Abstract

Continuous wave laser emission at 2.1 µm from a Yb3+/Tm3+/Ho3+ triply-doped tellurite fibre laser is reported. The fibre was pumped at 1.1 µm by a Yb3+-doped double-clad silica fibre laser. For a 17 cm fibre length and 99%–60% reflectance cavity, the threshold was 15 mW and the slope efficiency was 25%. A maximum output of 60 mW was observed for a launched pump power of 270 mW, corresponding to 22% optical-to-optical efficiency.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187 (1994).
    [CrossRef]
  2. J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, "CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser," Electron. Lett. 26, 599 (1990).
    [CrossRef]
  3. A. Jha, S. Shen, and M. Naftaly, "Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses," Phys. Rev. B 62, 6215 (2000).
    [CrossRef]
  4. L. Huang, S. Shen, and A. Jha, "Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses," J. Non-Cryst. Solids,  345-346, 349 (2004).
    [CrossRef]
  5. A. Mori, Y. Ohishi, and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863 (1997).
    [CrossRef]
  6. J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, "Neodymium-doped tellurite single-mode fiber laser," Opt. Lett. 19, 1448 (1994).
    [CrossRef] [PubMed]
  7. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, "Efficient ~2 μm Tm3+-doped tellurite fiber laser," Opt. Lett. 33, 402 (2008).
    [CrossRef] [PubMed]
  8. I. Ilev and R. Waynant, "Mid-infrared Biomedical Application," in Mid-infrared Semiconductor Optoelectronics A. Krier, ed. (Springer, 2006), pp. 615-631.
  9. K. Scholle, E. Heumann, and G. Huber, "Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications," Laser Phys. Lett. 1, 285 (2004).
    [CrossRef]
  10. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, "Coherent differential absorption lidar measurements of CO2," Appl. Opt. 43, 5092 (2004).
    [CrossRef] [PubMed]
  11. M. Marano, G. Galzerano, C. Svelto, and P. Laporta, "Frequency stabilized Tm-Ho:YAG laser by locking to H79Br and CO2 transitions at around 2.09 μm," IEEE Trans. Instrum. Meas. 53, 571 (2004).
    [CrossRef]
  12. S. D. Jackson, "2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 μm," Appl. Phys. B,  76, 793 (2003).
    [CrossRef]
  13. A. S. Kurkov, E. M. Dianov, O. I. Mcdvedkov, G. A. Ivanov, V. A. Akscnov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 μm spectral region pumped at 1.15 μm," Electron. Lett. 36, 1015 (2000).
    [CrossRef]
  14. A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, "1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser," Appl. Phys. Lett. 81, 3723 (2002).
    [CrossRef]
  15. S. D. Jackson, F. Bugge, and G. Erbert, "High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers," Opt. Lett. 32, 3349 (2007).
    [CrossRef] [PubMed]
  16. S. D. Jackson and S. Mossman, "High-power diode-cladding-pumped Tm3+, Ho3+-doped silica fibre laser," Appl. Phys. B 77, 489 (2003).
    [CrossRef]
  17. S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, "High-power 83 W holmium-doped silica fiber laser operating with high beam quality," Opt. Lett. 32, 241 (2007).
    [CrossRef] [PubMed]
  18. S. D. Jackson and S. Mossman, "Diode-cladding-pumped Yb3+, Ho3+-doped silica fiber laser operating at 2.1-μm," Appl. Opt. 42, 3546 (2003).
    [CrossRef] [PubMed]
  19. T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, "High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications," IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
    [CrossRef]
  20. S. D. Jackson, "8.8 W diode-cladding-pumped Tm3+,Ho3+-doped fluoride fibre laser," Electron. Lett. 37, 821 (2001).
    [CrossRef]
  21. S. D. Jackson and T. A. King, "CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34, 1578 (1998).
    [CrossRef]
  22. X. Li, Q. Nie, S. Dai, T. Xu, X. Shen, and X. Zhang, "Investigation of energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped tellurite glasses," J. Phys. Chem. Solids,  68, 1566 (2007).
    [CrossRef]
  23. S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Inc., 1997).
  24. Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, "Tm3+/Ho3+ codoped tellurite fiber laser," Opt. Lett. 33, 1282 (2008).
    [CrossRef] [PubMed]
  25. B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, "~2 μm Tm3+/Yb3+-doped tellurite fibre laser," J. Mater. Sci: Mater. Electron. (to be published).
  26. B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, "Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre," Opt. Express 15, 6546 (2007).
    [CrossRef] [PubMed]

2008 (2)

2007 (4)

2004 (4)

K. Scholle, E. Heumann, and G. Huber, "Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications," Laser Phys. Lett. 1, 285 (2004).
[CrossRef]

G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, "Coherent differential absorption lidar measurements of CO2," Appl. Opt. 43, 5092 (2004).
[CrossRef] [PubMed]

M. Marano, G. Galzerano, C. Svelto, and P. Laporta, "Frequency stabilized Tm-Ho:YAG laser by locking to H79Br and CO2 transitions at around 2.09 μm," IEEE Trans. Instrum. Meas. 53, 571 (2004).
[CrossRef]

L. Huang, S. Shen, and A. Jha, "Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses," J. Non-Cryst. Solids,  345-346, 349 (2004).
[CrossRef]

2003 (3)

S. D. Jackson, "2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 μm," Appl. Phys. B,  76, 793 (2003).
[CrossRef]

S. D. Jackson and S. Mossman, "Diode-cladding-pumped Yb3+, Ho3+-doped silica fiber laser operating at 2.1-μm," Appl. Opt. 42, 3546 (2003).
[CrossRef] [PubMed]

S. D. Jackson and S. Mossman, "High-power diode-cladding-pumped Tm3+, Ho3+-doped silica fibre laser," Appl. Phys. B 77, 489 (2003).
[CrossRef]

2002 (1)

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, "1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser," Appl. Phys. Lett. 81, 3723 (2002).
[CrossRef]

2001 (1)

S. D. Jackson, "8.8 W diode-cladding-pumped Tm3+,Ho3+-doped fluoride fibre laser," Electron. Lett. 37, 821 (2001).
[CrossRef]

2000 (2)

A. Jha, S. Shen, and M. Naftaly, "Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses," Phys. Rev. B 62, 6215 (2000).
[CrossRef]

A. S. Kurkov, E. M. Dianov, O. I. Mcdvedkov, G. A. Ivanov, V. A. Akscnov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 μm spectral region pumped at 1.15 μm," Electron. Lett. 36, 1015 (2000).
[CrossRef]

1999 (1)

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, "High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications," IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[CrossRef]

1998 (1)

S. D. Jackson and T. A. King, "CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34, 1578 (1998).
[CrossRef]

1997 (1)

A. Mori, Y. Ohishi, and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863 (1997).
[CrossRef]

1994 (2)

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, "Neodymium-doped tellurite single-mode fiber laser," Opt. Lett. 19, 1448 (1994).
[CrossRef] [PubMed]

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187 (1994).
[CrossRef]

1990 (1)

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, "CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser," Electron. Lett. 26, 599 (1990).
[CrossRef]

Akscnov, V. A.

A. S. Kurkov, E. M. Dianov, O. I. Mcdvedkov, G. A. Ivanov, V. A. Akscnov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 μm spectral region pumped at 1.15 μm," Electron. Lett. 36, 1015 (2000).
[CrossRef]

Amzajerdian, F.

Arai, T.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, "High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications," IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[CrossRef]

Barnes, B. W.

Bennetts, S.

Beyon, J. Y.

Binks, D.

Bugge, F.

Carter, J. N.

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, "CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser," Electron. Lett. 26, 599 (1990).
[CrossRef]

Dai, S.

X. Li, Q. Nie, S. Dai, T. Xu, X. Shen, and X. Zhang, "Investigation of energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped tellurite glasses," J. Phys. Chem. Solids,  68, 1566 (2007).
[CrossRef]

Davis, R. E.

Dianov, E. M.

A. S. Kurkov, E. M. Dianov, O. I. Mcdvedkov, G. A. Ivanov, V. A. Akscnov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 μm spectral region pumped at 1.15 μm," Electron. Lett. 36, 1015 (2000).
[CrossRef]

Erbert, G.

Galzerano, G.

M. Marano, G. Galzerano, C. Svelto, and P. Laporta, "Frequency stabilized Tm-Ho:YAG laser by locking to H79Br and CO2 transitions at around 2.09 μm," IEEE Trans. Instrum. Meas. 53, 571 (2004).
[CrossRef]

Hanna, D. C.

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, "CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser," Electron. Lett. 26, 599 (1990).
[CrossRef]

Hemming, A.

Heumann, E.

K. Scholle, E. Heumann, and G. Huber, "Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications," Laser Phys. Lett. 1, 285 (2004).
[CrossRef]

Huang, L.

L. Huang, S. Shen, and A. Jha, "Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses," J. Non-Cryst. Solids,  345-346, 349 (2004).
[CrossRef]

Huber, G.

K. Scholle, E. Heumann, and G. Huber, "Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications," Laser Phys. Lett. 1, 285 (2004).
[CrossRef]

Ishihari, M.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, "High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications," IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[CrossRef]

Ismail, S.

Ivanov, G. A.

A. S. Kurkov, E. M. Dianov, O. I. Mcdvedkov, G. A. Ivanov, V. A. Akscnov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 μm spectral region pumped at 1.15 μm," Electron. Lett. 36, 1015 (2000).
[CrossRef]

Jackson, S. D.

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, "High-power 83 W holmium-doped silica fiber laser operating with high beam quality," Opt. Lett. 32, 241 (2007).
[CrossRef] [PubMed]

S. D. Jackson, F. Bugge, and G. Erbert, "High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers," Opt. Lett. 32, 3349 (2007).
[CrossRef] [PubMed]

S. D. Jackson and S. Mossman, "High-power diode-cladding-pumped Tm3+, Ho3+-doped silica fibre laser," Appl. Phys. B 77, 489 (2003).
[CrossRef]

S. D. Jackson, "2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 μm," Appl. Phys. B,  76, 793 (2003).
[CrossRef]

S. D. Jackson and S. Mossman, "Diode-cladding-pumped Yb3+, Ho3+-doped silica fiber laser operating at 2.1-μm," Appl. Opt. 42, 3546 (2003).
[CrossRef] [PubMed]

S. D. Jackson, "8.8 W diode-cladding-pumped Tm3+,Ho3+-doped fluoride fibre laser," Electron. Lett. 37, 821 (2001).
[CrossRef]

S. D. Jackson and T. A. King, "CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34, 1578 (1998).
[CrossRef]

Jha, A.

Y. Tsang, B. Richards, D. Binks, J. Lousteau, and A. Jha, "Tm3+/Ho3+ codoped tellurite fiber laser," Opt. Lett. 33, 1282 (2008).
[CrossRef] [PubMed]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, "Efficient ~2 μm Tm3+-doped tellurite fiber laser," Opt. Lett. 33, 402 (2008).
[CrossRef] [PubMed]

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, "Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre," Opt. Express 15, 6546 (2007).
[CrossRef] [PubMed]

L. Huang, S. Shen, and A. Jha, "Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses," J. Non-Cryst. Solids,  345-346, 349 (2004).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, "Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses," Phys. Rev. B 62, 6215 (2000).
[CrossRef]

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, "~2 μm Tm3+/Yb3+-doped tellurite fibre laser," J. Mater. Sci: Mater. Electron. (to be published).

Kavaya, M. J.

Kikuchi, M.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, "High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications," IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[CrossRef]

King, T. A.

S. D. Jackson and T. A. King, "CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34, 1578 (1998).
[CrossRef]

Koch, G. J.

Kurkov, A. S.

A. S. Kurkov, E. M. Dianov, O. I. Mcdvedkov, G. A. Ivanov, V. A. Akscnov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 μm spectral region pumped at 1.15 μm," Electron. Lett. 36, 1015 (2000).
[CrossRef]

Kuwayama, T.

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, "1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser," Appl. Phys. Lett. 81, 3723 (2002).
[CrossRef]

Lancaster, D. G.

Laporta, P.

M. Marano, G. Galzerano, C. Svelto, and P. Laporta, "Frequency stabilized Tm-Ho:YAG laser by locking to H79Br and CO2 transitions at around 2.09 μm," IEEE Trans. Instrum. Meas. 53, 571 (2004).
[CrossRef]

Li, X.

X. Li, Q. Nie, S. Dai, T. Xu, X. Shen, and X. Zhang, "Investigation of energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped tellurite glasses," J. Phys. Chem. Solids,  68, 1566 (2007).
[CrossRef]

Lousteau, J.

Machewirth, D. P.

Marano, M.

M. Marano, G. Galzerano, C. Svelto, and P. Laporta, "Frequency stabilized Tm-Ho:YAG laser by locking to H79Br and CO2 transitions at around 2.09 μm," IEEE Trans. Instrum. Meas. 53, 571 (2004).
[CrossRef]

Mcdvedkov, O. I.

A. S. Kurkov, E. M. Dianov, O. I. Mcdvedkov, G. A. Ivanov, V. A. Akscnov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 μm spectral region pumped at 1.15 μm," Electron. Lett. 36, 1015 (2000).
[CrossRef]

Mori, A.

A. Mori, Y. Ohishi, and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863 (1997).
[CrossRef]

Mossman, S.

S. D. Jackson and S. Mossman, "High-power diode-cladding-pumped Tm3+, Ho3+-doped silica fibre laser," Appl. Phys. B 77, 489 (2003).
[CrossRef]

S. D. Jackson and S. Mossman, "Diode-cladding-pumped Yb3+, Ho3+-doped silica fiber laser operating at 2.1-μm," Appl. Opt. 42, 3546 (2003).
[CrossRef] [PubMed]

Musha, M.

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, "1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser," Appl. Phys. Lett. 81, 3723 (2002).
[CrossRef]

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, "Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses," Phys. Rev. B 62, 6215 (2000).
[CrossRef]

Nie, Q.

X. Li, Q. Nie, S. Dai, T. Xu, X. Shen, and X. Zhang, "Investigation of energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped tellurite glasses," J. Phys. Chem. Solids,  68, 1566 (2007).
[CrossRef]

Ohishi, Y.

A. Mori, Y. Ohishi, and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863 (1997).
[CrossRef]

Paramonov, V. M.

A. S. Kurkov, E. M. Dianov, O. I. Mcdvedkov, G. A. Ivanov, V. A. Akscnov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 μm spectral region pumped at 1.15 μm," Electron. Lett. 36, 1015 (2000).
[CrossRef]

Pershina, E. V.

A. S. Kurkov, E. M. Dianov, O. I. Mcdvedkov, G. A. Ivanov, V. A. Akscnov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 μm spectral region pumped at 1.15 μm," Electron. Lett. 36, 1015 (2000).
[CrossRef]

Petros, M.

Prabhu, M.

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, "1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser," Appl. Phys. Lett. 81, 3723 (2002).
[CrossRef]

Richards, B.

Sabella, A.

Sato, S.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, "High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications," IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[CrossRef]

Scholle, K.

K. Scholle, E. Heumann, and G. Huber, "Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications," Laser Phys. Lett. 1, 285 (2004).
[CrossRef]

Sekita, H.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, "High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications," IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[CrossRef]

Shen, S.

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, "Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre," Opt. Express 15, 6546 (2007).
[CrossRef] [PubMed]

L. Huang, S. Shen, and A. Jha, "Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses," J. Non-Cryst. Solids,  345-346, 349 (2004).
[CrossRef]

A. Jha, S. Shen, and M. Naftaly, "Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses," Phys. Rev. B 62, 6215 (2000).
[CrossRef]

Shen, X.

X. Li, Q. Nie, S. Dai, T. Xu, X. Shen, and X. Zhang, "Investigation of energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped tellurite glasses," J. Phys. Chem. Solids,  68, 1566 (2007).
[CrossRef]

Shirakawa, A.

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, "1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser," Appl. Phys. Lett. 81, 3723 (2002).
[CrossRef]

Singh, U. N.

Smart, R. G.

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, "CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser," Electron. Lett. 26, 599 (1990).
[CrossRef]

Snitzer, E.

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187 (1994).
[CrossRef]

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, "Neodymium-doped tellurite single-mode fiber laser," Opt. Lett. 19, 1448 (1994).
[CrossRef] [PubMed]

Sudo, S.

A. Mori, Y. Ohishi, and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863 (1997).
[CrossRef]

Sumiyoshi, T.

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, "High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications," IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[CrossRef]

Svelto, C.

M. Marano, G. Galzerano, C. Svelto, and P. Laporta, "Frequency stabilized Tm-Ho:YAG laser by locking to H79Br and CO2 transitions at around 2.09 μm," IEEE Trans. Instrum. Meas. 53, 571 (2004).
[CrossRef]

Taniguchi, A.

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, "1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser," Appl. Phys. Lett. 81, 3723 (2002).
[CrossRef]

Tropper, A. C.

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, "CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser," Electron. Lett. 26, 599 (1990).
[CrossRef]

Tsang, Y.

Ueda, K.

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, "1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser," Appl. Phys. Lett. 81, 3723 (2002).
[CrossRef]

Vasiliev, S. A.

A. S. Kurkov, E. M. Dianov, O. I. Mcdvedkov, G. A. Ivanov, V. A. Akscnov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 μm spectral region pumped at 1.15 μm," Electron. Lett. 36, 1015 (2000).
[CrossRef]

Vay, S.

Vogel, E. M.

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, "Neodymium-doped tellurite single-mode fiber laser," Opt. Lett. 19, 1448 (1994).
[CrossRef] [PubMed]

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187 (1994).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187 (1994).
[CrossRef]

J. S. Wang, D. P. Machewirth, F. Wu, E. Snitzer, and E. M. Vogel, "Neodymium-doped tellurite single-mode fiber laser," Opt. Lett. 19, 1448 (1994).
[CrossRef] [PubMed]

Wu, F.

Xu, T.

X. Li, Q. Nie, S. Dai, T. Xu, X. Shen, and X. Zhang, "Investigation of energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped tellurite glasses," J. Phys. Chem. Solids,  68, 1566 (2007).
[CrossRef]

Yu, J.

Zhang, X.

X. Li, Q. Nie, S. Dai, T. Xu, X. Shen, and X. Zhang, "Investigation of energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped tellurite glasses," J. Phys. Chem. Solids,  68, 1566 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

S. D. Jackson, "2.7-W Ho3+-doped silica fibre laser pumped at 1100 nm and operating at 2.1 μm," Appl. Phys. B,  76, 793 (2003).
[CrossRef]

S. D. Jackson and S. Mossman, "High-power diode-cladding-pumped Tm3+, Ho3+-doped silica fibre laser," Appl. Phys. B 77, 489 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

A. Taniguchi, T. Kuwayama, A. Shirakawa, M. Musha, K. Ueda, and M. Prabhu, "1212 nm pumping of 2 μm Tm-Ho-codoped silica fiber laser," Appl. Phys. Lett. 81, 3723 (2002).
[CrossRef]

Electron. Lett. (4)

A. S. Kurkov, E. M. Dianov, O. I. Mcdvedkov, G. A. Ivanov, V. A. Akscnov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, "Efficient silica-based Ho3+ fibre laser for 2 μm spectral region pumped at 1.15 μm," Electron. Lett. 36, 1015 (2000).
[CrossRef]

J. N. Carter, R. G. Smart, D. C. Hanna, and A. C. Tropper, "CW diode-pumped operation of 1.97 μm thulium-doped fluorozirconate fibre laser," Electron. Lett. 26, 599 (1990).
[CrossRef]

A. Mori, Y. Ohishi, and S. Sudo, "Erbium-doped tellurite glass fibre laser and amplifier," Electron. Lett. 33, 863 (1997).
[CrossRef]

S. D. Jackson, "8.8 W diode-cladding-pumped Tm3+,Ho3+-doped fluoride fibre laser," Electron. Lett. 37, 821 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. D. Jackson and T. A. King, "CW operation of a 1.064-μm pumped Tm-Ho-doped silica fiber laser," IEEE J. Quantum Electron. 34, 1578 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Sumiyoshi, H. Sekita, T. Arai, S. Sato, M. Ishihari, and M. Kikuchi, "High-power continuous-wave 3- and 2-μm cascade Ho3+:ZBLAN fiber laser and its medical applications," IEEE J. Sel. Top. Quantum Electron. 5, 936 (1999).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

M. Marano, G. Galzerano, C. Svelto, and P. Laporta, "Frequency stabilized Tm-Ho:YAG laser by locking to H79Br and CO2 transitions at around 2.09 μm," IEEE Trans. Instrum. Meas. 53, 571 (2004).
[CrossRef]

J. Mater. Sci: Mater. Electron. (1)

B. Richards, Y. Tsang, D. Binks, J. Lousteau, and A. Jha, "~2 μm Tm3+/Yb3+-doped tellurite fibre laser," J. Mater. Sci: Mater. Electron. (to be published).

J. Non-Cryst. Solids (1)

L. Huang, S. Shen, and A. Jha, "Near infrared spectroscopic investigation of Tm3+-Yb3+ co-doped tellurite glasses," J. Non-Cryst. Solids,  345-346, 349 (2004).
[CrossRef]

J. Phys. Chem. Solids (1)

X. Li, Q. Nie, S. Dai, T. Xu, X. Shen, and X. Zhang, "Investigation of energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped tellurite glasses," J. Phys. Chem. Solids,  68, 1566 (2007).
[CrossRef]

Laser Phys. Lett. (1)

K. Scholle, E. Heumann, and G. Huber, "Single mode Tm and Tm,Ho:LuAG lasers for LIDAR applications," Laser Phys. Lett. 1, 285 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (5)

Opt. Mater. (1)

J. S. Wang, E. M. Vogel, and E. Snitzer, "Tellurite glass: a new candidate for fiber devices," Opt. Mater. 3, 187 (1994).
[CrossRef]

Phys. Rev. B (1)

A. Jha, S. Shen, and M. Naftaly, "Structural origin of spectral broadening of 1.5-μm emission in Er3+-doped tellurite glasses," Phys. Rev. B 62, 6215 (2000).
[CrossRef]

Other (2)

I. Ilev and R. Waynant, "Mid-infrared Biomedical Application," in Mid-infrared Semiconductor Optoelectronics A. Krier, ed. (Springer, 2006), pp. 615-631.

S. Sudo, Optical Fiber Amplifiers: Materials, Devices, and Applications (Artech House, Inc., 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Energy level diagram for the Tm3+/Yb3+/Ho3+-doped tellurite fibre. Ground state pump absorption (upward arrows marked GSA), energy transfer (curved arrows), excited state absorption (upward arrows marked ESA), non-radiative relaxation (dashed arrows), radiative transitions (down arrows) and upconversion cross relaxation (arrows marked UC) are shown.

Fig. 2.
Fig. 2.

Absorption spectrum for Yb3+ (1.5 wt%), Tm3+ (1.0 wt%), Ho3+ (1.0 wt%) doped tellurite glass.

Fig. 3.
Fig. 3.

Experimental set-up used to characterize the tellurite fibre laser.

Fig. 4.
Fig. 4.

Laser output power with respect to launched pump power for a 17 cm long tellurite fibre and an output coupler reflectivity of 60%.

Fig. 5.
Fig. 5.

Wavelength ranges detected for different output coupler reflectivities. The fibre for the 11% output coupler reflectivity has a length of 24.7 cm and the others have a length of 42 cm. The inset shows a typical laser spectrum obtained with output coupler reflectance of 60%.

Tables (1)

Tables Icon

Table 1. Output performance achieved for various output coupler reflectivities.

Metrics