Abstract

We measured the optical absorptance of superconducting nanowire single photon detectors. We found that 200-nm-pitch, 50%-fillfactor devices had an average absorptance of 21% for normally-incident front-illumination of 1.55-µm-wavelength light polarized parallel to the nanowires, and only 10% for perpendicularly-polarized light. We also measured devices with lower fill-factors and narrower wires that were five times more sensitive to parallel-polarized photons than perpendicular-polarized photons. We developed a numerical model that predicts the absorptance of our structures. We also used our measurements, coupled with measurements of device detection efficiencies, to determine the probability of photon detection after an absorption event. We found that, remarkably, absorbed parallel-polarized photons were more likely to result in detection events than perpendicular-polarized photons, and we present a hypothesis that qualitatively explains this result. Finally, we also determined the enhancement of device detection efficiency and absorptance due to the inclusion of an integrated optical cavity over a range of wavelengths (700-1700 nm) on a number of devices, and found good agreement with our numerical model.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K.-S. Hyun, Y. Paek, Y.-H. Kwon, I. Yun, and E.-H. Lee, "High-speed and highly reliable InP/InGaAs avalanche photodiode for optical communications," Proc SPIE 4999, 130-137 (2003).
  2. E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).
  3. A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single Photon Quantum Cryptography," Phys. Rev. Lett. 89, 187,901 (2002).
    [CrossRef]
  4. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
    [CrossRef]
  5. E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
    [CrossRef] [PubMed]
  6. A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
    [CrossRef]
  7. A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
    [CrossRef]
  8. R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10,846-10,853 (2005).
    [CrossRef]
  9. J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
    [CrossRef]
  10. K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol??tsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006).
    [CrossRef] [PubMed]
  11. X. J. Yu and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," J. Appl. Phys. 93, 4407-4412 (2003).
    [CrossRef]
  12. P. Yeh, "New Optical-Model for Wire Grid Polarizers," Opt. Commun. 26, 289-292 (1978).
    [CrossRef]
  13. For an electric field polarized parallel to the wires in a subwavelength grating, an accurate result for the A|| can be obtained with the Fresnel equations where an effective index neff = ((1?? f) n2 air + f n2 NbN)1/2 is used for the thin film consisting of NbN subwavelength gratings (nair = 1, nNbN = 5.23??i5.82, and f is the fill-factor). A simple effective index model that only depends on f will not work for perpendicular polarization since A? depends on both f and p.
  14. P. Lalanne and D. Lemercier-Lalanne, "Depth dependence of the effective properties of subwavelength gratings," J. Opt. Soc. Am. A 14, 450-458 (1997).
    [CrossRef]
  15. Z. Yan, A. H. Majedi, and S. Safavi-Naeini, "Physical Modeling of Hot-Electron Superconducting Single-Photon Detectors," IEEE Trans. Appl. Supercond. 17, 3789-3794 (2007).
    [CrossRef]
  16. While our fabrication process (see Refs. 9 and 10) leaves behind 10-40 nm of residual resist on top of the nanowires, we found that including the resist in our geometry did not affect our results.
  17. Energy dispersive X-ray (EDX) analysis was performed on two cross-section samples that confirmed the presence of oxide atop the NbN surface. There was also a contrast difference in the oxide layer from the NbN that was clearly visible in the TEM image. TEM imaging services were provided by Materials Analytical Services, Inc.
  18. Measurements of the refractive indices of NbN and NbNxOy made at room temperature by J. A. Woolam, Inc. using spectroscopic ellipsometry on a 12-nm-thick NbN film deposited on a sapphire wafer.
  19. I. H. Malitson, "Refraction and dispersion of synthetic sapphire," J. Opt. Soc. Am. 52, 1377-1379 (1962).
    [CrossRef]
  20. The patterned gold film was approximately 100 nm thick.We used bulk values for the complex refractive index of gold found in Ref. 21. For a thin film thicker than 30 nm, the bulk refractive index can be used in this wavelength range (see Ref. 22).
  21. E. D. Palik, Handbook of optical constants of solids, Academic Press handbook series (Academic Press, Orlando, 1985).
  22. C. Reale, "Optical constants of vacuum deposited thin metal films in the near infrared," Infrared Phys. 10, 173-181 (1970).
    [CrossRef]
  23. A. J. Kerman, E. A. Dauler, J. K.W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol??tsman, and B. M. Voronov, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl. Phys. Lett. 90, 101,110 (2007).
    [CrossRef]

2007

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Z. Yan, A. H. Majedi, and S. Safavi-Naeini, "Physical Modeling of Hot-Electron Superconducting Single-Photon Detectors," IEEE Trans. Appl. Supercond. 17, 3789-3794 (2007).
[CrossRef]

A. J. Kerman, E. A. Dauler, J. K.W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol??tsman, and B. M. Voronov, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl. Phys. Lett. 90, 101,110 (2007).
[CrossRef]

2006

K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol??tsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006).
[CrossRef] [PubMed]

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

2005

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10,846-10,853 (2005).
[CrossRef]

J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

2004

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

2003

K.-S. Hyun, Y. Paek, Y.-H. Kwon, I. Yun, and E.-H. Lee, "High-speed and highly reliable InP/InGaAs avalanche photodiode for optical communications," Proc SPIE 4999, 130-137 (2003).

X. J. Yu and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," J. Appl. Phys. 93, 4407-4412 (2003).
[CrossRef]

2002

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single Photon Quantum Cryptography," Phys. Rev. Lett. 89, 187,901 (2002).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

2001

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

1997

1978

P. Yeh, "New Optical-Model for Wire Grid Polarizers," Opt. Commun. 26, 289-292 (1978).
[CrossRef]

1970

C. Reale, "Optical constants of vacuum deposited thin metal films in the near infrared," Infrared Phys. 10, 173-181 (1970).
[CrossRef]

1962

Anant, V.

A. J. Kerman, E. A. Dauler, J. K.W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol??tsman, and B. M. Voronov, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl. Phys. Lett. 90, 101,110 (2007).
[CrossRef]

K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol??tsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006).
[CrossRef] [PubMed]

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

Barron, R. J.

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

Berggren, K. K.

A. J. Kerman, E. A. Dauler, J. K.W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol??tsman, and B. M. Voronov, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl. Phys. Lett. 90, 101,110 (2007).
[CrossRef]

K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol??tsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006).
[CrossRef] [PubMed]

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

Beveratos, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single Photon Quantum Cryptography," Phys. Rev. Lett. 89, 187,901 (2002).
[CrossRef]

Brouri, R.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single Photon Quantum Cryptography," Phys. Rev. Lett. 89, 187,901 (2002).
[CrossRef]

Caplan, D. O.

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

Carney, J. J.

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

Chulkova, G.

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

Currie, M.

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

Dauler, E.

J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

Dauler, E. A.

A. J. Kerman, E. A. Dauler, J. K.W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol??tsman, and B. M. Voronov, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl. Phys. Lett. 90, 101,110 (2007).
[CrossRef]

K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol??tsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006).
[CrossRef] [PubMed]

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

Ferri, A.

J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

Gacoin, T.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single Photon Quantum Cryptography," Phys. Rev. Lett. 89, 187,901 (2002).
[CrossRef]

Gol??tsman, G.

J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

Gol??tsman, G. N.

A. J. Kerman, E. A. Dauler, J. K.W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol??tsman, and B. M. Voronov, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl. Phys. Lett. 90, 101,110 (2007).
[CrossRef]

K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol??tsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006).
[CrossRef] [PubMed]

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

Grangier, P.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single Photon Quantum Cryptography," Phys. Rev. Lett. 89, 187,901 (2002).
[CrossRef]

Gruber, S. S.

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10,846-10,853 (2005).
[CrossRef]

Hadfield, R. H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10,846-10,853 (2005).
[CrossRef]

Hamilton, S. A.

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

Honjo, T.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Hyun, K.-S.

K.-S. Hyun, Y. Paek, Y.-H. Kwon, I. Yun, and E.-H. Lee, "High-speed and highly reliable InP/InGaAs avalanche photodiode for optical communications," Proc SPIE 4999, 130-137 (2003).

Keicher, W. E.

J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

Kerman, A. J.

A. J. Kerman, E. A. Dauler, J. K.W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol??tsman, and B. M. Voronov, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl. Phys. Lett. 90, 101,110 (2007).
[CrossRef]

K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol??tsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006).
[CrossRef] [PubMed]

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Korneev, A.

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

Kouminov, P.

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

Kwok, H. S.

X. J. Yu and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," J. Appl. Phys. 93, 4407-4412 (2003).
[CrossRef]

Kwon, Y.-H.

K.-S. Hyun, Y. Paek, Y.-H. Kwon, I. Yun, and E.-H. Lee, "High-speed and highly reliable InP/InGaAs avalanche photodiode for optical communications," Proc SPIE 4999, 130-137 (2003).

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Lalanne, P.

Lee, E.-H.

K.-S. Hyun, Y. Paek, Y.-H. Kwon, I. Yun, and E.-H. Lee, "High-speed and highly reliable InP/InGaAs avalanche photodiode for optical communications," Proc SPIE 4999, 130-137 (2003).

Lemercier-Lalanne, D.

Lipatov, A.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

Lo, W.

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

Majedi, A. H.

Z. Yan, A. H. Majedi, and S. Safavi-Naeini, "Physical Modeling of Hot-Electron Superconducting Single-Photon Detectors," IEEE Trans. Appl. Supercond. 17, 3789-3794 (2007).
[CrossRef]

Malitson, I. H.

Matvienko, V.

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

Milburn, G. J.

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Miller, A. J.

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10,846-10,853 (2005).
[CrossRef]

Mirin, R. P.

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10,846-10,853 (2005).
[CrossRef]

Nam, S. W.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10,846-10,853 (2005).
[CrossRef]

Okunev, O.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

Paek, Y.

K.-S. Hyun, Y. Paek, Y.-H. Kwon, I. Yun, and E.-H. Lee, "High-speed and highly reliable InP/InGaAs avalanche photodiode for optical communications," Proc SPIE 4999, 130-137 (2003).

Pearlman, A.

J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

Poizat, J.-P.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single Photon Quantum Cryptography," Phys. Rev. Lett. 89, 187,901 (2002).
[CrossRef]

Reale, C.

C. Reale, "Optical constants of vacuum deposited thin metal films in the near infrared," Infrared Phys. 10, 173-181 (1970).
[CrossRef]

Robinson, B. S.

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

Rosfjord, K. M.

A. J. Kerman, E. A. Dauler, J. K.W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol??tsman, and B. M. Voronov, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl. Phys. Lett. 90, 101,110 (2007).
[CrossRef]

K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol??tsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006).
[CrossRef] [PubMed]

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

Safavi-Naeini, S.

Z. Yan, A. H. Majedi, and S. Safavi-Naeini, "Physical Modeling of Hot-Electron Superconducting Single-Photon Detectors," IEEE Trans. Appl. Supercond. 17, 3789-3794 (2007).
[CrossRef]

Schwall, R. E.

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10,846-10,853 (2005).
[CrossRef]

Semenov, A.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

Slysz, W.

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

Smirnov, K.

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

Sobolewski, R.

J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

Stevens, M. J.

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10,846-10,853 (2005).
[CrossRef]

Stevens, M. L.

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

Takesue, H.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Tamaki, K.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Verevkin, A.

J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

Villing, A.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single Photon Quantum Cryptography," Phys. Rev. Lett. 89, 187,901 (2002).
[CrossRef]

Voronov, B.

J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

Voronov, B. M.

A. J. Kerman, E. A. Dauler, J. K.W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol??tsman, and B. M. Voronov, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl. Phys. Lett. 90, 101,110 (2007).
[CrossRef]

K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol??tsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006).
[CrossRef] [PubMed]

Wilsher, K.

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

Yamamoto, Y.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Yan, Z.

Z. Yan, A. H. Majedi, and S. Safavi-Naeini, "Physical Modeling of Hot-Electron Superconducting Single-Photon Detectors," IEEE Trans. Appl. Supercond. 17, 3789-3794 (2007).
[CrossRef]

Yang, J. K.

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

Yang, J. K.W.

A. J. Kerman, E. A. Dauler, J. K.W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol??tsman, and B. M. Voronov, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl. Phys. Lett. 90, 101,110 (2007).
[CrossRef]

K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol??tsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006).
[CrossRef] [PubMed]

J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

Yeh, P.

P. Yeh, "New Optical-Model for Wire Grid Polarizers," Opt. Commun. 26, 289-292 (1978).
[CrossRef]

Yu, X. J.

X. J. Yu and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," J. Appl. Phys. 93, 4407-4412 (2003).
[CrossRef]

Yun, I.

K.-S. Hyun, Y. Paek, Y.-H. Kwon, I. Yun, and E.-H. Lee, "High-speed and highly reliable InP/InGaAs avalanche photodiode for optical communications," Proc SPIE 4999, 130-137 (2003).

Zhang, J.

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

Zhang, Q.

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Appl. Phys. Lett.

A. Verevkin, J. Zhang, R. Sobolewski, A. Lipatov, O. Okunev, G. Chulkova, A. Korneev, K. Smirnov, G. N. Gol??tsman, and A. Semenov, "Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range," Appl. Phys. Lett. 80, 4687-4689 (2002).
[CrossRef]

A. Korneev, P. Kouminov, V. Matvienko, G. Chulkova, K. Smirnov, B. Voronov, G. N. Gol??tsman, M. Currie, W. Lo, K. Wilsher, J. Zhang, W. Slysz, A. Pearlman, A. Verevkin, and R. Sobolewski, "Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors," Appl. Phys. Lett. 84, 5338-5340 (2004).
[CrossRef]

A. J. Kerman, E. A. Dauler, J. K.W. Yang, K. M. Rosfjord, V. Anant, K. K. Berggren, G. N. Gol??tsman, and B. M. Voronov, "Constriction-limited detection efficiency of superconducting nanowire single-photon detectors," Appl. Phys. Lett. 90, 101,110 (2007).
[CrossRef]

IEEE Trans. Appl. Supercond.

Z. Yan, A. H. Majedi, and S. Safavi-Naeini, "Physical Modeling of Hot-Electron Superconducting Single-Photon Detectors," IEEE Trans. Appl. Supercond. 17, 3789-3794 (2007).
[CrossRef]

J. K.W. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol??tsman, B. Voronov, R. Sobolewski,W. E. Keicher, and K. K. Berggren, "Fabrication development for nanowire GHz-counting-rate single-photon detectors," IEEE Trans. Appl. Supercond. 15, 626-630 (2005).
[CrossRef]

Infrared Phys.

C. Reale, "Optical constants of vacuum deposited thin metal films in the near infrared," Infrared Phys. 10, 173-181 (1970).
[CrossRef]

J. Appl. Phys.

X. J. Yu and H. S. Kwok, "Optical wire-grid polarizers at oblique angles of incidence," J. Appl. Phys. 93, 4407-4412 (2003).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Nat. Photonics

H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nat. Photonics 1, 343-348 (2007).
[CrossRef]

Nature

E. Knill, R. Laflamme, and G. J. Milburn, "A scheme for efficient quantum computation with linear optics," Nature 409, 46-52 (2001).
[CrossRef] [PubMed]

Opt. Commun.

P. Yeh, "New Optical-Model for Wire Grid Polarizers," Opt. Commun. 26, 289-292 (1978).
[CrossRef]

Opt. Express

R. H. Hadfield, M. J. Stevens, S. S. Gruber, A. J. Miller, R. E. Schwall, R. P. Mirin, and S. W. Nam, "Single photon source characterization with a superconducting single photon detector," Opt. Express 13, 10,846-10,853 (2005).
[CrossRef]

K. M. Rosfjord, J. K.W. Yang, E. A. Dauler, A. J. Kerman, V. Anant, B. M. Voronov, G. N. Gol??tsman, and K. K. Berggren, "Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating," Opt. Express 14, 527-534 (2006).
[CrossRef] [PubMed]

Phys. Rev. Lett.

A. Beveratos, R. Brouri, T. Gacoin, A. Villing, J.-P. Poizat, and P. Grangier, "Single Photon Quantum Cryptography," Phys. Rev. Lett. 89, 187,901 (2002).
[CrossRef]

Proc SPIE

K.-S. Hyun, Y. Paek, Y.-H. Kwon, I. Yun, and E.-H. Lee, "High-speed and highly reliable InP/InGaAs avalanche photodiode for optical communications," Proc SPIE 4999, 130-137 (2003).

Proc. SPIE

E. A. Dauler, B. S. Robinson, A. J. Kerman, V. Anant, R. J. Barron, K. K. Berggren, D. O. Caplan, J. J. Carney, S. A. Hamilton, K. M. Rosfjord, M. L. Stevens, and J. K. Yang, "1.25 Gbit/s photon-counting optical communications using a two-element superconducting nanowire single photon detector," Proc. SPIE 6372, 637212 (2006).

Other

For an electric field polarized parallel to the wires in a subwavelength grating, an accurate result for the A|| can be obtained with the Fresnel equations where an effective index neff = ((1?? f) n2 air + f n2 NbN)1/2 is used for the thin film consisting of NbN subwavelength gratings (nair = 1, nNbN = 5.23??i5.82, and f is the fill-factor). A simple effective index model that only depends on f will not work for perpendicular polarization since A? depends on both f and p.

While our fabrication process (see Refs. 9 and 10) leaves behind 10-40 nm of residual resist on top of the nanowires, we found that including the resist in our geometry did not affect our results.

Energy dispersive X-ray (EDX) analysis was performed on two cross-section samples that confirmed the presence of oxide atop the NbN surface. There was also a contrast difference in the oxide layer from the NbN that was clearly visible in the TEM image. TEM imaging services were provided by Materials Analytical Services, Inc.

Measurements of the refractive indices of NbN and NbNxOy made at room temperature by J. A. Woolam, Inc. using spectroscopic ellipsometry on a 12-nm-thick NbN film deposited on a sapphire wafer.

The patterned gold film was approximately 100 nm thick.We used bulk values for the complex refractive index of gold found in Ref. 21. For a thin film thicker than 30 nm, the bulk refractive index can be used in this wavelength range (see Ref. 22).

E. D. Palik, Handbook of optical constants of solids, Academic Press handbook series (Academic Press, Orlando, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Infinite wire grid schematized in (a) is further reduced via symmetry to the unit cell shown in (b) in numerical modeling of the absorptance, A. (The schematic is not drawn to scale.) Plots of the calculated A as a function of fill-factor, f and pitch p are shown in (c) and (d) for parallel (‖) and perpendicular (⊥) electric field polarization. Inset in (d) shows how the calculated cross-sectional time-averaged electric field magnitude, |E⃗ cc′| varies with position x for ‖ and ⊥ polarizations across a f = 1 2 , p=200nm structure. The NbN film thickness (t NbN) was 4 nm and incident electric field magnitude |E⃗ 0|=1. The NbN region extends from x=-50nm to x=+50nm.

Fig. 2.
Fig. 2.

Schematic of the optical setup used to measure the optical absorptance. A state of polarization (SOP) locker was used to set the input polarization of the incident 1.55-µm-wavelength light. Light was focused to a 4±0.5µm (FWHM) spot onto a device and the incident, reflected, and transmitted power were measured. The absorptance was calculated from these measurements and earlier calibrations discussed in the main text.

Fig. 3.
Fig. 3.

Scanning electron micrograph of a 50% fill-factor, 200-nm-pitch SNSPD is shown in (a). The central, photon-detecting region of the SNSPD structure outlined in (a) is magnified in (b). The extended parallel grating structure outside the active area was necessary for proximity-effect correction in the fabrication process, but was also useful in expanding the optically testable region of the device.

Fig. 4.
Fig. 4.

Statistical plot of the measured parallel (‖) and perpendicular (⊥) absorptance for devices with different pitch p and fill-factor f. Each data symbol represents measurements of 10-13 devices for the polarization that yielded the maximum (‖) or minimum (⊥) absorptance. The arrows indicate the calculated absorptance for structures with fitted wire widths (from left to right) w=104 nm, 108 nm, 114 nm, 58 nm, and 55 nm, NbN thickness t NbN=4.35 nm, and nominal values of pitch p.

Fig. 5.
Fig. 5.

Plot of device detection efficiency as a function of absorptance for the same devices. Dotted lines have a constant slope given by P R, the probability of resistive state formation.

Fig. 6.
Fig. 6.

Plot of enhancement factor, �� as a function of wavelength λ. The dotted line shows the calculation that was carried out on the unit cell shown in inset (a) using values for the refractive indices shown in inset (b).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

DDE = P R A .
A = p 2 p 2 0 t NbN Q ( x , y ) d x d y p 2 p 2 I o d x
I o = 1 2 ( ε o μ o ) 1 2 E o 2
Q ( x ) = 1 2 ω Im [ ε ] E cc ( x ) 2 .
DDE = p 2 p 2 0 t NbN ψ ( x ) Q ( x ) I o d x d y .

Metrics