Abstract

Tuning of surface plasmon resonance by gold and silver bimetallic thin film and bimetallic dot array is investigated. Laser interference lithography is applied to fabricate the nanostructures. A bimetallic dot structure is obtained by a lift-off procedure after gold and silver thin film deposition by an electron beam evaporator. Surface plasmon behaviors of these films and nanostructures are studied using UV-Vis spectroscopy. It is observed that for gold thin film on quartz substrate, the optical spectral peak is blue shifted when a silver thin film is coated over it. Compared to the plasmon band in single metal gold dot array, the bimetallic nanodot array shows a similar blue shift in its spectral peak. These shifts are both attributed to the interaction between gold and silver atoms. Electromagnetic interaction between gold and silver nanostructures is discussed using a simplified spring model.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
    [CrossRef]
  2. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters~Springer (New York, 1995)
  3. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  4. T. Xu, C. T. Wang, C. L. Du, and X. G. Luo, "Plasmonic beam deflector," Opt. Express 16, 4753-4759 (2008).
    [CrossRef] [PubMed]
  5. Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91, 061124 (2007).
    [CrossRef]
  6. R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science (Washington, D.C.) 277, 1078-1081 (1997).
    [CrossRef]
  7. P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, "An integrated optic hydrogen sensor based on SPR on palladium," Sens. Actuators, B. 74, 2001:168.
    [CrossRef]
  8. D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89, 407-411 (2007).
    [CrossRef]
  9. A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).
  10. A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
    [CrossRef]
  11. F. Ma, M. H. Hong, and L. S. Tan, "Laser nanofabrication of large area plasmonic structures and surface Plasmon resonance tuning by thermal effect," Appl. Phys. A, in press.
  12. A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods," Phys. Rev. Lett. 95, 267405 (2005).
    [CrossRef]
  13. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett. 7, 729-732 (2007).
    [CrossRef] [PubMed]
  14. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, "Multiple plasmon resonances from gold nanostructures," Appl. Phys. Lett. 90, 143105 (2007).
    [CrossRef]
  15. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A Hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
    [CrossRef] [PubMed]
  16. P. Nordlander and E. Prodan, "Plasmon hybridization in nanoparticals near metallic surfaces," Nano Lett. 4, 2209-2213 (2004).
    [CrossRef]
  17. G. Leveque and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express. 14, 9971-9981 (2006).
    [CrossRef] [PubMed]
  18. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
    [CrossRef]
  19. W. R. Holland and D. G. Hall, "Frequency shifts of an electric-dipole resonance near a conducting surface," Phys. Rev. Lett. 52, 1041-1044 (1984).
    [CrossRef]
  20. Y. L. Wang, H. J. Chen, S. J. Dong, and E. K. Wang, "Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors," J. Chem. Phys. 125, 044710 (2006).
    [CrossRef]
  21. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
    [CrossRef]
  22. B. H. Ong, X. C. Yuan, S. C. Tjin, J. W. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sens. Actuators B 1141028-1034 (2006).
    [CrossRef]
  23. S. Y. Wu and H. P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer," in: Proceedings of the IEEE, Electron Devices, Hong Kong, 63-68 (2002).
    [CrossRef]
  24. N. Papanikolaou, "Optical properties of metallic nanoparticle arrays on a thin metallic film," Phys. Rev. B 75, 235426 (2007).
    [CrossRef]
  25. M. L. Schattenburg, R. J. Aucoin,  et al. "Optically matched trilevel resist process for nanostructure fabrication," J. Vac. Sci. Technol. B. 13, 3007-3011 (1995).
    [CrossRef]
  26. S. Tolansky, An Introduction to Interferometry (Longmans, Green, New York, 1955).
  27. Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, "Fabrication of nanostructures with laser interference lithography," J. Alloy. Compd. 449, 261-264 (2008).
    [CrossRef]
  28. C. X. Kan, W. P. Cai, C. C. Li, G. H. Fu, and L. D. Zhang, "Morphologic evolution and optical properties of nanostructured gold based on mesoporous silica," J. Appl. Phys. 96, 5727 (2004).
    [CrossRef]
  29. W. Y. Huang, W. Qian, and M. A. El-Sayed, "Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses," J. Appl. Phys. 98, 114301 (2005).
    [CrossRef]
  30. M. L. Brongersma and PieterG.  Kik, eds. Surface plasmon nanophotonics (Springer, Netherlands, 2007), pp.17.
    [CrossRef]
  31. H. Kuhn, W. Hoppe, W. Lohmann, H. Mark, and H. Ziegler eds., Biophysik (Springer, Berlin, 1982), pp. 289.
  32. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
    [CrossRef]

2008 (2)

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, "Fabrication of nanostructures with laser interference lithography," J. Alloy. Compd. 449, 261-264 (2008).
[CrossRef]

T. Xu, C. T. Wang, C. L. Du, and X. G. Luo, "Plasmonic beam deflector," Opt. Express 16, 4753-4759 (2008).
[CrossRef] [PubMed]

2007 (6)

N. Papanikolaou, "Optical properties of metallic nanoparticle arrays on a thin metallic film," Phys. Rev. B 75, 235426 (2007).
[CrossRef]

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
[CrossRef]

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, "Multiple plasmon resonances from gold nanostructures," Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

2006 (3)

B. H. Ong, X. C. Yuan, S. C. Tjin, J. W. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sens. Actuators B 1141028-1034 (2006).
[CrossRef]

G. Leveque and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express. 14, 9971-9981 (2006).
[CrossRef] [PubMed]

Y. L. Wang, H. J. Chen, S. J. Dong, and E. K. Wang, "Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors," J. Chem. Phys. 125, 044710 (2006).
[CrossRef]

2005 (2)

W. Y. Huang, W. Qian, and M. A. El-Sayed, "Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses," J. Appl. Phys. 98, 114301 (2005).
[CrossRef]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

2004 (2)

P. Nordlander and E. Prodan, "Plasmon hybridization in nanoparticals near metallic surfaces," Nano Lett. 4, 2209-2213 (2004).
[CrossRef]

C. X. Kan, W. P. Cai, C. C. Li, G. H. Fu, and L. D. Zhang, "Morphologic evolution and optical properties of nanostructured gold based on mesoporous silica," J. Appl. Phys. 96, 5727 (2004).
[CrossRef]

2003 (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A Hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

2002 (1)

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

2000 (2)

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

1997 (1)

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science (Washington, D.C.) 277, 1078-1081 (1997).
[CrossRef]

1995 (1)

M. L. Schattenburg, R. J. Aucoin,  et al. "Optically matched trilevel resist process for nanostructure fabrication," J. Vac. Sci. Technol. B. 13, 3007-3011 (1995).
[CrossRef]

1985 (1)

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

1984 (1)

W. R. Holland and D. G. Hall, "Frequency shifts of an electric-dipole resonance near a conducting surface," Phys. Rev. Lett. 52, 1041-1044 (1984).
[CrossRef]

Aubard, J.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Aucoin, R. J.

M. L. Schattenburg, R. J. Aucoin,  et al. "Optically matched trilevel resist process for nanostructure fabrication," J. Vac. Sci. Technol. B. 13, 3007-3011 (1995).
[CrossRef]

Aussenegg, F. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Bachelot, R.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Blasi, B.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

Boerner, V.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

Bouhelier, A.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Cai, W. P.

C. X. Kan, W. P. Cai, C. C. Li, G. H. Fu, and L. D. Zhang, "Morphologic evolution and optical properties of nanostructured gold based on mesoporous silica," J. Appl. Phys. 96, 5727 (2004).
[CrossRef]

Capasso, F.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Chen, C.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Chen, G. X.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, "Fabrication of nanostructures with laser interference lithography," J. Alloy. Compd. 449, 261-264 (2008).
[CrossRef]

Chen, H. J.

Y. L. Wang, H. J. Chen, S. J. Dong, and E. K. Wang, "Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors," J. Chem. Phys. 125, 044710 (2006).
[CrossRef]

Cho, A. Y.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Chong, T. C.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, "Fabrication of nanostructures with laser interference lithography," J. Alloy. Compd. 449, 261-264 (2008).
[CrossRef]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
[CrossRef]

Clark, A. W.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, "Multiple plasmon resonances from gold nanostructures," Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Cooper, J. M.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, "Multiple plasmon resonances from gold nanostructures," Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Cumming, D. R. S.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, "Multiple plasmon resonances from gold nanostructures," Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Dong, S. J.

Y. L. Wang, H. J. Chen, S. J. Dong, and E. K. Wang, "Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors," J. Chem. Phys. 125, 044710 (2006).
[CrossRef]

Du, C. L.

T. Xu, C. T. Wang, C. L. Du, and X. G. Luo, "Plasmonic beam deflector," Opt. Express 16, 4753-4759 (2008).
[CrossRef] [PubMed]

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
[CrossRef]

Elghanian, R.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science (Washington, D.C.) 277, 1078-1081 (1997).
[CrossRef]

El-Sayed, M. A.

W. Y. Huang, W. Qian, and M. A. El-Sayed, "Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses," J. Appl. Phys. 98, 114301 (2005).
[CrossRef]

Felidj, N.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Fu, G. H.

C. X. Kan, W. P. Cai, C. C. Li, G. H. Fu, and L. D. Zhang, "Morphologic evolution and optical properties of nanostructured gold based on mesoporous silica," J. Appl. Phys. 96, 5727 (2004).
[CrossRef]

Fu, Y. Q.

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Glidle, A.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, "Multiple plasmon resonances from gold nanostructures," Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Gmachl, C.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Gombert, A.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

Hafner, J. H.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A Hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Hall, D. G.

W. R. Holland and D. G. Hall, "Frequency shifts of an electric-dipole resonance near a conducting surface," Phys. Rev. Lett. 52, 1041-1044 (1984).
[CrossRef]

Hao, F.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

Heinzel, A.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

Hohenau, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Holland, W. R.

W. R. Holland and D. G. Hall, "Frequency shifts of an electric-dipole resonance near a conducting surface," Phys. Rev. Lett. 52, 1041-1044 (1984).
[CrossRef]

Hong, M. H.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, "Fabrication of nanostructures with laser interference lithography," J. Alloy. Compd. 449, 261-264 (2008).
[CrossRef]

F. Ma, M. H. Hong, and L. S. Tan, "Laser nanofabrication of large area plasmonic structures and surface Plasmon resonance tuning by thermal effect," Appl. Phys. A, in press.

Huang, W. Y.

W. Y. Huang, W. Qian, and M. A. El-Sayed, "Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses," J. Appl. Phys. 98, 114301 (2005).
[CrossRef]

Hutchinson, A. L.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Jiao, X.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Kan, C. X.

C. X. Kan, W. P. Cai, C. C. Li, G. H. Fu, and L. D. Zhang, "Morphologic evolution and optical properties of nanostructured gold based on mesoporous silica," J. Appl. Phys. 96, 5727 (2004).
[CrossRef]

Kostcheev, S.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Krenn, J. R.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Lamprecht, B.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Leitner, A.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Lerondel, G.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Letsinger, R. L.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science (Washington, D.C.) 277, 1078-1081 (1997).
[CrossRef]

Leveque, G.

G. Leveque and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express. 14, 9971-9981 (2006).
[CrossRef] [PubMed]

Levi, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Li, C. C.

C. X. Kan, W. P. Cai, C. C. Li, G. H. Fu, and L. D. Zhang, "Morphologic evolution and optical properties of nanostructured gold based on mesoporous silica," J. Appl. Phys. 96, 5727 (2004).
[CrossRef]

Lim, L. E. N.

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Luo, X. G.

T. Xu, C. T. Wang, C. L. Du, and X. G. Luo, "Plasmonic beam deflector," Opt. Express 16, 4753-4759 (2008).
[CrossRef] [PubMed]

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Luther, J.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

Ma, F.

F. Ma, M. H. Hong, and L. S. Tan, "Laser nanofabrication of large area plasmonic structures and surface Plasmon resonance tuning by thermal effect," Appl. Phys. A, in press.

Martin, O. J. F.

G. Leveque and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express. 14, 9971-9981 (2006).
[CrossRef] [PubMed]

Ming, H.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Mirkin, C. A.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science (Washington, D.C.) 277, 1078-1081 (1997).
[CrossRef]

Moskovits, M.

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Mucic, R. C.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science (Washington, D.C.) 277, 1078-1081 (1997).
[CrossRef]

Nehl, C. L.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

Ng, H. M.

B. H. Ong, X. C. Yuan, S. C. Tjin, J. W. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sens. Actuators B 1141028-1034 (2006).
[CrossRef]

Nordlander, P.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

P. Nordlander and E. Prodan, "Plasmon hybridization in nanoparticals near metallic surfaces," Nano Lett. 4, 2209-2213 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A Hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Ong, B. H.

B. H. Ong, X. C. Yuan, S. C. Tjin, J. W. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sens. Actuators B 1141028-1034 (2006).
[CrossRef]

Papanikolaou, N.

N. Papanikolaou, "Optical properties of metallic nanoparticle arrays on a thin metallic film," Phys. Rev. B 75, 235426 (2007).
[CrossRef]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
[CrossRef]

Prodan, E.

P. Nordlander and E. Prodan, "Plasmon hybridization in nanoparticals near metallic surfaces," Nano Lett. 4, 2209-2213 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A Hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Qian, W.

W. Y. Huang, W. Qian, and M. A. El-Sayed, "Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses," J. Appl. Phys. 98, 114301 (2005).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A Hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Rao, R.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Rechberger, W.

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Royer, P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Schattenburg, M. L.

M. L. Schattenburg, R. J. Aucoin,  et al. "Optically matched trilevel resist process for nanostructure fabrication," J. Vac. Sci. Technol. B. 13, 3007-3011 (1995).
[CrossRef]

Schider, G.

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

Sheridan, A. K.

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, "Multiple plasmon resonances from gold nanostructures," Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

Shi, L. P.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, "Fabrication of nanostructures with laser interference lithography," J. Alloy. Compd. 449, 261-264 (2008).
[CrossRef]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
[CrossRef]

Sivco, D. L.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Storhoff, J. J.

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science (Washington, D.C.) 277, 1078-1081 (1997).
[CrossRef]

Tan, H. L.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, "Fabrication of nanostructures with laser interference lithography," J. Alloy. Compd. 449, 261-264 (2008).
[CrossRef]

Tan, L. S.

F. Ma, M. H. Hong, and L. S. Tan, "Laser nanofabrication of large area plasmonic structures and surface Plasmon resonance tuning by thermal effect," Appl. Phys. A, in press.

Tjin, S. C.

B. H. Ong, X. C. Yuan, S. C. Tjin, J. W. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sens. Actuators B 1141028-1034 (2006).
[CrossRef]

Tredicucci, A.

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Wang, C. T.

Wang, E. K.

Y. L. Wang, H. J. Chen, S. J. Dong, and E. K. Wang, "Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors," J. Chem. Phys. 125, 044710 (2006).
[CrossRef]

Wang, P.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Wang, Y. L.

Y. L. Wang, H. J. Chen, S. J. Dong, and E. K. Wang, "Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors," J. Chem. Phys. 125, 044710 (2006).
[CrossRef]

Wiederrecht, G. P.

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Wittwer, V.

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

Xie, Q.

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, "Fabrication of nanostructures with laser interference lithography," J. Alloy. Compd. 449, 261-264 (2008).
[CrossRef]

Xu, T.

Yuan, G.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Yuan, X. C.

B. H. Ong, X. C. Yuan, S. C. Tjin, J. W. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sens. Actuators B 1141028-1034 (2006).
[CrossRef]

Zhang, D.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Zhang, J.

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

Zhang, J. W.

B. H. Ong, X. C. Yuan, S. C. Tjin, J. W. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sens. Actuators B 1141028-1034 (2006).
[CrossRef]

Zhang, L. D.

C. X. Kan, W. P. Cai, C. C. Li, G. H. Fu, and L. D. Zhang, "Morphologic evolution and optical properties of nanostructured gold based on mesoporous silica," J. Appl. Phys. 96, 5727 (2004).
[CrossRef]

Zhou, W.

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

Appl. Phys. A (2)

D. Zhang, P. Wang, X. Jiao, G. Yuan, J. Zhang, C. Chen, H. Ming, and R. Rao, "Investigation of the sensitivity of H-shaped nano-grating surface plasmon resonance biosensors using rigorous coupled wave analysis," Appl. Phys. A 89, 407-411 (2007).
[CrossRef]

F. Ma, M. H. Hong, and L. S. Tan, "Laser nanofabrication of large area plasmonic structures and surface Plasmon resonance tuning by thermal effect," Appl. Phys. A, in press.

Appl. Phys. Lett. (3)

A. Tredicucci, C. Gmachl, F. Capasso, A. L. Hutchinson, D. L. Sivco, and A. Y. Cho, "Single-mode surface-plasmon laser," Appl. Phys. Lett. 76, 2164-2166 (2000).
[CrossRef]

Y. Q. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91, 061124 (2007).
[CrossRef]

A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, "Multiple plasmon resonances from gold nanostructures," Appl. Phys. Lett. 90, 143105 (2007).
[CrossRef]

J. Alloy. Compd. (1)

Q. Xie, M. H. Hong, H. L. Tan, G. X. Chen, L. P. Shi, and T. C. Chong, "Fabrication of nanostructures with laser interference lithography," J. Alloy. Compd. 449, 261-264 (2008).
[CrossRef]

J. Appl. Phys. (2)

C. X. Kan, W. P. Cai, C. C. Li, G. H. Fu, and L. D. Zhang, "Morphologic evolution and optical properties of nanostructured gold based on mesoporous silica," J. Appl. Phys. 96, 5727 (2004).
[CrossRef]

W. Y. Huang, W. Qian, and M. A. El-Sayed, "Photothermal reshaping of prismatic Au nanoparticles in periodic monolayer arrays by femtosecond laser pulses," J. Appl. Phys. 98, 114301 (2005).
[CrossRef]

J. Chem. Phys. (1)

Y. L. Wang, H. J. Chen, S. J. Dong, and E. K. Wang, "Surface-enhanced Raman scattering of silver-gold bimetallic nanostructures with hollow interiors," J. Chem. Phys. 125, 044710 (2006).
[CrossRef]

J. Mod. Opt. (1)

A. Heinzel, V. Boerner, A. Gombert, B. Blasi, V. Wittwer, and J. Luther, "Radiation filters and emitters for the NIR based on periodically structured metal surfaces," J. Mod. Opt. 47, 2399-2419 (2000).

J. Vac. Sci. Technol. B. (1)

M. L. Schattenburg, R. J. Aucoin,  et al. "Optically matched trilevel resist process for nanostructure fabrication," J. Vac. Sci. Technol. B. 13, 3007-3011 (1995).
[CrossRef]

Nano Lett. (2)

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon resonances of a gold nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

P. Nordlander and E. Prodan, "Plasmon hybridization in nanoparticals near metallic surfaces," Nano Lett. 4, 2209-2213 (2004).
[CrossRef]

Opt. Commun. (1)

W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, "Optical properties of two interacting gold nanoparticles," Opt. Commun. 220, 137-141 (2003).
[CrossRef]

Opt. Express (1)

Opt. Express. (1)

G. Leveque and O. J. F. Martin, "Optical interactions in a plasmonic particle coupled to a metallic film," Opt. Express. 14, 9971-9981 (2006).
[CrossRef] [PubMed]

Phys. Rev. B (2)

N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, B. Lamprecht, A. Leitner, and F. R. Aussenegg, "Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering," Phys. Rev. B 65, 075419 (2002).
[CrossRef]

N. Papanikolaou, "Optical properties of metallic nanoparticle arrays on a thin metallic film," Phys. Rev. B 75, 235426 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

W. R. Holland and D. G. Hall, "Frequency shifts of an electric-dipole resonance near a conducting surface," Phys. Rev. Lett. 52, 1041-1044 (1984).
[CrossRef]

A. Bouhelier, R. Bachelot, G. Lerondel, S. Kostcheev, P. Royer, and G. P. Wiederrecht, "Surface Plasmon Characteristics of Tunable Photoluminescence in Single Gold Nanorods," Phys. Rev. Lett. 95, 267405 (2005).
[CrossRef]

Rep. Prog. Phys. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique. "Theory of surface plasmons and surface-plasmon polaritons," Rep. Prog. Phys. 70, 1-87 (2007).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, "Surface-enhanced spectroscopy," Rev. Mod. Phys. 57, 783-826 (1985).
[CrossRef]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A Hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Science (Washington, D.C.) (1)

R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, "Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles," Science (Washington, D.C.) 277, 1078-1081 (1997).
[CrossRef]

Sens. Actuators B (1)

B. H. Ong, X. C. Yuan, S. C. Tjin, J. W. Zhang, and H. M. Ng, "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor," Sens. Actuators B 1141028-1034 (2006).
[CrossRef]

Other (7)

S. Y. Wu and H. P. Ho, "Sensitivity improvement of the surface plasmon resonance optical sensor by using a gold-silver transducing layer," in: Proceedings of the IEEE, Electron Devices, Hong Kong, 63-68 (2002).
[CrossRef]

P. Tobiska, O. Hugon, A. Trouillet, and H. Gagnaire, "An integrated optic hydrogen sensor based on SPR on palladium," Sens. Actuators, B. 74, 2001:168.
[CrossRef]

S. Tolansky, An Introduction to Interferometry (Longmans, Green, New York, 1955).

M. L. Brongersma and PieterG.  Kik, eds. Surface plasmon nanophotonics (Springer, Netherlands, 2007), pp.17.
[CrossRef]

H. Kuhn, W. Hoppe, W. Lohmann, H. Mark, and H. Ziegler eds., Biophysik (Springer, Berlin, 1982), pp. 289.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters~Springer (New York, 1995)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Schematic diagram of laser interference lithography for bimetallic nanostructure fabrication [26].

Fig. 2.
Fig. 2.

Experimental procedure: (a) PMGI coating; (b) photoresist coating; (c) exposure; (d) photoresist development; (e) PMGI undercut; (f) metal film sputtering and (g) lift-off

Fig. 3.
Fig. 3.

Images of bimetallic (Ag/Au) dots array on a quartz substrate: (a) SEM image at a 500 tilt angle (scale bar value: 1 µm) and (b) Line scan profile and 2D AFM image (coloured arrows correspond to the positions in the scan profile).

Fig. 4.
Fig. 4.

Normalized UV-Vis transmission spectra of Au and Ag/Au bimetallic thin films. The plasmon resonance peak of Au in the bimetallic film at 496 nm shows a blue shift from the single film, which peaks at 524 nm.

Fig. 5.
Fig. 5.

Normalized UV-Vis transmission spectra for metallic nanodot arrays fabricated by LIL technique. The plasmon resonance peaks are blue shifted. The larger shift of the Au peak (as compared to the film structure) is due to the independent increase in repulsive force within each atom pairs formed by the isolation of the periodic dot structures.

Fig. 6.
Fig. 6.

Sketches to illustrate the electromagnetic interaction between closely spaced atoms: (a) a gold atom (left) or a silver atom (right) and (b) a pair of closely placed atoms with the polarization of the exciting field parallel to the particle surface.

Metrics