Abstract

This work presents and demonstrates a semi-automatic optical frequency counter with octave-spanning counting capability using two fiber laser combs operated at different repetition rates. Monochromators are utilized to provide an approximate frequency of the laser under measurement to determine the mode number difference between the two laser combs. The exact mode number of the beating comb line is obtained from the mode number difference and the measured beat frequencies. The entire measurement process, except the frequency stabilization of the laser combs and the optimization of the beat signal-to-noise ratio, is controlled by a computer running a semi-automatic optical frequency counter.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For example, http://www.optocomb.com/eng/index.html
  2. Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
    [CrossRef] [PubMed]
  3. J.-L. Peng and R.-H. Shu, "Determination of absolute mode number using two mode-locked laser combs in optical frequency metrology," Opt. Express 15, 4485-4492 (2007).
    [CrossRef]
  4. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, "Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb," Opt. Express 14, 5223-5231 (2006).
    [CrossRef]
  5. L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond laser comb used for absolute optical frequency measurements," IEEE J. Sel. Top. Quantum Electron. 9, 1066-1071 (2003).
    [CrossRef]
  6. T.-A. Liu, R.-H. Shu, and J.-L. Peng, "Semi-automatic, Octave-spanning Optical Frequency Counter," Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR), Korea, Aug 26-31, ThG2-2, 2007, (pp. 1032-1033).
  7. J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, "Exact frequency comb mode number determination in precision optical frequency measurements," Laser Phys. 17, 1025-1028 (2007).
    [CrossRef]
  8. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
    [CrossRef]
  9. J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, "Highly stable, frequency-controlled mode-locked erbium fiber laser comb," Appl. Phys. B 86, 49-53 (2007).
    [CrossRef]

2007 (3)

J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, "Exact frequency comb mode number determination in precision optical frequency measurements," Laser Phys. 17, 1025-1028 (2007).
[CrossRef]

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, "Highly stable, frequency-controlled mode-locked erbium fiber laser comb," Appl. Phys. B 86, 49-53 (2007).
[CrossRef]

J.-L. Peng and R.-H. Shu, "Determination of absolute mode number using two mode-locked laser combs in optical frequency metrology," Opt. Express 15, 4485-4492 (2007).
[CrossRef]

2006 (1)

2003 (1)

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond laser comb used for absolute optical frequency measurements," IEEE J. Sel. Top. Quantum Electron. 9, 1066-1071 (2003).
[CrossRef]

2002 (1)

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

1997 (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

Ahn, H.

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, "Highly stable, frequency-controlled mode-locked erbium fiber laser comb," Appl. Phys. B 86, 49-53 (2007).
[CrossRef]

Chui, H.-C.

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, "Highly stable, frequency-controlled mode-locked erbium fiber laser comb," Appl. Phys. B 86, 49-53 (2007).
[CrossRef]

Daimon, Y.

Dumke, R.

J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, "Exact frequency comb mode number determination in precision optical frequency measurements," Laser Phys. 17, 1025-1028 (2007).
[CrossRef]

Gong, Q. H.

J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, "Exact frequency comb mode number determination in precision optical frequency measurements," Laser Phys. 17, 1025-1028 (2007).
[CrossRef]

Hänsch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Haus, H. A.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

Hirano, M.

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Hong, F.-L.

Inaba, H.

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

Liu, T.

J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, "Exact frequency comb mode number determination in precision optical frequency measurements," Laser Phys. 17, 1025-1028 (2007).
[CrossRef]

Lu, Z. H.

J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, "Exact frequency comb mode number determination in precision optical frequency measurements," Laser Phys. 17, 1025-1028 (2007).
[CrossRef]

Ma, L.-S.

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond laser comb used for absolute optical frequency measurements," IEEE J. Sel. Top. Quantum Electron. 9, 1066-1071 (2003).
[CrossRef]

Matsumoto, H.

Minoshima, K.

Nakazawa, M.

Nelson, L. E.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

Nicholson, J. W.

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, "Highly stable, frequency-controlled mode-locked erbium fiber laser comb," Appl. Phys. B 86, 49-53 (2007).
[CrossRef]

Okuno, T.

Onae, A.

Onishi, M.

Peng, J.-L.

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, "Highly stable, frequency-controlled mode-locked erbium fiber laser comb," Appl. Phys. B 86, 49-53 (2007).
[CrossRef]

J.-L. Peng and R.-H. Shu, "Determination of absolute mode number using two mode-locked laser combs in optical frequency metrology," Opt. Express 15, 4485-4492 (2007).
[CrossRef]

Picard, S.

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond laser comb used for absolute optical frequency measurements," IEEE J. Sel. Top. Quantum Electron. 9, 1066-1071 (2003).
[CrossRef]

Robertsson, L.

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond laser comb used for absolute optical frequency measurements," IEEE J. Sel. Top. Quantum Electron. 9, 1066-1071 (2003).
[CrossRef]

Schibli, T. R.

Shu, R.-H.

J.-L. Peng and R.-H. Shu, "Determination of absolute mode number using two mode-locked laser combs in optical frequency metrology," Opt. Express 15, 4485-4492 (2007).
[CrossRef]

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, "Highly stable, frequency-controlled mode-locked erbium fiber laser comb," Appl. Phys. B 86, 49-53 (2007).
[CrossRef]

Stejskal, A.

J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, "Exact frequency comb mode number determination in precision optical frequency measurements," Laser Phys. 17, 1025-1028 (2007).
[CrossRef]

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Wang, L. J.

J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, "Exact frequency comb mode number determination in precision optical frequency measurements," Laser Phys. 17, 1025-1028 (2007).
[CrossRef]

Wang, Y. H.

J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, "Exact frequency comb mode number determination in precision optical frequency measurements," Laser Phys. 17, 1025-1028 (2007).
[CrossRef]

Windeler, R. S.

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond laser comb used for absolute optical frequency measurements," IEEE J. Sel. Top. Quantum Electron. 9, 1066-1071 (2003).
[CrossRef]

Zhang, J.

J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, "Exact frequency comb mode number determination in precision optical frequency measurements," Laser Phys. 17, 1025-1028 (2007).
[CrossRef]

Zhao, Y. N.

J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, "Exact frequency comb mode number determination in precision optical frequency measurements," Laser Phys. 17, 1025-1028 (2007).
[CrossRef]

Zucco, M.

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond laser comb used for absolute optical frequency measurements," IEEE J. Sel. Top. Quantum Electron. 9, 1066-1071 (2003).
[CrossRef]

Appl. Phys. B (2)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, "Ultrashort-pulse fiber ring lasers," Appl. Phys. B 65, 277-294 (1997).
[CrossRef]

J.-L. Peng, H. Ahn, R.-H. Shu, H.-C. Chui, and J. W. Nicholson, "Highly stable, frequency-controlled mode-locked erbium fiber laser comb," Appl. Phys. B 86, 49-53 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L.-S. Ma, M. Zucco, S. Picard, L. Robertsson, and R. S. Windeler, "A new method to determine the absolute mode number of a mode-locked femtosecond laser comb used for absolute optical frequency measurements," IEEE J. Sel. Top. Quantum Electron. 9, 1066-1071 (2003).
[CrossRef]

Laser Phys. (1)

J. Zhang, Z. H. Lu, Y. H. Wang, T. Liu, A. Stejskal, Y. N. Zhao, R. Dumke, Q. H. Gong, and L. J. Wang, "Exact frequency comb mode number determination in precision optical frequency measurements," Laser Phys. 17, 1025-1028 (2007).
[CrossRef]

Nature (1)

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416, 233-237 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Other (2)

T.-A. Liu, R.-H. Shu, and J.-L. Peng, "Semi-automatic, Octave-spanning Optical Frequency Counter," Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR), Korea, Aug 26-31, ThG2-2, 2007, (pp. 1032-1033).

For example, http://www.optocomb.com/eng/index.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Schematic diagram of the semi-automatic optical frequency counter using two mode-locked Er:fiber combs. Each laser has two branches of octave-spanning supercontinuum. One branch is for the frequency stabilization of the repetition rate and the CEO frequency (not shown), and the other branch is for beating with the Nd:YAG laser.

Figs. 2.
Figs. 2.

(a) and (b) The measured beat frequencies for fr1=100 MHz and fr2=99.9989 MHz.

Fig. 3.
Fig. 3.

The mode number n determined by Eq. (4).

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

f L = n · f r 1 + f o 1 + f b 1
f L = ( n + m ) · f r 2 + f o 2 + f b 2
m = n · ( f r 1 f r 2 ) f o 2 + f o 1 f b 2 + f b 1 f r 2
n = m · f r 2 + f o 2 f o 1 + f b 2 f b 1 f r 1 f r 2
δ m = ( ( f r 1 f r 2 ) f r 2 · δ n est ) 2 + ( n f r 2 · δ ( f r 1 f r 2 ) ) 2 + ( 1 f r 2 · δ ( f b 2 f b 1 ) ) 2
δ n ( δ ( f b 2 f b 1 ) f r 1 f r 2 ) 2 + ( n δ ( f r 1 f r 2 ) f r 1 f r 2 ) 2
δ n est = c · δ λ f r 1 · λ 2 ,
δ m ( ( f r 1 f r 2 ) · c · δ λ f r 2 · f r 1 · λ 2 ) 2 + ( 2 n σ ( τ ) ) 2 ( f r 1 f r 2 ) · c · δ λ f r 2 · f r 1 · λ 2
δ n 2 n σ ( τ ) f r f r 1 f r 2
δ n 2 ( δ ν ) f r 1 f r 2
f r 2 · f r 1 · λ 2 c · δ λ f r 1 f r 2 2 ( δ ν )

Metrics