Peng, W.

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

Qi, G.

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, "Generation and distribution of a wideband continuously tunable mm-wave signal with an optical external modulation technique," IEEE Trans. on Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Seo, J.

J. Seo, Y. Seo, and W. Choi, "1.244 Gb/s data distribution in 60 GHz remote optical frequency up-conversion systems," IEEE Photon. Technol. Lett. 18, 1389-1391 (2005).

Seo, Y.

J. Seo, Y. Seo, and W. Choi, "1.244 Gb/s data distribution in 60 GHz remote optical frequency up-conversion systems," IEEE Photon. Technol. Lett. 18, 1389-1391 (2005).

Seregelyi, J.

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, "Generation and distribution of a wideband continuously tunable mm-wave signal with an optical external modulation technique," IEEE Trans. on Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Song, H.

H. Song and J. Lee, "Error-free simultaneous all-optical upconversion of WDM radio-over-fiber signals," IEEE Photon. Technol. Lett. 17, 1731-1733 (2005).
[CrossRef]

Su, Y.

J. Yu, Z. Jia, L. Yi, Y. Su, and G. Chang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Takahashi, Y.

T. Kuri, K. Kitayama, and Y. Takahashi, "A single light-source configuration for full-duplex 60-GHz-band radio-on fiber system," IEEE Trans. Microwave Theory Tech. 51, 431-439 (2003).
[CrossRef]

Tawati, M. O.

Toda, H.

Turkiewicz, J.

M. Larrode, A. Koonen, J. Olmos, E. Verdurmen, and J. Turkiewicz, "Dispersion tolerant radio-over-fiber transmission of 16 and 64 QAM radio signals at 40 GHz," IEE Electron. Lett. 42, 872-874 (2006).
[CrossRef]

Verdurmen, E.

M. Larrode, A. Koonen, J. Olmos, E. Verdurmen, and J. Turkiewicz, "Dispersion tolerant radio-over-fiber transmission of 16 and 64 QAM radio signals at 40 GHz," IEE Electron. Lett. 42, 872-874 (2006).
[CrossRef]

Wang, T.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).
[CrossRef]

Waterhouse, R.

Wen, H.

L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

Wen, S.

L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

Wu, C.

Wu, K.

B. Hraimel, M. O. Tawati, and K. Wu "Closed-form dynamic range expression of dual-electrode Mach-Zehnder modulator in radio over fiber WDM system" J. Lightwave Technol. 24, 2380-2387 (2006).
[CrossRef]

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, and K. Wu "Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach-Zehnder external modulator," Proc. SPIE 6343, 63432L (2006).
[CrossRef]

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

Xu, L.

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).
[CrossRef]

Yao, J.

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, and K. Wu "Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach-Zehnder external modulator," Proc. SPIE 6343, 63432L (2006).
[CrossRef]

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, "Generation and distribution of a wideband continuously tunable mm-wave signal with an optical external modulation technique," IEEE Trans. on Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

Yi, L.

J. Yu, Z. Jia, L. Yi, Y. Su, and G. Chang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

Yu, J.

J. Yu, Z. Jia, L. Yi, Y. Su, and G. Chang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).
[CrossRef]

J. Yu, J. Gu, X. Liu, Z. Jia, and G. Chang, "Seamless integration of an 8?2.5 Gb/s WDM-PON and radio-over-biber using all- optical up-conversion based on Raman- assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005).
[CrossRef]

J. Yu, Z. Jia, and G. Chang, "All-optical mixer based on cross-absorption modulation in electroabsorption modulator," IEEE Photon. Technol. Lett. 18, 2421-2423 (2005).

Zhang, X.

C. Wu and X. Zhang, "Impact of nonlinear distortion in radio over fiber systems with single-side band and tandem single-side band subcarrier modulations," J. Lightwave Technol. 24, 2076-2090 (2006).
[CrossRef]

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, and K. Wu "Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach-Zehnder external modulator," Proc. SPIE 6343, 63432L (2006).
[CrossRef]

B. Masella and X. Zhang, "A novel single wavelength balanced system for radio over fiber links," IEEE Photon Technol. Lett. 18, 301-303 (2006).
[CrossRef]

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

IEE Electron. Lett. (1)

M. Larrode, A. Koonen, J. Olmos, E. Verdurmen, and J. Turkiewicz, "Dispersion tolerant radio-over-fiber transmission of 16 and 64 QAM radio signals at 40 GHz," IEE Electron. Lett. 42, 872-874 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Larrode, A. Koonen, and J. Olmos, "Fiber-Based Broadband Wireless Access Employing Optical Frequency Multiplication," IEEE J. Sel. Top. Quantum Electron. 12, 875 - 881 (2006).
[CrossRef]

IEEE Photon Technol. Lett. (1)

B. Masella and X. Zhang, "A novel single wavelength balanced system for radio over fiber links," IEEE Photon Technol. Lett. 18, 301-303 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (11)

M. Larrode, A. Koonen, and J. Olmos, "Overcoming modal bandwidth limitation in radio-over-multimode fiber links," IEEE Photon. Technol. Lett. 18, 2428-2430 (2006).
[CrossRef]

A. Kaszubowska, L. Hu, and L. Barry, "Remote downconversion with wavelength reuse for the radio/fiber uplink connection," IEEE Photon. Technol. Lett. 18, 562-564 (2006).
[CrossRef]

L. Chen, H. Wen, and S. Wen, "A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection," IEEE Photon. Technol. Lett. 18, 2056-2058 (2006).
[CrossRef]

J. Yu, J. Gu, X. Liu, Z. Jia, and G. Chang, "Seamless integration of an 8?2.5 Gb/s WDM-PON and radio-over-biber using all- optical up-conversion based on Raman- assisted FWM," IEEE Photon. Technol. Lett. 17, 1986-1988 (2005).
[CrossRef]

J. Seo, Y. Seo, and W. Choi, "1.244 Gb/s data distribution in 60 GHz remote optical frequency up-conversion systems," IEEE Photon. Technol. Lett. 18, 1389-1391 (2005).

J. Yu, Z. Jia, and G. Chang, "All-optical mixer based on cross-absorption modulation in electroabsorption modulator," IEEE Photon. Technol. Lett. 18, 2421-2423 (2005).

H. Song and J. Lee, "Error-free simultaneous all-optical upconversion of WDM radio-over-fiber signals," IEEE Photon. Technol. Lett. 17, 1731-1733 (2005).
[CrossRef]

J. Yu, Z. Jia, L. Yi, Y. Su, and G. Chang, "Optical millimeter-wave generation or up-conversion using external modulators," IEEE Photon. Technol. Lett. 18, 265-267 (2006).
[CrossRef]

J. Yu, Z. Jia, L. Xu, L. Chen, T. Wang, and G. Chang, "DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver," IEEE Photon. Technol. Lett. 18, 1418-1420 (2006).
[CrossRef]

C. Lin, W. Peng, P. Peng, J. Chen, C. Peng, B. Chiou, and S. Chi, "Simultaneous generation of baseband and radio signals using only one single-electrode Mach-Zehnder modulator with enhanced linearity," IEEE Photon. Technol. Lett. 18, 2481-2483 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, and D. Novak, "Hybrid multiplexing of multiband optical access technologies towards an integrated DWDM network," IEEE Photon. Technol. Lett. 18, 2311-2313 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (2)

X. Zhang, B. Liu, J. Yao, K. Wu, and R. Kashyap, "A novel millimeter-wave-band radio-over-fiber system with dense wavelength-division multiplexing bus architecture," IEEE Trans. Microwave Theory Tech. 54, 929-937 (2006).
[CrossRef]

T. Kuri, K. Kitayama, and Y. Takahashi, "A single light-source configuration for full-duplex 60-GHz-band radio-on fiber system," IEEE Trans. Microwave Theory Tech. 51, 431-439 (2003).
[CrossRef]

IEEE Trans. on Microwave Theory Tech. (1)

G. Qi, J. Yao, J. Seregelyi, C. Bélisle, and S. Paquet, "Generation and distribution of a wideband continuously tunable mm-wave signal with an optical external modulation technique," IEEE Trans. on Microwave Theory Tech. 53, 3090-3097 (2005).
[CrossRef]

J. Lightwave Technol. (8)

K. Ikeda, T. Kuri, and K. Kitayama, " Simultaneous three-band modulation and fiber-optic transmission of 2.5-Gb/s baseband, microwave-, and 60-GHz-band signals on a single wavelength," J. Lightwave Technol. 21, 3194-3202 (2003).
[CrossRef]

M. Attygalle, C. Lim, and A. Nirmalathas, "Dispersion-tolerant multiple WDM channel millimeter-wave signal generation using a single monolithic mode-locked semiconductor laser," J. Lightwave Technol. 23, 295-303 (2005).
[CrossRef]

M. Bakaul, A. Nirmalathas, and C. Lim, "Multifunctional WDM optical interface for millimeter-wave fiber-radio antenna base station," J. Lightwave Technol. 23, 1210-1218 (2005).
[CrossRef]

T. Nakasyotani, H. Toda, T. Kuri, and K. Kitayama, "Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source," J. Lightwave Technol. 24, 404-410 (2006).
[CrossRef]

T. Cho and K. Kim, "Effect of third-order intermodulation on radio-over-fiber systems by a dual -electrode Mach-Zehnder modulator with ODSB and OSSB signals," J. Lightwave Technol. 24, 2052-2058 (2006).
[CrossRef]

C. Wu and X. Zhang, "Impact of nonlinear distortion in radio over fiber systems with single-side band and tandem single-side band subcarrier modulations," J. Lightwave Technol. 24, 2076-2090 (2006).
[CrossRef]

B. Hraimel, M. O. Tawati, and K. Wu "Closed-form dynamic range expression of dual-electrode Mach-Zehnder modulator in radio over fiber WDM system" J. Lightwave Technol. 24, 2380-2387 (2006).
[CrossRef]

M. Bakaul, A. Nirmalathas, C. Lim, D. Novak, and R. Waterhouse, "Simultaneous multiplexing and demultiplexing of wavelength-interleaved channels in DWDM millimeter-wave fiber-radio networks," J. Lightwave Technol. 24, 3341-3352 (2006).
[CrossRef]

Proc. SPIE (1)

B. Hraimel, R. Kashyap, X. Zhang, J. Yao, and K. Wu "Large signal analysis of fiber dispersion effect on photonic up-conversion in radio over fiber link using dual electrode Mach-Zehnder external modulator," Proc. SPIE 6343, 63432L (2006).
[CrossRef]

Other (4)

K. Wu, J. Yao, X. Zhang, and R. Kashyap, "Millimeter-wave photonic techniques for broadband communication and sensor applications," Proceedings of IEEE LEOS annual meeting 2006, 270-271, Montreal.

M. Larrode, A. Koonen, J. Vegas, and A. NgOma, "Bidirectional Radio-Over-Fiber Link Employing Optical Frequency Multiplication," IEEE Photon. Technol. Lett., vol. 18, 241-243 (2006).
[CrossRef]

A. Ng??oma, A. Koonen, I. Tafur, H. Boom, and G. Khoe, "Using optical frequency multiplication to deliver a 17 GHz 64 QAM modulated signal a simplified radio access unit fed by multimode fiber," OFC 2005, Anaheim CA.

M. Mohamed, X. Zhang, B. Hraimel, and K. Wu "Efficient Photonic Generation of Millimeter-Waves Using Optical Frequency Multiplication in Radio-over-fiber Systems," Proceeding IEEE Topic meeting on Microwave Photonics 2007, paper Th.-4.20, Victoria, Canada.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Schematic layout of three optical modulation techniques: (a) Technique-A, (b) Technique-B, and (c) Technique-C, for mm-wave generation using a dual electrode MZM biased at maximum transmission; and (d) optical receiver for the RoF system evaluation. EDFA: erbium doped fiber amplifier. DE-MZM: dual-electrode MZM, OBF: optical bandpass filter, EBPF: electrical bandpass filter, ELPF: electrical low passband filter, PD: photodiode, and BER: bit error rate. The optical spectra in insets (i) and (ii) are obtained using an RF of 7.5 GHz that drives the dual-electrode MZM, and after optical filtering, respectively.

Fig. 2.
Fig. 2.

(a) Simulated (solid) and calculated (dashed) average optical power ratio of the optical carrier to second-order harmonics vs. RF modulation index for Technique-B and Technique-C, and (b) calculated conversion efficiency (at back-to-back) vs. RF modulation index for three techniques.

Fig. 3.
Fig. 3.

(a) Simulated and (b) calculated Q-factor versus fiber length using the three modulation techniques. A modulation index of 76.5% is used.

Fig. 4.
Fig. 4.

Simulated Q-factor vs. fiber length with a function of modulation index using (a) Technique-A, (b) Technique-B, and (c) Technique-C.

Fig. 5.
Fig. 5.

(a) Simulated Q-factor versus fiber length for the three techniques without using optical filter, (b) using optical filter with 40 (dashed) and 60 (solid) GHz bandwidths and (c) RF power at 30GHz using optical filter of 40 GHz bandwidth (filled marker) and without using optical filter (open marker).

Fig. 6.
Fig. 6.

mm-wave power of 30 GHz vs. fiber length with a function of the sinusoidal RF using (a) Technique-A, (b) Technique-B, and (c) Technique-C.

Fig. 7.
Fig. 7.

Simulated Q-factor versus MZM extinction ratio using Technique-A, Technique-B and Technique-C. A modulation index of 76.5% is used and fiber length is fixed at 25km.

Fig. 8.
Fig. 8.

BER vs. received optical power using both Technique-B and Technique-C for the generation of optical mm-wave signals at 30 GHz.

Fig. 9
Fig. 9

Measured electrical spectra of the generated 30-GHz mm-wave signal after fiber transmission over (a) 10 km, (b) 14 km, and (c) 24 km of SMF. mRF =45%.

Fig. 10.
Fig. 10.

Simulated and measured RF power of 30 GHz vs. fiber length

Fig. 11.
Fig. 11.

Simulated Q factor vs. fiber length using Technique-B and Technique-C.

Fig. 12.
Fig. 12.

Eye diagrams of the 622Mb/s signal at different fiber lengths using Technique-C. A modulation index of 76.5% is used.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

E s ( t ) = Pt ff 2 ( 1 + γ ) { J o ( π d ( t ) m RF ) + d ( t ) n = n 0 j n J n ( π m RF ) e jn ( ω RF t + Φ RF ) }
S ( t ) = PGt ff e α L 2 ( 1 + γ ) { J 0 ( π d ( t ) m RF ) H F ( 0 ) + d ( t ) n = M n 0 M j n J n ( π m RF ) e j 1 2 β 2 L ( n ω RF ) 2 × H F ( n ω RF ) e jn [ ω RF ( t + β 1 L ) + ϕ RF ] }
I 4 ω RF ( t ) = 1 2 ( 1 + γ ) 2 t ff G P e α L d ( t ) 2 J 0 [ π d ( t ) m RF ] J 4 ( π m RF ) H F ( 0 ) H F ( 4 ω RF ) cos ( 8 L β 2 ω RF 2 )
+ d ( t ) [ J 2 2 ( π m RF ) H F 2 ( 2 ω RF ) 2 H F ( ω RF ) H F ( 3 ω RF ) J 1 ( π m RF ) J 3 ( π m RF ) cos ( 4 L β 2 ω RF 2 ) ]
E s ( t ) = Pt ff 2 { J 0 ( π d ( t ) m RF ) ( 1 + γ ) + d ( t ) n = n 0 j n J n ( π m RF ) ( ( 1 ) n + γ ) e jn ( ω RF t + ϕ RF ) }
S ( t ) = PGt ff e α L 2 { J 0 ( π d ( t ) m RF ) ( 1 + γ ) H F ( 0 ) + d ( t ) n = M n 0 M j n J n ( π m RF ) × ( ( 1 ) n + γ ) e j 1 2 β 2 L ( n ω RF ) 2 H F ( n ω RF ) e jn [ ω RF ( t + β 1 L ) + ϕ RF ] }
I 4 ω RF ( t ) = t ff ( 1 + γ ) 2 G P e α L d ( t ) 2 J 0 ( π d ( t ) m RF ) J 4 ( π m RF ) H F ( 0 ) H F ( 4 ω RF ) cos ( 8 L β 2 ω RF 2 )
· + d ( t ) [ J 2 2 ( π m RF ) H F 2 ( 2 ω RF ) 2 ε H F ( ω RF ) H F ( 3 ω RF ) J 1 ( π m RF ) J 3 ( π m RF ) cos ( 4 L β 2 ω RF 2 ) ]
E s ( t ) = P t ff 1 t ff 2 4 ( 1 γ 2 cos ( π d ( t ) ) ) n = j n J n ( π m RF ) ( ( 1 ) n + γ 1 ) e jn ( ω RF t + ϕ RF )
S ( t ) = P G t ff 1 t ff 2 e α L 4 { ( 1 γ 2 cos ( π d ( t ) ) ) n = M M j n ( ( 1 ) n + γ 1 ) J n ( π m RF ) H F ( n ω RF ) e jn [ ω RF ( t + β 1 L ) + ϕ RF ] e j 1 2 β 2 L ( n ω RF ) 2 }
I 4 ω RF ( t ) = ( 1 4 ) P Gt ff 1 t ff 2 e α L ( 1 + γ 1 ) 2 ( 1 γ 2 cos ( π d ( t ) ) ) 2 | J 2 2 ( π m RF ) H F 2 ( 2 ω RF )
+ 2 J 0 ( π m RF ) J 4 ( π m RF ) H F ( 0 ) H F ( 4 ω RF ) cos ( 8 β 2 L ω RF 2 )
( 2 ε 1 ) J 1 ( π m RF ) J 3 ( π m RF ) H F ( ω RF ) H F ( 3 ω RF ) cos ( 4 β 2 L ω RF 2 ) |
P ¯ 0 P ¯ 2 = ( J 0 2 ( π m RF ) + 1 ) H F ( 0 ) 2 ( J 2 2 ( π m RF ) H F ( 2 ω RF ) 2 ) 8 . 5 dB ( 7.7 dB )
P ¯ 0 P ¯ 2 = ( J 0 2 ( π m RF ) H F ( 0 ) 2 ( J 2 2 ( π m RF ) H F ( 2 ω RF ) 2 ) 53 . 5 dB ( 3.1 dB )
I bb ( t ) = I u ( t ) + 2 Re ( I S * × N ( t ) ) + I N × N * ( t ) + I elec ( t )
I bb ( t ) = I u ( t ) + I N × N * ( t )
σ 2 ( t ) = I bb 2 ( t ) I bb ( t ) 2 + σ elec 2 ( t ) = σ I N × N * 2 ( t ) + 2 σ I S * × N 2 ( t ) + σ elec 2 ( t )
I u ( t ) = A H LP ( 0 ) Re [ H e ( 4 ω RF ) I 4 ω RF ( d ( t ) ) ]
σ I N × N * 2 ( t ) = A 2 2 N o 2 B o B e 2 e 2 α L H e ( ω ) 2 H LP ( ω + ω o ) 2 ( H F ( ω ) 2 H F ( ω ) 2 ) d ω H F ( ω ) 2 d ω H LP ( ω ) 2 d ω
σ I S * × N 2 ( t ) = 1 2 π N o e α L H F ( ω ) 2 × { [ S * ( t ) e j ω t h e ( t ) ] A cos ω o t } h LP ( t ) 2 d ω
= 1 2 A 2 2 G N o B e e 2 α L [ ( T 0 ( d ( t ) ) 2 + T 4 ( d ( t ) ) 2 )
× H F ( 0 ) 2 H F ( 4 ω RF ) 2 + T 0 ( d ( t ) ) 2 H F ( 2 ω RF ) 4
+ ( T 1 ( d ( t ) ) 2 + T 3 ( d ( t ) ) 2 ) H F ( ω RF ) 2 H F ( 3 ω RF ) 2 ] × H LP ( ω ) 2 H e ( ω + ω o ) 2 d ω H LP ( ω ) 2 d ω
σ elec 2 ( t ) = A 2 B e 4 { RIN 2 [ 2 Re ( I 4 ( d ( t ) ) ) + N o B o e α L + I d ] 2 + N th 2 } H LP ( ω ) 2 H e ( ω + ω o ) 2 d ω H LP ( ω ) 2 d ω
+ B e H LP ( ω ) 2 H e ( ω + ω o ) 2 d ω H LP ( ω ) 2 d ω × 1 2 qA 2 { 2 Re [ I 4 ( d ( t ) ) ] + N o B o e α L + I d }
I 4 ω RF ( t ) = G e j 4 L ω RF ( β 1 2 β 2 ω RF ) α L n = 4 M M T n ( d ( t ) ) T n 4 * ( d ( t ) ) H F ( n ω RF ) H F * ( ( n 4 ) ω RF ) e j 4 β 2 Ln ω RF 2
T n ( d ( t ) ) = Pt ff 2 j n J n ( π d ( t ) m RF ) ( 1 + γ ) e jn ϕ RF
T n ( d ( t ) ) = Pt ff 2 j n J n ( π d ( t ) m RF ) ( ( 1 ) n + γ ) e jn ϕ RF
T n ( d ( t ) ) = 1 2 P t ff 1 t ff 2 ( 1 γ 2 cos ( π d ( t ) ) ) × j n J n ( π m RF ) ( ( 1 ) n + γ 1 ) e jn ϕ RF
Q = ( I bb ( t ) | d = 1 I bb ( t ) | d = 0 ) ( σ ( t ) | d = 1 + σ ( t ) | d = 0 )

Metrics